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A B S T R A C T 

In this paper, the influence of magnetohydrodynamic (MHD) on a mixed convective heat and mass 
transfer analysis for the peristaltic transport of viscoplastic fluid  in a non-uniform two dimensional 
tapered asymmetric channel with porous medium is investigated. The governed equations that 
described the motion of flow are simplified under assumptions of low Reynolds number and long 
wavelength. These equations are solved by mean of the regular perturbation method which is restricted 
to the smaller values of Bingham and Grashof numbers. Series solution for the axial velocity, 
temperature and concentration distribution have been computed. The flow quantities have been 
illustrated graphically for different interesting parameters. The trapping phenomena is also examined 
graphically. 
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1. Introduction 

   Peristaltic is a phenomenon of fluid transport induced by progressive of sinusoidal waves along the flexible walls of 
channels. This mechanism widely occurs in many industrial and biomedical application such as flow of lymph through 
lymphatic vessels, swallowing of food through esophagus, urine flow from the kidney to bladder, blood circulation in 
small blood vessels etc. Many of the physiological fluid (lymph, blood etc.) are noted to be non-Newtonian in nature. 
Many modern biomedical and mechanical instruments like blood pumps, the roller and finger pumps and heart-lung 
machines have been designed on the principle of peristaltic. In recent years, the combined effected of heat and mass 
transfer on peristaltic transport of non-Newtonian fluid in present of magnetic field receive considerable attentions due 
to its application in biomedical sciences [1-3]. Many researcher have been made theoretical analysis and various 
experimental to understand the peristaltic flow in both physiological and mechanical phenomenon under various 
assumption. Srinivas and Kothandapani [4] investigated the influence of heat and mass transfer on MHD peristaltic flow 
through porous space with compliant walls. Effect of heat and mass transfer on peristaltic flow of a Bingham fluid in the 
presence of inclined magnetic field and channel with different wave forms is studied by Akram et al. [5]. Ramesh [6] 
discussed the influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in 
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the presence of inclined magnetic field in an inclined asymmetric channel. The effect of wall properties on the convective 
peristaltic transport of a conducting Bingham fluid through porous medium is examined by Satyanarayana et al. [7]. 
Lakshminarayana et al. [8] studied the peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule 
heating. Adnan and Abdulhadi [9] analyzed the effect of a magnetic fluid on peristaltic transport of Bingham plastic fluid 
in a symmetric channel. Murad and Abdualhadi [10] studied the influence of heat and mass transfer on peristaltic 
transport of viscoplastic fluid in presence of magnetic field through symmetric channel with porous medium. 
    In this paper, the influence of MHD on mixed convective heat and mass transfer analysis for the peristaltic transport of 
viscoplastic fluid  with porous medium in tapered channel is investigated under the assumption of low Reynolds number 
and long wavelength. The expression of velocity, temperature, concentration are obtained by using perturbation method. 
The impact of different physical parameters that appear in the problem are illustrated through graphs. Furthermore 
trapping phenomenon is also analyzed in detail.  

2. Mathematical Formulation  
    Consider a peristaltic transport of an incompressible MHD viscoplastic fluid in a non-uniform two dimensional 
tapered asymmetric channel of width (𝑎1 + 𝑎2) with porous medium. Figure (1) gives the schematic diagram of the 
asymmetric channel.  The flow is generated by propagation of wave on the channel walls train moving ahead with 
constant speed 𝑐, but with different wave amplitudes, phase angle and channel widths. Let 𝐻1 and �̅�2 be the right 
side wall and the left side wall respectively in the stationary frame of reference (�̅�, �̅�). The uniform magnetic field is 
applied in Y-direction to study the effect of it on the fluid flow. Electric field is absent. Heat and mass transfer 
studied through convective condition. The geometries of the channel walls are given by [11,12] 

 �̅� = 𝐻1(�̅�, 𝑡̅) = 𝑎1 + �̅��̅� + �̅�1 cos (
2𝜋

𝜆
(�̅� − 𝑐𝑡̅))                                                                                                                (1)  

for the right hand side wall,  

 �̅� = 𝐻2(�̅�, 𝑡̅) = −𝑎2 − �̅��̅� − �̅�2 cos (
2𝜋

𝜆
(�̅� − 𝑐𝑡̅) + �̅�)                                                                                                    (2) 

for the left hand side wall, 
where �̅� is the non-uniform parameter, �̅�1 and �̅�2 are the wave amplitudes, 𝜆 is the wavelength, 𝑡̅ is the time, �̅� is 
the phase difference which varies in the range

 
0 ≤ �̅� ≤ 𝜋. Moreover �̅� = 0 corresponds to the symmetric channel 

with waves out of phase and �̅� = 𝜋 represents that the wave is in phase. Further 𝑎1, 𝑎2, �̅�1, �̅�2 and �̅� satisfy the 
condition �̅�1

2 + �̅�2
2 + 2�̅�1�̅�1𝑐𝑜𝑠 �̅� ≤ (𝑎1 + 𝑎2)

2 so that the walls not intersect with each other.  
 
 
 
 
  
 
 
 
 
 
 
 

Fig. (1)- Schematic diagram of the asymmetric channel. 
  

3. Basic and Constitutive Equations 

    Based on the above consideration, the basic governing equations that describe the flow in the present problem 
are given by [9,13] 
equation of mass conservation  
 ∇. �̅� = 0,                                                                                                                                                                                         (3)  
motion equations (Navier-Stokes equations) 

 𝜌
𝑑�̅�

𝑑𝑡
= ∇. �̅� + 𝜌𝑔𝛼(𝑇 − 𝑇0) + �̅� × �̅� −

𝜂

�̅�0
�̅�,                                                                                                                          (4)  

energy equation 

 𝜌𝐶𝑝
𝑑�̅�

𝑑𝑡
= κ∇2�̅� + �̅�. (∇�̅�),                                                                                                                                                          (5)  

oncentration equation 
𝑑�̅�

𝑑𝑡
= 𝐷𝑚∇

2𝐶̅ +
𝐷𝑚𝐾𝑇

𝑇𝑚
 ∇2�̅�,                                                                                                                                                          (6)  

g 

𝑎1 + �̅��̅� 

�̅�1 

c 

�̅� 

�̅� 

𝐻1(�̅�, 𝑡̅) 

𝑇1 , 𝐶1 

𝜆 
0 

𝑇0 , 𝐶0 

𝑎2 + �̅��̅� 

�̅� 𝐻2(�̅�, 𝑡̅) 

�̅�2 

𝑎1 + 𝑎2 
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in which �̅� is the velocity, 𝜌 is the density, 
𝑑

𝑑𝑡
  is the material time derivative, 𝛼 is the coefficient of thermal 

expansion,  �̅� is the Cauchy stress tensor, 𝑔 is the acceleration due to gravity,  �̅� = 𝜎′ (�̅� × �̅�) is the current density, 
�̅� = (0, 𝐵0, 0) is the magnetic field, 𝜎′ is the electrical conductivity, 𝜂 is the viscosity, �̅�0 is the permeability 
parameter of porous medium, ∇2is the Laplace operator, �̅� is the temperature, 𝜅 is the thermal conductivity, 𝐶𝑝 is 

the specific heat, 𝐶̅ is the mass concentration, 𝐷𝑚  is the coefficient of mass diffusion, 𝐾𝑇 is the thermal diffusion ratio 
and 𝑇𝑚 is the mean temperature. 
    The term (�̅�. (∇�̅�)) in equation (5) can be compute from the definition of dot product of two tensor (if 𝐵and �̂� are 
any two tensor then 𝐵. �̂� = 𝑡𝑟𝑎(𝐵�̂�) ). Let 𝑈 and �̅� be the velocity components along the �̅� and �̅�-directions 
respectively in the fixed frame, the velocity vector �̅� can be written as  
 �̅� = (𝑈(�̅�, �̅�, 𝑡̅), �̅�(�̅�, �̅�, 𝑡̅), 0).                                                                                                                                                   (7) 
    The Bingham plastic fluid is considered and the constitutive equations can be defined as [3,9]  
 �̅� = −�̅�𝐼 + 𝜏̅,                                                                                                                                                                                 (8) 
 𝜏̅ = 2𝜂𝐷 + 2𝜏0�̃�,                                                                                                                                                                          (9) 
in above equations, 𝜏̅ is the extra tensor, , 𝐼 is the identity tensor, �̅� is the pressure while the rate of deformation 
tensor 𝐷 and the tensor �̃� are defined by  

 𝐷 =
1

2
(∇�̅� + (∇�̅�)𝑇), �̃� =

𝐷

√2𝑡𝑟𝑎𝐷2
 .                                                                                                                                     (10)     

    From equations (3)-(8), the governing equation in the fixed frame are given by  

 
𝜕�̅�

𝜕�̅�
+

𝜕𝑉

𝜕�̅�
= 0,                                                                                                                                                                                (11)   

 𝜌 (
𝜕𝑈

𝜕𝑡̅
+ 𝑈

𝜕𝑈

𝜕�̅�
+ �̅�

𝜕𝑈

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+ 

                                                       𝜌𝑔𝛼(𝑇 − 𝑇0) − 𝜎′𝐵0
2𝑈 −

𝜂

�̅�0
𝑈,                                                                                                         (12) 

 𝜌 (
𝜕𝑉

𝜕𝑡̅
+ 𝑈

𝜕𝑉

𝜕�̅�
+ �̅�

𝜕𝑉

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
−

𝜂

�̅�0
�̅�,                                                                                                          (13) 

 (
𝜕�̅�

𝜕𝑡̅
+ 𝑈

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) = 𝜅 (

𝜕2�̅�

𝜕�̅�2
+

𝜕2�̅�

𝜕�̅�2
) + 

                                                   𝜏�̅̅��̅�
𝜕𝑈

𝜕�̅�
+ 𝜏�̅̅��̅�

𝜕𝑉

𝜕�̅�
+ 𝜏�̅̅��̅�

𝜕𝑈

𝜕�̅�
+ 𝜏�̅̅��̅�

𝜕𝑉

𝜕�̅�
 ,                                                                                                   (14) 

 (
𝜕𝐶̅

𝜕𝑡̅
+ 𝑈

𝜕𝐶̅

𝜕�̅�
+ �̅�

𝜕𝐶̅

𝜕�̅�
) = 𝐷𝑚 (

𝜕2𝐶̅

𝜕�̅�2
+

𝜕2𝐶̅

𝜕�̅�2
) +

𝐷𝑚𝐾𝑇

𝑇𝑚
(
𝜕2�̅�

𝜕�̅�2
+

𝜕2�̅�

𝜕�̅�2
).                                                                                          (15) 

    The corresponding boundary conditions are  

  
𝑈 = 0  ,   �̅� = �̅�1 , 𝐶̅ = 𝐶̅ 1    𝑎𝑡 �̅� = 𝐻1
𝑈 = 0   ,   �̅� = 𝑇0     ,   𝐶̅ = 𝐶0    𝑎𝑡 �̅� = 𝐻2

} .                                                                                                      (16) 

    In view of equations (9) and (10), the components of extra stress tensor in the fixed frame becomes 

𝜏�̅̅��̅� = 2𝜂
𝜕𝑈

𝜕�̅�
+

2�̅�0
𝜕�̅�

𝜕�̅�

(2(
𝜕�̅�

𝜕�̅�
)
2

+(
𝜕�̅�

𝜕�̅�
+
𝜕�̅�

𝜕�̅�
)
2

+(
𝜕�̅�

𝜕�̅�
)
2

)
1
2

  , 

  𝜏�̅̅��̅� = 𝜏�̅̅��̅� = 𝜂(
𝜕𝑈

𝜕�̅�
+

𝜕𝑉

𝜕�̅�
) +

�̅�0(
𝜕�̅�

𝜕�̅�
+
𝜕�̅�

𝜕�̅�
)

(2(
𝜕�̅�

𝜕�̅�
)
2

+(
𝜕�̅�

𝜕�̅�
+
𝜕�̅�

𝜕�̅�
)
2

+(
𝜕�̅�

𝜕�̅�
)
2

)
1
2

 , 

 𝜏̅�̅��̅� = 2𝜂
𝜕𝑉

𝜕�̅�
+

2�̅�0
𝜕�̅�

𝜕�̅�

(2(
𝜕�̅�

𝜕�̅�
)
2

+(
𝜕�̅�

𝜕�̅�
+
𝜕�̅�

𝜕�̅�
)
2

+(
𝜕�̅�

𝜕�̅�
)
2

)
1
2

 .                                                                                                                             (17) 

    Peristaltic motion is unsteady phenomenon in nature but it can be assumed steady by using the transformation 
from the laboratory frame (fixed frame) (�̅�, �̅�) to the wave frame (move frame) (�̅�, �̅�) which defined as [3,12] 

�̅� = �̅� − 𝑐𝑡̅ ,   �̅� = �̅� ,  �̅�(�̅�, �̅�) = �̅�(�̅�, �̅�, 𝑡̅) − 𝑐 , �̅�(�̅�, �̅�) = �̅�(�̅�, �̅�, 𝑡̅), 
 �̅�(�̅�, �̅�) = �̅�(�̅�, �̅�, 𝑡̅), �̅�(�̅�, �̅�) = �̅�(�̅�, �̅�, 𝑡̅), 𝐶̅(�̅�, �̅�) = 𝐶̅(�̅�, �̅�, 𝑡̅),                                                                                (18)   

where �̅�, �̅� and �̅� are the velocity components and the pressure in the wave frame, respectively. 
    Now, we transform equations (1), (2) and (11)-(17) in wave frame with the help of equation (18) and normalize 
the resulting equations by using following non-dimensional quantities [3,12]  
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�̅� = 𝜆𝑥  , �̅� = 𝑎1𝑦  , �̅� = 𝑐𝑢  , �̅� = 𝑐𝑣  , 𝑡̅ =
𝜆

𝑐
𝑡  ,  �̅� =

𝑐𝜂𝜆

𝑎1
2 𝑝,

𝑅𝑒 =
𝜌𝑎1𝑐

𝜂
  , �̅�1 = 𝑎1𝜙1 , �̅�2 = 𝑎1𝜙2, 𝛿 =

𝑎1

𝜆
  , 𝐻1 = 𝑎1𝐻1 ,

�̅�2 = 𝑎1𝐻2, 𝑎 =
𝑎2

𝑎1
 , 𝑄∗ = 𝑎1𝑐Θ , �̅� = 𝑎1𝑐𝐹  , �̅�0 = 𝑎1

2𝑘0 ,

 �̅� =
𝑎1

𝜆
𝑏  , 𝜏̅ =

𝑐 𝜂

𝑎1
𝜏𝑖𝑗 , �̅� = 𝑐𝑎1𝜓  , 𝜃 =

�̅�−𝑇0

𝑇1−𝑇0
, Ω =

𝐶̅−𝐶0

𝐶1−𝐶0
,

𝑃𝑟 =
𝐶𝑝𝜂

𝜅
, 𝐸𝑐 =

𝑐2

𝐶𝑝(𝑇1−𝑇0)
, 𝑆𝑐 =

𝜂

𝜌𝐷𝑚
 , 𝑆𝑟 =

𝜌𝐷𝑚(𝑇1−𝑇0)𝐾𝑇

𝜂𝑇𝑚 (𝐶1−𝐶0)
,

𝐴2 = 𝑀2 +
1

𝑘0
, 𝐵𝑛 =

𝑎1𝜏0

𝑐 𝜂
 , 𝑀2 =

𝜎′𝐵0
2𝑎1

2

 𝜂
, 𝐺𝑟 =

𝜌gα 𝑎1
2(𝑇1−𝑇0)

𝑐 𝜂 
,}
 
 
 
 
 

 
 
 
 
 

                                                                                     (19) 

to obtain  
             𝑦 = 𝐻1(𝑥) = 1 + 𝑏𝑥 + 𝜙1𝑐𝑜𝑠2𝜋𝑥 ,                                                                                                                                          (20) 
 𝑦 = 𝐻2(𝑥) = −𝑎 − 𝑏𝑥 − 𝜙2 cos(2𝜋𝑥 + �̅�) ,                                                                                                                     (21) 

            𝛿
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 ,                                                                                                                                                                                 (22) 

  𝑅𝑒 ((𝑢 + 1)𝛿
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝜏𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+ 

                                                   𝐺𝑟𝜃 − 𝐴2(𝑢 + 1) ,                                                                                                                                   (23) 

  𝑅𝑒 𝛿 ((𝑢 + 1)𝛿
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑦
+ 𝛿2

𝜕𝜏𝑦𝑥

𝜕𝑥
+ 𝛿

𝜕𝜏𝑦𝑦

𝜕𝑦
− 𝛿

1

𝑘0
𝑣,                                                                                     (24) 

           𝑅𝑒𝑃𝑟 ((𝑢 + 1)
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
) = [𝛿2

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
]                                           

                     +𝐸𝑐𝑃𝑟𝛿
𝜕𝑢

𝜕𝑦
𝜏𝑥𝑥 + 𝐸𝑐𝑃𝑟(

𝜕𝑢

𝜕𝑦
+𝛿

𝜕𝑣

𝜕𝑥
)𝜏𝑥𝑦 + 𝐸𝑐𝑃𝑟

𝜕𝑣

𝜕𝑦
 𝜏𝑦𝑦 ,                                                                                                (25) 

      𝑅𝑒 ((𝑢 + 1)
𝜕Ω

𝜕𝑥
+ 𝑣

𝜕Ω

𝜕𝑦
) =

1

𝑆𝑐
[𝛿2

𝜕2Ω

𝜕𝑥2
+

𝜕2Ω

𝜕𝑦2
] + 

                                                   𝑆𝑟 [𝛿2
𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
]  ,                                                                                                                                   (26) 

  
𝑢 = −1  , 𝜃 = 1 , Ω = 1    𝑎𝑡 𝑦 = 𝐻1
𝑢 = −1   ,   𝜃 = 0, Ω = 0   𝑎𝑡𝑦 = 𝐻2

} ,                                                                                                                               (27) 

and  

𝜏𝑥𝑥 = 2𝛿
𝜕𝑢

𝜕𝑥
+

2𝐵𝑛𝛿
𝜕𝑢

𝜕𝑥

(2𝛿2(
𝜕𝑢

𝜕𝑥
)
2
+(

𝜕𝑢

𝜕𝑦
+𝛿

𝜕𝑣

𝜕𝑥
)
2
+(

𝜕𝑣

𝜕𝑦
)
2
)
1
2

  , 

  𝜏𝑥𝑦 = 𝜏𝑦𝑥 = (
𝜕𝑢

𝜕𝑦
+ 𝛿

𝜕𝑣

𝜕𝑥
) +

𝐵𝑛(
𝜕𝑢

𝜕𝑦
+𝛿

𝜕𝑣

𝜕𝑥
)

(2𝛿2(
𝜕𝑢

𝜕𝑥
)
2
+(

𝜕𝑢

𝜕𝑦
+𝛿

𝜕𝑣

𝜕𝑥
)
2
+(

𝜕𝑣

𝜕𝑦
)
2
)
1
2

 , 

 𝜏𝑦𝑦 = 2
𝜕𝑣

𝜕𝑦
+

2𝐵𝑛
𝜕𝑣

𝜕𝑦

(2𝛿2(
𝜕𝑢

𝜕𝑥
)
2
+(

𝜕𝑢

𝜕𝑦
+𝛿

𝜕𝑣

𝜕𝑥
)
2
+(

𝜕𝑣

𝜕𝑦
)
2
)
1
2

 ,                                                                                                                           (28) 

in the above expressions, 𝑇1 and 𝑇0 are the temperature at the right side wall and the left side wall respectively 
whereas 𝐶1 and 𝐶0 denoted the concentration at the right side wall and the left side wall of the channel 
respectively. �̅� is the stream function, 𝛿 is the dimensionless wave number, 𝑅𝑒 is the Reynolds number, 𝐸𝑐 is the 
Eckert number, 𝑃𝑟 is the Prandtl number, 𝑆𝑟 is the Soret number, 𝑆𝑐 is the Schmidt number, 𝑀 is the Hartman 
number, 𝐵𝑛 is the Bingham number, 𝐺𝑟 is the Grashof number, Ω is the non-dimensional the concentration and 𝜃 is 
the temperature  in the non-dimensional form. 
    Introduction of dimensionless stream function(𝜓) by the relations 𝑢 = 𝜓𝑦  and 𝑣 = −𝛿𝜓𝑥  in equations (22)-(28) 

shows that the continuity equation satisfies identically while other equations subjected to 𝛿 ≪ 1 and 𝑅𝑒 ≪ 1, yields  

 
𝜕𝑝

𝜕𝑥
=  

𝜕

𝜕𝑦
𝜏𝑥𝑦 + 𝐺𝑟𝜃 − 𝐴

2(𝜓𝑦 + 1),                                                                                                                                      (29) 

 
𝜕𝑝

𝜕𝑦
= 0,                                                                                                                                                                                         (30) 

 
𝜕2𝜃

𝜕𝑦2
= 𝐵𝑟𝜏𝑥𝑦𝜓𝑦𝑦 ,                                                                                                                                                                       (31) 

 
𝜕2Ω

𝜕𝑦2
= −𝑆𝑐𝑆𝑟

𝜕2𝜃

𝜕𝑦2
,                                                                                                                                                                      (32) 

 
𝜓𝑦 = −1  , 𝜃 = 1 , Ω = 1           𝑎𝑡 𝑦 = 𝐻1
𝜓𝑦 = −1,   𝜃 = 0   , Ω = 0         𝑎𝑡 𝑦 = 𝐻2

} ,                                                                                                                    (33) 

and  
 𝜏𝑥𝑥 = 𝜏𝑦𝑦 = 0,  𝜏𝑥𝑦 = 𝜓𝑦𝑦 + 𝐵𝑛 ,                                                                                                                                           (34) 
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where, 𝐵𝑟 = 𝐸𝑐𝑃𝑟, is the Brinkman number. 
    By substituting equation (34) into equation (29) and deriving the result with respect to 𝑦, in view of equation 
(30), yields 

  𝜓𝑦𝑦𝑦𝑦 + 𝐺𝑟
𝜕𝜃

𝜕𝑦
− 𝐴2𝜓𝑦𝑦 = 0.                                                                                                                                                  (35) 

    From equation (31) and (34) we have 

  𝜃𝑦𝑦 = 𝐵𝑟(𝜓𝑦𝑦
2 + 𝐵𝑛𝜓𝑦𝑦)                                                                                                                                                      (36) 

 

4. Rate of Volume Flow  

    At any instant the volume flow rate in the fixed frame reference ( �̅�, �̅�) is given by  

               �̅�(�̅�, 𝑡̅) = ∫ 𝑈(�̅�, �̅�, 𝑡̅)𝑑�̅�,                                                                                                                                              (37)
�̅�1(�̅�,𝑡̅)

�̅�2(�̅�,𝑡̅)
 

while the expression for the volumetric flow rate in the wave frame of reference ( �̅�, �̅� ) is defined as 

   �̅�(�̅�) = ∫ �̅�( �̅�, �̅� )𝑑�̅�.                                                                                                                                                     (38)
�̅�1(�̅�)

�̅�2(�̅�)
 

    Using equation (18) into equation (37) and making use of equation (38) we obtain the relation of the two fluxes 
as follows  

     �̅� = �̅� + 𝑐(𝐻1(�̅�) − 𝐻2(�̅�)) .                                                                                                                                              (39) 

    The average  volume flow rate over the period time 𝑇 = ( 
𝜆

𝑐
 ) of the peristaltic wave at a fixed position  �̅�  is defined 

as  

 𝑄∗ =
1

𝑇
∫ �̅�𝑑𝑡̅.                                                                                                                                                                            (40)
𝑇

0
  

    Substituting equation (39) into equation (40), we have  
 𝑄∗ = �̅� + 𝑐𝑎1 + 𝑐𝑎2 + 2𝑐�̅� .                                                                                                                                                   (41)  

    Using equation (19) (Θ =
𝑄∗

𝑐𝑎1
, 𝐹 =

�̅�

𝑐𝑎1
)  into equation (41) we have  

 Θ = 𝐹 + 1 + 𝑎 + 2𝑏 ,                                                                                                                                                               (42) 
where 𝐹 is the dimensionless volume flow rate in the wave frame defined by    

 𝐹 = ∫
𝜕𝜓

𝜕𝑦
𝑑𝑦 = 𝜓(𝐻1(𝑥)) − 𝜓(𝐻2(𝑥)),                                                                                                                       (43)

𝐻1(𝑥)

𝐻2(𝑥)
 

then  𝜓 =
𝐹

2
 at the right wall and  𝜓 = −

𝐹

2
 at the left wall of the channel. 

    The non-dimension expression for pressure rise over one cycle of the wave is given by  

 ∆𝑃𝜆 = ∫
𝜕𝑝

𝜕𝑥
𝑑𝑥

1

0
.                                                                                                                                                                         (44) 

which is difficult to evaluate directly, so we used MATHEMATICA software to compute it numerically.  
 

5. Solution of the Problem 

     In above equations, we have a system of non-linear partial differential equations which is difficult to solve it 
exactly. So, had to resort to the application of an approximation method, via the regular perturbation method to 
solve it. Let us expand stream function and the concentration for small values of Bingham number (𝐵𝑛 ≪ 1) and the 
temperature for small values of Grashof number (𝐺𝑟 ≪ 1) as follows 
 𝜓 = ∑ (𝐵𝑛)𝑖∞

𝑖=0 𝜓𝑖 + 𝑂(𝐵𝑛
2), 

 𝜃 = ∑ (𝐺𝑟)𝑖∞
𝑖=0 𝜃𝑖 + 𝑂(𝐺𝑟

2), 
    Ω = ∑ (𝐵𝑛)𝑖∞

𝑖=0 Ω𝑖 + 𝑂(𝐵𝑛
2).                                                                                                                                                 (45)  

    Inserting equation (45) into equations (32), (35) and (36) with the corresponding boundary conditions (equation 
(33)) and then collecting the coefficients of like power of  𝐵𝑛 and 𝐺𝑟 yields the zeroth and the first order systems. 
 

5.1  Zeroth Order System 
 𝜓0𝑦𝑦𝑦𝑦 − 𝐴

2𝜓0𝑦𝑦 = 0,                                                                                                                                                             (46) 

 𝜃0𝑦𝑦 + 𝐵𝑟𝜓0𝑦𝑦
2 = 0 ,                                                                                                                                                                 (47) 

 Ω0𝑦𝑦 + 𝑆𝑐𝑆𝑟𝜃𝑜𝑦𝑦 = 0  ,                                                                                                                                                            (48) 

with the corresponding boundary conditions 

  
𝜓0 =

𝐹

2
, 𝜓0𝑦 = −1  , 𝜃0 = 1 , Ω0 = 1     𝑎𝑡 𝑦 = 𝐻1

𝜓0 = −
𝐹

2
, 𝜓0𝑦 = −1,   𝜃0 = 0 , Ω0 = 0      𝑎𝑡 𝑦 = 𝐻2

} .                                                                                                 (49) 

   

5.2  First Order System    
 𝜓1𝑦𝑦𝑦𝑦 + 𝜃𝑜𝑦 − 𝐴

2𝜓1𝑦𝑦 = 0 ,                                                                                                                                                 (50) 
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 𝜃1𝑦𝑦 + 2𝐵𝑟𝜓0𝑦𝑦𝜓1𝑦𝑦 + 𝜓1𝑦𝑦 = 0 ,                                                                                                                                      (51) 

 Ω1𝑦𝑦 + 𝑆𝑐𝑆𝑟𝜃1𝑦𝑦 = 0 ,                                                                                                                                                             (52) 

with the corresponding boundary conditions 

  
𝜓1 = 0,𝜓1𝑦 = 0  , 𝜃1 = 0 , Ω1 = 0     𝑎𝑡 𝑦 = 𝐻1
𝜓1 = 0,𝜓1𝑦 = 0,   𝜃1 = 0 , Ω1 = 0      𝑎𝑡 𝑦 = 𝐻2

} .                                                                                                         (53) 

   
    The final solution of the above systems (zeroth and first order) by using MATHEMATICA software with 
corresponding boundary conditions are  

 𝜓 =
ⅇ𝐴𝑦c1

𝐴
+
ⅇ−𝐴𝑦c2

𝐴

𝐴
+ c3 + 𝑦c4 −

1

24𝐴5
(Br(c22𝑒−2𝐴𝑦 − 

      c12𝑒2𝐴𝑦 + 8𝐴3c1c2𝑦3) −  12𝐴3𝑒−𝐴𝑦(c6𝑒𝐴𝑦𝑦2 + 
       2(𝑒2𝐴𝑦c9 + c10))) + c11 + 𝑦c12 ,                                                                                                                                (54) 
 

       𝜃 =
Br (−

c22ⅇ−2𝐴𝑦

2𝐴
−

c12ⅇ2𝐴𝑦

2𝐴
− 2𝐴c1c2𝑦2)

2𝐴
+ c5 + 𝑦c6 

 −
1

216𝐴5
𝑒−3𝐴𝑦(108𝐴3𝑒2𝐴𝑦(2c10 + 2c9𝑒2𝐴𝑦 + c6𝑒𝐴𝑦𝑦2) − 

 8Br2(c23 − c13𝑒6𝐴𝑦 + 9c12c2𝑒4𝐴𝑦(−25 + 12𝐴𝑦) + 9c1c22𝑒2𝐴𝑦 
 (25 + 12𝐴𝑦)) + 9Br𝑒𝐴𝑦(−c22 + c12𝑒4𝐴𝑦 + 48𝐴c6𝑒𝐴𝑦(c2 + c1𝑒2𝐴𝑦) 
+24𝐴5(c1c10 + c2c9)𝑒2𝐴𝑦𝑦2 + 4𝐴3(3c10c2 + 3c1c9𝑒4𝐴𝑦 − 
 2c1c2𝑒2𝐴𝑦𝑦3))) + c13 + 𝑦 ∗ c14 ,                                                                                                                                      (55) 
 

𝛺 =
1

2
BrScSr (

c22𝑒−2𝐴𝑦

2𝐴2
+
c12𝑒2𝐴𝑦

2𝐴2
+ 2c1c2𝑦2) + c7 + 𝑦c8 

+
1

216𝐴5
𝑒−3𝐴𝑦ScSr(108𝐴3𝑒2𝐴𝑦(2c10 + 2c9𝑒2𝐴𝑦 + 

c6𝑒𝐴𝑦𝑦2) − 8Br2(c23 − c13𝑒6𝐴𝑦 + 9c12c2𝑒4𝐴𝑦(−25 + 12𝐴𝑦) + 
9c1c22𝑒2𝐴𝑦(25 + 12𝐴𝑦)) + 9Br𝑒𝐴𝑦(−c22 + c12𝑒4𝐴𝑦 + 

 48𝐴c6𝑒𝐴𝑦(c2 + c1𝑒2𝐴𝑦) + 24𝐴5(c1c10 + c2c9)𝑒2𝐴𝑦𝑦2 + 
 4𝐴3(3c10c2 + 3c1c9𝑒4𝐴𝑦 − 2c1c2𝑒2𝐴𝑦𝑦3))) + c15 + 𝑦c16 ,                                                                                    (56) 

where c𝑖 , 𝑖 = 1,2, … ,16 are constants which are found by using the boundary conditions. 
 

6. Results and Discussion 
    To study the effect of physical parameters such as Hartmann number (magnetic parameter) 𝑀, permeability 
parameter 𝑘0, non-uniform parameter 𝑏, amplitudes wave of right (𝜙1) and left (𝜙2) walls ,Bingham number 𝐵𝑛, 
Brinkman number 𝐵𝑟, phase angle �̅�, Grashof number 𝐺𝑟, flow rate 𝐹, Schmit number 𝑆𝑐, and Soret number𝑆𝑟, we 
have plotted the axial velocity 𝑢, temperature 𝜃, concentration Ω, and trapping phenomenon in Figures (2-39). All 
figures are plotted for the values 𝑀 = 0.5, 𝑏 = 0.2, 𝑘0 = 2, 𝐵𝑛 = 0.001, 𝐵𝑟 = 6, 𝐹 = 1.4,  �̅� = 𝜋 4⁄ , , 𝜙1 = 3, 𝜙2 = 2, 𝑥 = 0.1, 

𝑆𝑐 = 0.4 and 𝑆𝑟 = 0.8 using MATHEMATICA software. 

6.1 Velocity Distribution 𝒖  
    Graphical results are  displayed in order to see the behavior of parameters involved in the axial velocity 𝑢. The 
effect of different values of 𝑀, 𝐹, 𝑏, 𝑘0, 𝜙1, 𝜙2, �̅�, 𝐵𝑛 and 𝐵𝑟 on 𝑢 are explained in figures (2-10). The behavior of 
velocity distribution is parabolic as seen in figures. Figure (2) shows the influence of  𝑀 on 𝑢. It is noticed that with 
an increase of 𝑀, the axial velocity increases at the left and right part of the channel, however, it decreases at the 
central part of the channel. It observed from figure (3) that 𝑢 increases by increasing in 𝐹 whereas it decreases by 
increasing in 𝑏, as shown in figures (4). Figure (5) shows the impact of 𝑘0 on 𝑢. It is noticed that at the left and right 
wall of the channel 𝑢 decreases slowly with an increase of  𝑘0, however at the central part of the channel  𝑢 
increases. Figure (6) explained that 𝑢 increases near the right wall and the middle part of the channel and the 
situation is opposite at the left wall of the channel with an increase in 𝜙1. Figure (7) displays the effect of 𝜙2 on 𝑢. It 
is noticed that when an increase in 𝜙2, 𝑢 increases at the left wall of the channel and merges from the central part to 
the rest of the channel ( no effected). From figure (8) we noted that at an increase in �̅�, 𝑢 decreases at the left wall of 
the channel and merges from the central part to the right wall of the channel. Figure (9) illustrated the impact of 𝐵𝑛 
on 𝑢. It is observed that the increase in 𝐵𝑛 lead to 𝑢 decreases at the left wall of the channel, while 𝑢 increasing at 
the middle portion and then gradually disappear as there is no effect on axial velocity near the right wall of the 
channel. From figure (10) observed that 𝑢 do not change at an increasing in 𝐵𝑟. One can observe a very good 
agreement of our results for 𝑀 , 𝐹, 𝜙1, 𝜙2 and �̅� with those reported in Adnan and Abdulhadi [9] 
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6.2 Temperature Distribution 𝜽   

    The variation in temperature profile for different values of involved parameters are illustrated in figures (11-19). 
Figure (11) shows that the impact of 𝑀 on 𝜃. It is noticed that 𝜃 exhibits oscillating behavior with an increase in 𝑀. 
It is concluded from figure (12), 𝜃 increases in the central region and decreases near the channel walls for 
increasing in 𝐵𝑟, but opposite behavior is occurring with the increase in 𝑏, as shown in figure (13). Figures (14-16) 
shown 𝜃 increases by increasing in 𝑘0, 𝐺𝑟 and 𝐹. Figure (17) illustrated that 𝜃 increases near the right wall and the 
middle part of the channel and then gradually disappear as there is no effect on 𝜃 to the rest of the channel with an 
increase in 𝜙1. Figure (18) explained the effect of 𝜙2 on 𝜃. It is noticed that when an increase in 𝜙2, the temperature 
increases at the left wall of the channel and merges from the central part to the rest of the channel ( no effected). 
From figure (19) we noted that at an increase in �̅�, 𝜃 decreases at the left wall of the channel and merges from the 
central part to the right wall of the channel. The effects of 𝐵𝑟, 𝐺𝑟, 𝐹, 𝜙1, 𝜙2 and �̅� are consistent with the results 
analyzed in previous studies (Adnan and Abdulhadi [9] and Ali and Asghar [3]). 
 

   
  

Fig. (2)- Effect of 𝑀 on the axial velocity 𝑢  

 

Fig. (4)- Effect of 𝑏 on the axial velocity 𝑢  

Fig. (5)- Effect of 𝑘0 on the axial velocity 𝑢  Fig. (6)- Effect of 𝜙1 on the axial velocity 𝑢  Fig. (7)- Effect of 𝜙2 on the axial velocity 𝑢  

Fig. (8)- Effect of �̅� on the axial velocity 𝑢  Fig. (9)- Effect of 𝐵𝑛 on the axial velocity 𝑢  Fig. (10)- Effect of 𝐵𝑟 on the axial velocity 𝑢  

Fig. (11)- Effect of 𝑀 on the temperature profile 𝜃  Fig. (12)- Effect of 𝐵𝑟 on the temperature profile 𝜃  Fig. (13)- Effect of 𝑏 on the temperature profile 𝜃  

Fig. (3)- Effect of 𝐹 on the axial velocity 𝑢  



         Mohammed Ali Murad, Ahmed M. Abdulhadi                                                             JQCM - Vol.12(4) 2020 , pp  Math.  79–90           86

 

    
 

 

    
   

 

6.3 Concentration Distribution 𝛀   
    The graphical results for concentration profile are illustrated in figures (20-30). Opposite behavior for concentration 
distribution is noticed compare with the temperature distribution. Figure (20) explain that the impact of 𝑀 on Ω. It is 
noticed that Ω exhibits oscillating behavior with an increase in 𝑀. It is observed from figures (21-24), Ω decreases in the 
central region and increases near the channel walls for increasing in 𝐵𝑟, 𝑆𝑐, 𝑆𝑟 and 𝐹, but opposite behavior is occurring 
with the increase in 𝑏, as shown in figure (25). Figures (26) and (27) deduced that Ω decreases by increasing in 𝑘0 and 𝐵𝑛. 
Figure (28) shown that Ω decreases near the right wall and the middle part of the channel and then gradually disappear as 
there is no effect on Ω to the rest of the channel with an increase in 𝜙1. Figure (29) illustrated the effect of 𝜙2 on Ω. It is 
noticed that when an increase in 𝜙2, the concentration decreases at the left wall of the channel and merges from the 
central part to the rest of the channel ( no effected). From figure (30) we concluded that at an increase in �̅�, Ω increases 
at the left wall of the channel while Ω decreases at the middle portion and then gradually disappear at the right wall of 
the channel. 

    
 
 

 

     
 

Fig. (14)- Effect of 𝑘0 on the temperature profile 𝜃  Fig. (15)- Effect of 𝐺𝑟 on the temperature profile 𝜃  

Fig. (17)- Effect of 𝜙1 on the temperature profile 𝜃  Fig. (18)- Effect of 𝜙2 on the temperature profile 𝜃  Fig. (19)- Effect of �̅� on the temperature profile 𝜃  

Fig. (20)- Effect of 𝑀 on the concentration profile Ω  Fig. (21)- Effect of 𝐵𝑟 on the concentration profile Ω  Fig. (22)- Effect of 𝑆𝑐 on the concentration profile Ω. 

Fig. (23)- Effect of 𝑆𝑟 on the concentration profile Ω. Fig. (25)- Effect of 𝑏 on the concentration profile Ω. 

Fig. (16)- Effect of 𝐹 on the temperature profile 𝜃  

Fig. (24)- Effect of 𝐹 on the concentration profile Ω. 
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6.4 Trapping Phenomenon  

    The process of the formulation of an internally circulation of fluid bolus by the closed stream line in the fluid flow is 
called trapping phenomenon, in which the trapped bolus moves ahead with peristaltic wave. The behavior of stream 
function is illustrated in figures (31-39) and the stream lines near the channel do nearly strictly follow the wall waves , 
which are mainly engendered by the relative movement of the walls. All figures are plotted for the values 𝑀 = 0.5, 

𝑏 = 0.2, 𝑘0 = 2, 𝐵𝑛 = 0.001, 𝐵𝑟 = 0.6, 𝐹 = 1.8,  �̅� = 𝜋 4⁄ , , 𝜙1 = 0.2 and 𝜙2 = 0.3. We observed that the size of trapped bolus 

reduces with increasing 𝑀, 𝑏 and �̅� whereas it enhances with increasing 𝑘0, 𝜙1, 𝜙2and 𝐹 as shown through figures (31-
37) respectively. While figure (38) shown that the increasing values of 𝐵𝑟, it has the slight effect always negligible at the 
size of the trapped bolus one can see it clear of a diagram streamline. The impact of 𝐵𝑛 is illustrate in figure (39), which 
shown that as 𝐵𝑛 increases, the size of the bolus increases at the left side wall and it reduces at the right side wall of the 
channel. These results agree with Adnan and Abdulhadi [9]. The result for  𝑀 and 𝑘0 is also agree with Lakshminarayana 
et al. [1,8].    

 

     
 

 

 

 

Fig. (26)- Effect of 𝑘0 on the concentration profile Ω.  Fig. (27)- Effect of 𝐵𝑛 on the concentration profile Ω. Fig. (28)- Effect of 𝜙1 on the concentration profile Ω.   

Fig. (29)- Effect of 𝜙2 on the concentration profile Ω. Fig. (30)- Effect of �̅� on the concentration profile Ω . 

Fig. (31)- Effect of  (𝑎) 𝑀 = 0.5, (𝑏)𝑀 = 1.5, (𝑐)𝑀 = 2  on the stream line   
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Fig. (32)- Effect of  (𝑎) 𝑏 = 0.2, (𝑏)𝑏 = 0.3, (𝑐)𝑏 = 0.4  on the stream line   

Fig. (33)- Effect of  (𝑎) �̅� =
𝜋

4
, (𝑏)�̅� =

𝜋

3
, (𝑐)�̅� =

𝜋

2
  on the stream line   

Fig. (34)- Effect of  (𝑎) 𝑘0 = 0.12, (𝑏) 𝑘0 = 0.15, (𝑐) 𝑘0 = 0.2  on the stream line   

Fig. (35)- Effect of  (𝑎) 𝜙1 = .3, (𝑏) 𝜙1 = .4, (𝑐)𝜙1 = .5  on the stream line   
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Fig. (36)- Effect of  (𝑎) 𝜙2 = .2, (𝑏) 𝜙2 = .3, (𝑐)𝜙2 = .4  on the stream line   

Fig. (38)- Effect of  (𝑎) 𝐵𝑟 = 1, (𝑏) 𝐵𝑟 = 10, (𝑐)𝐵𝑟 = 20 on the stream line   

Fig. (39)- Effect of  (𝑎) 𝐵𝑛 = .1, (𝑏) 𝐵𝑛 = 1, (𝑐)𝐵𝑛 = 1.3 on the stream line   

Fig. (37)- Effect of  (𝑎) 𝐹 = 1.6, (𝑏) 𝐹 = 1.7, (𝑐)𝐹 = 1.8  on the stream line   
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7. Conclusions  

   In this paper, the Influence of MHD on mixed convective heat and mass transfer analysis for the peristaltic transport of 

viscoplastic fluid  with porous medium in tapered channel is investigated under low Reynolds number and long 

wavelength. The flow is considered in two-dimensional channel. the system of nonlinear partial differential equation was 

solved by using perturbation method. The present results have application in chemical engineering and biomedical system. 

In view of this study, some of the interesting conclusions are summarized as follows: 

 By increasing 𝑀, the axial velocity decreases in the central region and it increases near the boundaries of the 

channel but the opposite occur for increasing 𝑘0. the axial velocity increases over the whole cross-section with 

increasing 𝐹 and it decreases by increasing 𝑏. 

 The axial velocity decreases near the left wall while it increases at the center of the channel by increasing 𝐵𝑛. 

Furthermore 𝐵𝑟 has not effected on the axial velocity. 

 The temperature increases with increasing 𝑘0, 𝐺𝑟, 𝐵𝑟 and 𝐹. 

 Opposite behavior for concentration distribution is noted compared to temperature profile. Furthermore, the 

concentration decreases over the whole cross-section except near the boundaries of the channel it is increases 

with increasing 𝑆𝑟 and 𝑆𝑐. 

 The temperature profile and concentration distribution exhibits oscillating behavior with increasing 𝑀. 

 It is noted that the parameters 𝜙1, 𝜙2 and �̅� have similar effected on the axial velocity and temperature profile 

but opposite behavior accrue for concentration distribution.  

  The size of trapped bolus reduces with increasing 𝑀, 𝑏 and �̅� whereas it increases with increasing 𝑘0, 𝜙1, 𝜙2 

and 𝐹. Furthermore the trapped bolus increases in number and size at the left wall of the channel by increasing 

𝐵𝑛 but opposite behavior occur at the right wall.  
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