146

Journal of AL-Qadisiyah for computer science and mathematics Vol.7 No.2 Year 2015

146 - 165

On ArtinCokernel of The Group $D_n \times C_5$ When n is an Odd Number

Bassim Kareem Mihsin General Directorate of Education in Karbala bassimKareem3@gmail.com

Recived : 4\3\2015

Revised : 13\4\2015

Accepted : 13\5\2015

Abstract

The group of all Z-valuedgeneralized characters of G over the group of induced unit characters from all cyclic subgroups of G, $AC(G) = \overline{R}(G)/T(G)$ forms a finite abelian group, called ArtinCokernel of G. The problem of finding the cyclic decomposition of Artincokernel $AC(D_n \times C_5)$ has been considered in this paper when n is an odd number, we find that if $n = p_1^{\alpha_1} . p_2^{\alpha_2} ... p_m^{\alpha_m}$, where $p_1, p_2, ..., p_m$ are distinct primes and not equal to 2, then :

$$AC(D_n \times C_5) = \bigcup_{\substack{i=1 \\ i=1}}^{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))-1} C_2$$

And we give the general form of Artin's characters table $Ar(D_n \times C_5)$ when n is an odd number .

Mathematics Subject Classification: 20CXX.

Bassim. K

Bassim. K

Introduction

For a finite group G the finite abelain factor group $\overline{R}(G)/T(G)$ is called Artincokernel of G and denoted by AC(G) where R(G) denotes the abelian group generated by Z-valued characters of G under the operation of pointwise addition and R(G)T(G)is subgroup of which anormal is generated bv Artin'scharacters.Permutationcharcters induce from the principle charcters of cyclic Subgroups . A well-known theorem which is due to Artinasserated that T(G)has a finite index is , i.e [:T(G)] is finite.

The exponent of AC(G) is called Artin exponent of G and denoted by A (G).

In 1968, Lam . T .Y [5] gave the definition of the group AC(G) and the studied AC(C_n) .In 1976, David .G [12] studied A(G) of arbitrary characters of cyclic subgroups. In 1996, Knwabuez .K [11] studied A(G) of p-groups .

In 2000,H.R.Yassein [4] found AC(G) for the group $\bigoplus_{i=1}^{n} C_{p}$. In 2002, k.Sekieguchi [12] studied the irreducible Artin characters of p-group and in the Same year H.H.Abbass [10] found $\equiv *$ (Dn).

In 2006, Abid . A .S [6] foundAr(C_n) when C_n is the cyclic group of order n. In 2007, Mirza .R .N [9] found in herthesis Artincokernel of the dihedral group

In this paper we find the general form of $Ar(D_n \times C_5)$ and we study $AC(D_n \times C_5)$ of the non abelian group $D_n \times C_5$ when n is an odd number.

1. Basic Concepts and Notations:

In this section, we recall some basic concepts, about matrix representation , characters and Artin character which will be used in later section .

Definition (1.1): [1]

A matrix representation of a group G is homomorphism T of G into GL (n, F), n is called the degree of matrix representation T. T is called a unit representation(principal) if T(g)=1, for all $g \in G$.

Definition (1.2):[2]

Let T be a matrix representation of a group G over the field F,*the character* χ of a matrix representation T is the mapping $\chi: G \rightarrow F$ defined by $\chi(g)=Tr(T(g))$ refers to the trace of the matrix T(g)(the sum of the elements diagonal of T(g)). The degree of T is called the degree of χ .

Bassim. K

Definition (1.3):[3]

Let H be acyclic subgroup of G and let ϕ be a class function on H. The induced class function on G is given by :

$$\phi'(g) = \frac{1}{|H|} \sum_{x \in G} \phi^{\circ}(xgx^{-1}) \quad , \forall g \in G$$

Where \emptyset is defined by :

$$\phi^{\circ}(h) = \begin{cases} \phi(h) & \text{if } h \in H \\ 0 & \text{if } h \notin H \end{cases}$$

Theorem (1.4):[4]

Let H be acyclic subgroup of Gand $h_1, h_2, ..., h_m$ are chosen representatives for Γ conjugate classes, Then:

1-
$$\phi'(g) = \frac{|C_G(g)|}{|C_H(g)|} \sum_{i=1}^m \phi(h_i)$$
 if $h_i \in H \cap CL(g)$

$$2-\phi'(g)=0 \qquad \qquad if \quad H \cap CL(g)=\phi$$

Definition (1.5):[5]

Let G be a finite group, all characters of G induced from the principal character of cyclic subgroups of G is called Artin characters of G.

Definition (1.6):[4]

Artin characters of the finite group can be displayed in a table called Artin characters table of Gwhich is denoted by Ar(G).

Proposition (1.7):[6]

The number of all distinct Artin characters on a group G is equal to the number of Γ -classes on G .

Definition (1.8):[1]

A rational valued character θ of G is a character whose values are in Z, which is $\theta(g) \in Z$, for all $g \in G$.

Bassim. K

Definition (1.9):[6]

Let T(G) be the subgroup of $\overline{R}(G)$ generated by Artin characters.

T(G) is a normal subgroup of $\overline{R}(G)$. Then the factor abelian group $\overline{R}(G)/T(G)$ is called Artincokernel of G, denoted by AC(G).

Proposition (1.10):[6]

AC(G) is a finitely generated Z-module

Theorem [Artin] (1.11):[7]

Every rational valued character of G can be written as a linear combination of Artin characters with rational coefficient .

2. The Factor Group AC(G):

In this section, we use some concepts in linear Algebra to study the factor group AC(G). We will give the general form of Ar $(D_n \times C_5)$ when n is an odd number. We shall study Ac(G) dihedral group D_n and $\equiv^* (D_n)$ when n is an odd number.

Definition (2.1):[5]

Let T(G) be the subgroup of $\overline{R}(G)$ generated by Artin characters.

T(G) is a normal subgroup of $\overline{R}(G)$, then the factor abelian group $\overline{R}(G)/T(G)$ is called Artincokernel of G, denoted by AC(G).

Definition (2.2): [8]

Ak-th determinant divisor of M is the greatest common divisor (g.c.d) of all the k – minors of M.This is denoted by $D_k(M)$.

Lemma (2.3)

Let $\,M$, P and W $\,$ be matrices with entries in the principal ideal domain R and p, W be invertible matrices , then :

 $D_k(P \cdot M \cdot W) = D_k(M)$ Modulo the group of units of R.

Bassim. K

Theorem (2.4):[8]

Let M be an $\,k\!\times\!k$ matrix with entries in a principal ideal domain R , then there exits matrices P and W such that :

1 - P and W are invertible .2 - P M W = D .3 - D is a diagonal matrix .

4 -If we denote Djj by d_i then there exists a natural number m; $0 \le m \le k$

such that j > m implies d_i =0 and j ≤ m implies d_i ≠ 0 and $1 \le j \le m$

implies d_j $| d_{j-1}$.

Definition (2.5):[8]

Let M be matrix with entries in a principal ideal domain R, equivalent to matrix D = diag $\{d_1, d_2, \dots, d_m, 0, 0, \dots, 0\}$ such that $d_j \mid d_{j-1}$ for $1 \le j < m$, we

call D the invariant factor matrix of M and d_1, d_2, \dots, d_m the invariant factors of M.

<u>Remark(2.6)</u>:

According to the Artin theorem (1.12) there exists an invertible matrix $M^{-1}(G)$ with entries in the set of rational numbers such that :

 $\stackrel{*}{\equiv}$ (G) = M⁻¹ (G) .Ar (G) and this implies,

M (G) = Ar(G) . $(\equiv (G))^{-1}$

M(G) is the matrix expressing the T(G) basis in terms of the R(G) basis.

By theorem (2.5) there exists two matrices P(G) and W(G) with a determinant ∓ 1 such that :

 $P(G). M(G).W(G) = diag \{ d_1, d_2, \dots, d_l \} = D(G)$

where $d_i = -D_i(G) | D_{i-1}(G)$ and l is the number of Γ -classes.

Theorem (2.7):[4]

AC(G) = $\bigoplus_{i=1}^{m} z$ where $d_i = -D_i(G) | D_{i-1}(G)$ where m is the number of all distinct \Box -classes.

<u>Theorem(2.8)</u>:[9]

If *n* is an odd number such that $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_m^{\alpha_m}$, where p_1, p_2, \dots, p_m are distinct primes, then :

$$AC(D_n) = \bigcup_{i=1}^{(\alpha_1+1)\cdot(\alpha_2+1)\cdot\cdots(\alpha_m+1)-1} C_2$$

Proposition (2.9): [8]

The rational valued characters table of the cyclic group C_{p^s} of the ranks+1 where p is a prime number which is denoted by ($\equiv^* (C_{p^s})$), is given as follows:

Г- classes	[1]	[r ^{p^{s-1}}]	[r ^{p^{s-2}]}	[r ^{p^{s-3}}]		[r ^{<i>p</i>²}]	[r ^{<i>p</i>}]	[r]
θ_1	p ^{s-1} (p- 1)	- p ^{s-1}	0	0		0	0	0
θ_{2}	p ^{s-2} (p- 1)	p ^{s-2} (p- 1)	- p ^{<i>s</i>-2}	0		0	0	0
θ_{3}	p ^{<i>s</i>-3} (p-	p ^{<i>s</i>-3} (p-	p ^{<i>s</i>-3} (p-	- p ^{<i>s</i>-3}		0	0	0
	1)	1)	1)					
÷	:		:	•	:	:	:	•
θ_{s-1}	p(p-1)	p(p-1)	p(p-1)	p(p-1)		p(p- 1)	-p	0
θ "	p-1	p-1	p-1	p-1		p-1	p-1	-1
θ_{s+1}	1	1	1	1		1	1	1
Table (2.1)								

where its rank s+1 represents the number of all distinct Γ -classes.

<u>Remark (2.10)</u>:[8]

If $n = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_m^{\alpha_m}$ where p^1 , p^2 , \dots , p^m , are distinct primes, then :

 $\equiv^{*}(\mathbf{C}_{\mathbf{n}}) = \equiv^{*}(\mathbf{C}_{p_{1}}^{\alpha 1}) \otimes \equiv^{*}(\mathbf{C}_{p_{2}}^{\alpha 2}) \otimes \dots \otimes \equiv^{*}(\mathbf{C}_{p_{m}}^{\alpha m}).$

Definition (2.11):[7]

The dihedral group D_n is a certain non- abelian group of order2n .It is usually thought of as a group of transformations of the Euclidean plane of regular n-polygon consisting of rotations (about the origin) with the angle $2k\pi/n$, k=0,1,2,...,n-1 and reflections (across lines through the origin).In generalwe can write it as: $D_n = \{S^j r^k : 0\}$

 $\leq k \leq n\text{-}1$, $0 \leq j \leq 1$ } which has the following properties :

 $r^{n}=1$, $S^{2}=1$, $Sr^{k}S^{-1}=r^{-k}$

Definition (2.12):

The group $D_n \times C_5$ is the direct product group $D_n \times C_5$, where C_5 is a cyclic group of order 5 consisting of elements $\{1, r', r^{2'}, r^{3'}, r^{4'}\}$ with $(r')^5 = 1$. It is of order 10n

Theorem(2.13):[10]

The rational valued characters table of D_n when n is an odd number is given as follows:

			[S]					
	θ_1			=	(C_n)			0
$\equiv^* (\mathbf{D}_n) =$	ł				(-1)			ł
	Θ_{S-1}	1	1	1		1	1	0
	Θ_{S}							1
	θ_{S+1}	1	1	1		1	1	-1

Table (2.2)

Where S is the number of Γ -classes of C_n .

Theorem(2.14):

The rational valued characters table of the group $D_n \times C_5$ when n is an odd number is given as follows:

$$\equiv^* (D_n \times C_5) = \equiv^* (D_n) \otimes \equiv^* (C_5)$$

Bassim. K

Theorem (2.15):[6]

The general form of Artin characters table of C_{p^s} when p is a prime number and s is positive integer is given by the lower Triangluer matrix

	Γ-classes	[1]	$\left[r^{p^{s-1}}\right]$	$\left[r^{p^{s-2}}\right]$	$\left[r^{p^{s-3}}\right]$		[<i>r</i>]
	$ CL_{\alpha} $	1	1	1	1	•••	1
	$C_{p^s}(CL_{\alpha})$	p ^s	p ^s	p ^s	p ^s	••••	p ^s
	$arphi_1'$	p ^s	0	0	0		0
$\operatorname{Ar}(\operatorname{C}_{p^{s}})=$	$arphi_2'$	р <i>s</i> -1	<i>s</i> -1 р	0	0		0
	$arphi_3'$	p ^{<i>s</i>-2}	p ^{<i>s</i>-2}	p ^{<i>s</i>-2}	0		0
						:	
	φ'_s	Р	Р	р	Р		0
	$arphi_{s+1}'$	1	1	1	1		1

A

<u>Corollary (2.16)</u>:[4]

and $n = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_m^{\alpha_m}$ where Let *n* any positive integers p_1, p_2, \dots, p_m are distinct primes, then : $Ar(C_n) = Ar(C_{P_1^{\alpha_1}}) \otimes Ar(C_{P_2^{\alpha_2}}) \otimes \cdots \otimes Ar(C_{P_m^{\alpha_m}})$

Where \otimes is the tensor product.

Bassim. K

Proposition (2.17):[6]

If p is a prime number and s is a positive integer , then M(Cp) is an upper triangular matrix with unite entries.

$$M(C_{p^{s}}) = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

which is $(s+1)\times(s+1)$ square matrix

Proposition (2.18):[2]

The general form of matrices $P(C_{p^s})$ and $W(C_{p^s})$ are : $P(C_{p^s}) = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots \\ & & & \ddots & & \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$

which is $(s+1)\times(s+1)$ square matrix and $W(C_{p^s}) = I_{s+1}$ where I_{s+1} is an identity matrix and $D(Cp^s) = \text{diag}\{1,1,\ldots,1\}$.

Remarks (2.19):

1- In general if $n = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_m^{\alpha_m}$ such that p_1, p_2, \dots, p_m are distinct primes and α_i any positive integers for all $i = 1, 2, \dots, m$; then :

 $C_n = C_{p_1^{\alpha_1}} \times C_{p_2^{\alpha_2}} \times \ldots \times C_{p_m^{\alpha_m}}.$

 $M(C_n) = M(C_{p_1^{\alpha_1}}) \otimes M(C_{p_2^{\alpha_2}}) \otimes \ldots \otimes M(C_{p_m^{\alpha_m}}).$

So, we can write M (C_n) as:

$$M(C_n) = \begin{bmatrix} & & & & 1 \\ & & & & 1 \\ & & & & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

Where $R(C_n)$ is the matrix obtained by omitting the last row {0, 0, ..., 0, 1} and the last column {1, 1, ..., 1} from the tensor product, $M(C_{p_1^{\alpha_1}}) \otimes M(C_{p_2^{\alpha_2}}) \otimes ... \otimes M(C_{p_m^{\alpha_m}})$. $M(C_n)$ is, $(\alpha_1 + 1)(\alpha_2 + 1)... (\alpha_m + 1) \times (\alpha_1 + 1)(\alpha_2 + 1)... (\alpha_m + 1)$ square matrix. 2) $P(C_n) = P(C_{p_1^{\alpha_1}}) \otimes P(C_{p_2^{\alpha_2}}) \otimes ... \otimes P(C_{p_m^{\alpha_m}})$. 3) $W(C_n) = W(C_{p_1^{\alpha_1}}) \otimes W(C_{p_2^{\alpha_2}}) \otimes ... \otimes W(C_{p_m^{\alpha_m}})$.

3. The Main Results

In this section we give the general form of Artin characters table of the group $D_n \times C_5$ and the cyclic decomposition of the factor group $AC(D_n \times C_5)$ when n is an odd number.

Bassim. K

Theorem(3.1):

The Artin characters table of the group $D_n imes \mathcal{C}_5$ when n is an odd number is given as follows : $Ar(D_n \times C_5) =$

Γ-Classes	[1,1']	$\left[1,r'\right]$		Γ-Clas	[<i>S</i> ,1]	[S, r']			
$ CL_{\alpha} $	1	1	2	2			2	n	n
$ C_{D_n \times c_5} $	10n	10n	5n	5n			5n	10	10
$(CL_{\alpha}) $									
$\Phi_{(1,1)}$	D _(1,1)								
Φ _(1,2)	$_{2Ar(C_n)} \bigotimes_{Ar(C_5)}$:
:									
Φ_{l} , 1)									:
$\Phi_l, 2)$									0
$\Phi_{l}l + 1, 1_{l}$	5n 0 0 0								0
$\Phi_{l}l + 1, 2_{l}$	5n	0	0				0	0	5
Table(3.1)									

where l is the number of Γ -classes of C_n and $C_5 = \langle r' \rangle = \{ 1', r' \}$.

<u>*Proof:-*</u>By theorem(2.15)

) =	Γ- classes	[1′]	[<i>r'</i>]
	$ CL_{lpha} $	1	1
	$ c_{5(CL_{\alpha})} $	5	5
	$arphi_1'$	5	0
	φ_2'	1	1

Table (3.2)

Each cyclic subgroup of the group $D_n \times C_5$ is either a cyclic subgroup of $C_n \times C_5$

or $\langle (S, r') \rangle$ or $\langle (S, l') \rangle$. If H is a cyclic subgroup of $C_n \times C_5$, then :

 $H=H_i \times <1'>$ or $H_i \times <r'>= H_i \times C_5$ for all $1 \le i \le l$ where l is the number of Γ -classes of C_n

If $H=H_i \times <1'$ >and $x \in D_n \times C_5$

If $x \notin H$ then by theorem(1.4)

 $\Phi_{(1,i)}(\mathbf{x})=0$ for all $0 \le i \le l$ [since $H \cap CL(\mathbf{x}) = \phi$]

If $x \in H$ then either x = (1, 1') or $\exists S, 0 < S < n$ such that $x = (r^{s}, 1')$

If x = (1, 1'), then :

$$\Phi_{(I,1)}(\mathbf{x}) = \frac{\left| \mathcal{C}_{\mathcal{D}_{n \times \mathcal{C}_{5}}(\mathbf{x})} \right|}{|\mathcal{C}_{H(\mathbf{x})}|} \cdot \varphi'(\mathbf{x}) \quad [\text{since } \mathbf{H} \cap \mathbf{CL}(\mathbf{x}) = \{ (1,1') \}],$$

where ϕ is the principle character

$$= \frac{10n}{|H_i| \cdot |\langle 1' \rangle|} \cdot 1 = \frac{10n}{|H_i|} = 2 \cdot \frac{n}{|H_i|} \cdot 1.5 = 2 \frac{|C_{C_n}(1)|}{|C_{H_i}(1)|} \cdot \varphi(1) \cdot \varphi'(1')$$
$$= 2 \cdot \varphi_i(1) \cdot \varphi'(1')$$

If $x = (r^s, 1')$ then

$$\Phi_{(i,1)}(\mathbf{x}) = \frac{\left| c_{D_{n \times C_{5}}(\mathbf{x})} \right|}{|c_{H(\mathbf{x})}|} \cdot \sum_{1}^{2} \varphi' (\mathbf{x}) \quad [\text{since } \mathbf{H} \cap \mathbf{CL}(\mathbf{x}) = \{ \left(r^{s}, 1' \right), \left(r^{-s}, 1' \right) \}]$$

$$= \frac{5n}{|H_{i \times < 1' >}|} \cdot (1 + 1)$$

$$= \frac{5n}{|H_{i \times < 1' >}|} \cdot 2 = \frac{5n}{|H_{i}|} \cdot 2$$

$$= 2 \cdot \frac{n}{|H_{i(r^{s})}|} \cdot 1.5 = 2 \frac{\left| \frac{C_{C_{n}}(r^{s})}{|C_{H_{i}}(r^{s})|} \cdot \varphi(r^{s}) \cdot \varphi'(1') = 2 \cdot \varphi_{i}\left(r^{s} \right) \cdot \varphi_{1}'(1')$$

If $H=H_i \times \langle r' \rangle = H_i \times C_5$ let $x \in D_n \times C_5$

if $x \notin H$ then

 $\Phi_{(i,2)}(\mathbf{x})=0$ for all $1 \le i \le l$ [since $\mathbf{H} \cap \mathbf{CL}(\mathbf{x}) = \phi$]

If $x \in H$ then either g=(1,1') or x=(1,r') or $\exists S, 0 < S < n$ such that $x=(r^{s},r')$ If x=(1,1')

$$\Phi_{(i,2)} = \frac{\left|C_{D_{n \times C_{5}(x)}}\right|}{\left|C_{H(x)}\right|} \cdot \varphi(x) \quad [\text{si}r^{s}\text{nce } H \cap CL(x) = \{(1,1')\}]$$
$$= \frac{10n}{\left|H_{i \times C_{5}}\right|} = \frac{10n}{2\left|H_{i}\right|} = \frac{5n}{\left|H_{i}\right|} = 5\frac{\left|C_{C_{n}}(1)\right|}{\left|C_{H_{i}}(1)\right|} \cdot \varphi(1) = 5 \cdot \varphi_{i}(1) \cdot \varphi_{2}'(1)$$
$$\text{If } x = (1, r') \text{ then}$$

$$\Phi_{(i,2)}(\mathbf{x}) = \frac{\left|C_{D_n \times C_5(\mathbf{x})}\right|}{\left|C_{H(\mathbf{X})}\right|} \cdot \varphi(\mathbf{x}) \quad \text{[since } \mathbf{H} \cap \mathbf{CL}(\mathbf{x}) = \{(1, r')\}\text{]}$$
$$= \frac{10n}{\left|H_{i \times C_5}\right|}$$
$$= \frac{10n}{2|H_i|} = \frac{5n}{|H_i|} = 5 \frac{\left|C_{C_n}(1)\right|}{\left|C_{H_i}(1)\right|} = 5 \cdot \varphi_i(1) \cdot \varphi'_2(r')$$

If $x = (r^s, r')$ then

$$\Phi_{(i,2)}(\mathbf{x}) = \frac{\left| c_{D_{n \times_{C_5}}(\mathbf{x})} \right|}{|c_{H(\mathbf{x})|}} \cdot \sum_{1}^{2} \varphi' \quad (\mathbf{x}) \text{ [since } \mathbf{H} \cap \mathbf{CL}(\mathbf{x}) = \{ (r^s, r'), (r^{-s}, r') \} \text{]}$$
$$= \frac{5n}{|H_{i \times C_5}|} (1+1) = \frac{10n}{2|H_i|} = \frac{5n}{|H_i|} = 2 \frac{|c_{C_n}(r^s)|}{|c_{H_i}(r^s)|} \cdot \varphi(r^s) \cdot \varphi'_2(r') = 5 \cdot \varphi_i(r^s) \cdot \varphi'_2(r').$$

If $H = \langle (S, 1') \rangle = \{ (1, 1'), (S, 1') \}$ then

$$\Phi_{(l+1,1)}((1,1')) = \frac{\left|c_{D_{n \times c_{5(1,1')}}}\right|}{\left|c_{H(S,1')}\right|} \cdot \varphi(x) = \frac{10n}{2} = 5n$$

$$\Phi_{(l+1,1)}((S,1')) = \frac{\left|c_{D_{n \times c_{5(1,1')}}}\right|}{\left|c_{H(S,1')}\right|} \cdot \varphi(x) [\text{since } H \cap \text{CL}((S,1')) = \{(S,1')\} = \frac{10}{2} = 5$$

Otherwise

$$\Phi_{(l+1,1)}(\mathbf{x}) = 0 \text{ for all } \mathbf{x} \in D_n \times C_5$$
, [since $\mathbf{x} \notin \mathbf{H}$]

$$\begin{aligned}
& \Phi_{(l+1,2)}((1,1')) = \{(1,1'), (S,r')\} \\
& \Phi_{(l+1,2)}((1,1')) = \frac{\left|c_{D_{n \times c_{5(1,1')}}}\right|}{\left|c_{H(1,1')}\right|} \cdot \varphi(1,1') \quad \text{[since } H \cap CL((1,1')) = \{(1,1')\}] \\
& = \frac{10n}{2} \cdot 1 = 5n \\
& \Phi_{(l+1,2)}((S,r')) = \frac{\left|c_{D_{n \times c_{5(s,r')}}}\right|}{\left|c_{H(s,r')}\right|} \cdot \varphi(s,r') = \frac{10}{2} \cdot 1 = 5
\end{aligned}$$

Otherwise $\Phi_{(l+1,2)}(x) = 0$ for all $x \in D_n \times C_5$ since $H \cap CL(x) = \phi$

Proposition (3.2):

which is $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1] \times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]$ square matrix.

Proof:

By theorem(3.1) we obtain the Artin characters table $Ar(D_{n \times c_5})$ and from theorem(1.11) we find the rational valued characters table

$$\stackrel{*}{\equiv} (D_{n \times c_5}) \, .$$

Thus by the definition of M(G) we can find the matrix $M(D_{n \times c_5})$:

$$= \begin{bmatrix} 1111\\ 1010\\ 2R(C_n) \otimes M(C_5) & 1111\\ \vdots \vdots \vdots \\ 1010\\ 0 & \dots \\ 0 & 0 & 1111\\ 0 & 0 & \dots \\ 1 & 1 & 1100\\ 1 & 1 & 11001 \end{bmatrix}$$

Which is $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots+1]\times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots+1]$ square matrix.

Bassim. K

Proposition (3.3):

If $n = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_m^{\alpha_m}$ such that g.c.d $(p_i, p_j) = 1$ and $p_i \neq 2$ are prime numbers and α_i any positive integers, then:

Where $k = 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdot(\alpha_3+1)\cdots(\alpha_m+1)-1]\times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdot(\alpha_3+1)\cdots(\alpha_m+1)-1]$ They are $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]\times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]$ square matrix.

Proof:

By using theorem(2.5) and taking the form $M(D_n \times C_5)$ from proposition(3.2) and the above forms of $P(D_n \times C_5)$ and $W(D_n \times C_5)$ then we have

Bassim. K

$$P(\boldsymbol{D}_n \times \boldsymbol{C}_5) \cdot M(\boldsymbol{D}_n \times \boldsymbol{C}_5) = \begin{cases} 2 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & \cdots & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & \cdots & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 1 & 0 \end{cases}$$

$D(D_n \times C_5) = diag\{2, 2, 2, \dots, -2, 1, 1, 1\}$

Which is $2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]\times 2[(\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)+1]$ squarematrix.

Theorem (3.4):

If $n = p_1^{\alpha 1} \cdot p_2^{\alpha 2} \cdot \dots \cdot p_m^{\alpha_m}$ where p_1, p_2, \dots, p_m are distinct prime numbers such that $p_i \neq 2$ and α_i any positive integers for all $i, 1 \le i \le m$, then the cyclic decomposition $AC(D_{n \times C_5})$ is :

$$AC(D_{n \times C_{5}}) = \bigoplus_{\substack{i = 1 \\ i = 1 \\ AC(D_{n} \times C_{5}) = i = 1 \\ i = 1 \\ AC(D_{n} \times C_{5}) = \bigoplus_{\substack{i = 1 \\ i = 1 \\ i = 1 \\ AC(D_{n}) \\ \bigcirc \\ C_{2} \\ C_{2}$$

Proof :-

From proposition (3.3) we have

$$P(D_{n \times C_5}) . M(D_{n \times C_5}) . W(D_{n \times C_5}) = diag\{2, 2, 2, ..., -2, 1, 1, 1\} = \{d_1, d_2, ..., d_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1)-1)}, d_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))-1}, d_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))+1}, d_{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))+2}\}.$$

By theorem (2.8) we get

$$2((\alpha_{1}+1)\cdot(\alpha_{2}+1)\cdots(\alpha_{m}+1))-1$$

$$AC(D_{n\times C_{5}})= \bigoplus_{\substack{i=1\\i=1}}^{2((\alpha_{1}+1)\cdot(\alpha_{2}+1)\cdots(\alpha_{m}+1))-1}$$

$$= \bigoplus_{\substack{i=1\\i=1}}^{2(\alpha_{1}+1)\cdots(\alpha_{m}+1)-1}$$

From theorem(2.9) we have :

$$\operatorname{AC}(D_{n \times C_5}) = \bigoplus_{i=1}^{2} \operatorname{AC}(D_n) \bigoplus C_2$$

Example (3.6):

To find the cyclic decomposition of the groups $AC(D_{24389 \times C_5})$, AC $(D_{12901781 \times C_5})$ and AC $(D_{219330277 \times C_5})$.

We can use above theorem :

1-
$$\operatorname{AC}(D_{24389 \times C_5}) = \operatorname{AC}(29^3 \times c_5) = \bigcup_{i=1}^{2(3+1)-1} C_2 = \bigoplus_{i=1}^7 C_2 = \bigoplus_{i=1}^2 \operatorname{AC}(D_{29^3}) \bigoplus_{C2} C_2$$
.

2- AC(
$$D_{219330277} \times c_5$$
) =AC($D_{29}^{3} \cdot 23^{2} \times c_5$)= $\begin{array}{c} 2((3+1)\cdot(2+1))-1 & 23 \\ \bigoplus \\ i=1 & C_2 = \bigoplus \\ i=1 & C_2 \end{array}$

$$\bigoplus_{i=1}^{2} \operatorname{AC}(D_{29^{3}.23^{2}}) \bigoplus C_{2}.$$

$$3-\mathrm{AC}(D_{219330277\times C_5}) = \mathrm{AC}(\mathrm{D}_{29}^{3}_{.23}^{2}_{.17}\times c_5) = \bigcup_{i=1}^{2((3+1)\cdot(2+1)\cdot(1+1))-1} C_2$$

$$= \bigoplus_{i=1}^{47} C_2 = \bigoplus_{i=1}^{2} AC(D_{29}^{3} C_{23}^{2} C_{17}) \bigoplus C_2$$

Bassim. K

References

[1]Culirits . C and.Reiner . I ," Methods of Representation Theory with Appcation to Finite Groups and Order", John wily&sons, New york, 1981.

[2] A. M, Basheer "Representation Theory of Finite Groups ",AIMS, South Africa, 2006.

[3] J Moori, "Finite Groups and Representation Theory ", UniversityofKawzulu – Natal , 2006 .

[4]H. R Yassien ," On ArtinCokernel of Finite Group", M.Sc. Thesis, Babylon University, 2000.

[5]T .Y Lam," Artin Exponent of Finite Groups ", Columbia University, New York, 1968.

[6] A. S, Abid. "Artin's Characters Table of Dihedral Group for Odd Number ", MSc.Thesis, university of kufa,2006.

[7]J. P Serre, "Linear Representation of Finite Groups", Springer- Verlage, 1977.

[8]M. S Kirdar .M. S, " The Factor Group of The Z- Valued Class Function Modulo the Group of The Generalized Characters ",Ph. D. Thesis, University of Birmingham, 1982.

[9]Mirza . R . N , " On ArtinCokernel of Dihedral Group Dn When n is An Odd Number ",M.Sc. thesis , University of Kufa ,2007.

[10] H.H. Abass," On Rational of Finite Group D_n when n is anodd "Journal Babylon University, vol7, No-3, 2002.

[11]Knwabusz . K, " Some Definitions of Artin's Exponent of Finite Group ", USA.National foundation Math.GR.1996.

[12] David .G," Artin Exponent of Arbitrary Characters of Cyclic Subgroups ", Journal of Algebra,61,pp.58-76,1976.

حول النواة المشارك
$$_{-}$$
آرتن للزمرة $D_n imes C_5$ عندما n عدد فردي

باسم كريم محسن المديرية العامة للتربية في محافظة كربلاء

المستخلص : ان زمرة كل الشواخص العمومية ذات القيم الصحيحة للزمرة G على زمرة الشواخص المحتثة من الشواخص الأحادية للزمر الجزئية الدائرية $AC(G) = \overline{R}(G)/T(G)$ تكون زمرة ابيلية منتهية و تسمى النواة المشارك –آرتن للزمرة G إن مسألة إيجاد التجزئة الدائرية لزمرة القسمة AC(G) تم اعتبارها في هذا البحث

$$\operatorname{AC}(D_n \times C_5) = \bigoplus_{\substack{i=1 \\ i=1}}^{2((\alpha_1+1)\cdot(\alpha_2+1)\cdots(\alpha_m+1))-1} C_2$$

وكذلك وجدنا الصيغة العامة لجدول شواخص آرتن ${\sf Ar}(D_n imes C_5)$ عندما يكون n عدد فردي .