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A B S T R A C T 

Fuzzy metric spaces theory has an essential significance in mathematics, statistics, computer 
science, etc. In this paper, several basic properties of the fuzzy metric space (FM-space) 
(F̃, ℳ̃) are discussed. The concepts of fuzzy convergent sequence, fuzzy Cauchy sequence, 
fuzzy open ball and fuzzy closed ball are recalled, then main theorems related to these 
concepts are proved. 
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1. Introduction 

The principle of metric spaces is introduced initially in 1906 by Frechet [1]. The distance between two points of a 
set in a metric space is symbolized by one non-negative number in R. A metric space can be defined as a non-empty 
set combined with a function of two variables such that the distance between points can be measured. In modern 
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mathematics, more complicated objects like sets, functions and sequences need to find the distance between their 
elements.  

It is well known that L.Zadeh in 1965 [2] created the theory of fuzzy sets. Fuzzy set theory is the field of 
measuring almost anything in life as a value between 0 and 1 instead of using exactly the values 0 and 1. In other 
words, a fuzzy set is an extension of classical set theory where elements have a degree of membership in the interval     
[0, 1]. The notions such as fuzzy sets, fuzzy orderings, fuzzy languages, etc facilitate the study of the degree of 
uncertainty in a simple mathematical and formal way. Kramosil and Michalek have introduced the concept of fuzzy 
metric on ordinary set in 1975 [3]. Kaleva and Seikkala in 1984 [4] generalized the idea of a metric space to present 
the concept of the fuzzy metrics space by specifying the distance between two points to be a non-negative fuzzy 
number. Several researchers have investigated and concluded various notions of fuzzy metric space using various 
points [5-10]. For more applications [15-77].  

In this paper, some properties and characterizations of the FM-space are established to demonstrate the 
relationships between this space and different types of fuzzy concepts. The structure of this paper is as follows. In 
section 2 some properties and basic notions of the fuzzy metric space (FM-space) are given. Section 3 is devoted to 
proving some new properties of the fuzzy metric space. 
 

2. Preliminaries [11-14]  

In this section, we restate basic results and some definitions.  

 Definition 2.1  

Let U be a universal set, then for any 𝛼 ∈(0,1] 𝑎𝑛𝑑 𝑢 ∈ U, a fuzzy subset 𝑢α  of U is called a fuzzy point  in U if  

𝑢α (𝑤) = {
𝛼  𝑖𝑓 𝑢 = 𝑤
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

for each w ∈ U. 

 Definition 2.2  

The definition of a fuzzy metric space (briefly, FM-space) is an ordered pair (F̃, ℳ̃) where F̃ is a fuzzy set and ℳ̃ is a 
mapping from F̃ × F̃ × (0,1] into I = [0,1] so the following five properties hold, for each (a, α), (b, β), (c, δ) ∈ F̃: 

(ℳ̃1)ℳ̃(a, b, γ) >0 if a ≠ b where γ = max {α, β} 

(ℳ̃2) ℳ̃(a, b, γ) =0  if and only if a = b. 

(ℳ̃3) ℳ̃(a, b, γ) = ℳ̌(b, a, γ). 

(ℳ̃4) ℳ̃(a, b, γ) ≤ ℳ̃(a, c, γ) + ℳ̃(c, b, γ) , where γ = max {α, β, δ} 

(ℳ̃5) If 0 <λ ≤  γ <1 then ℳ̃(a, 0, γ) ≤ ℳ̃(a, 0, λ) and there exists 0< γn < γ  such that limn→∞ ℳ̃(an, 0, γn) =
ℳ̃(a, 0, γ). 

 Definition 2.3  

Let (F̃, ℳ̃) be an FM- space , and let (a, α) ∈ F̃ ,where  α ∈ (0,1]. Given real number ε> 0, then: 

(1) Õε(a1, α1)={(a, α) ∈ F̃: ℳ̃(a, a1, γ) < ε} is called the fuzzy open ball of radius  ε where γ = max {α, α1 ∈ (0,1] }.  

(2)  B̃ε[a1, α1]={(a, α) ∈ F̃: ℳ̃(a, a1, γ) ≤ ε}is called the fuzzy closed ball of radius  ε. 

 Definition 2.4  

Let (F̃, ℳ̃)be an FM- space. A fuzzy subset Ã ⊆ F̃ is fuzzy open if and only if there exists a fuzzy open ball Õε(a, α) 
centered at every fuzzy point (a, α) in Ã that are contained in Ã. A fuzzy subset B̃ ⊆ F̃  is called fuzzy closed if 
B̃c = F̃ − B̃ is fuzzy open.  
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 Definition 2.5  

Let (F̃, ℳ̃) be an FM- space and let Ã ⊆ F̃. Then a fuzzy point (a, α) ∈ F̃ is called an accumulation fuzzy point of Ã if 
and only if every fuzzy open set  of  (a, α) contains a fuzzy point of Ã distinct from (a, α).The union of the fuzzy set Ã 
and its accumulation fuzzy point is said to be a fuzzy closure  of Ã and it's defined by A̅̃ or Fcl(Ã).                                                                        

 Definition 2.6  

In an FM-space (F̃, ℳ̃), a fuzzy sequence {(an, αn)} where α, αn ∈ (0,1] is:  

i. Convergent if there exists (a, α) ∈  F̃  so limn→∞ ℳ̃(an, a, γ)=0 where γ  = max {αn, α} or simply written 
{(an, αn)} → (a, α).   

ii. Cauchy if for all ε > 0 there is an integer number N ∈ ℕ such that ℳ̃(an, am, γ)<ε for every n, m ≥ N where 
γ = max {αn, αm}. 

 Definition 2.7  

�̃�  is a fuzzy set in an FM-space (�̃�, ℳ̃) is defined fuzzy bounded if there exists 0< r <1 such that ℳ̃(𝑎, 𝑏, 𝛾) < 𝑟  for 

each (𝑎, 𝛼), (𝑏, 𝛽) ∈ �̃� , 𝛾 = max{𝛼, 𝛽}. 

 Definition 2.8  

A fuzzy sequence {(an, αn)} in an FM-space (F̃, ℳ̃) is said to be fuzzy bounded if the corresponding fuzzy set is fuzzy 
bounded.    

 Definition 2.9  

An FM-space (F̃, ℳ̃) is defined complete if all Cauchy fuzzy sequence in F̃ a fuzzy convergent. 

 Definition 2.10  

Let (F̃, ℳ̃) be an FM- space and let {(an, αn)}n≥1be a fuzzy sequence of real numbers. Given  r1 < r2 < ⋯ < rn … be 
strictly increasing sequence of natural numbers. Then  {(ank, αnk)}n≥1 is called a fuzzy subsequence of {(an, ∝n)}n≥1.                                                                

3. Fuzzy Metric Space: Properties  

Some new properties of the fuzzy metric space are proved. In addition, some relationships between fuzzy metric 
space and other fuzzy concepts are given. A new characterization of a fuzzy point that belongs to the fuzzy closer of 
fuzzy set Ã is given in the following theorem.  

 Theorem 3.1 

Let (F̃, ℳ̃) be an FM- space and Ã ⊆ F̃. Then (a, α) ∈ Fcl(Ã) if and only if there is a fuzzy sequence {(an, αn)} in Ã 
such that {(an, αn)} converges to a fuzzy point (a, α) where α, ∈ (0,1]. 

Proof  

Let  (a, α) ∈ Fcl(Ã). If (a, α) ∈ Ã then we take a fuzzy sequence of the type  ((a, α), (a, α), … ). If (a, α) ∉ Ã then it is the 
limit fuzzy point of Ã. Hence for all n = 1,2, …, the fuzzy open ball Õ1

n

(a, α) consist of an {(an, αn)} and {(an, αn)} →
(a, α) because 

1

n
→ 0 as n → ∞. For the converse, if {(an, αn)} is in Ã and {(an, αn)} → (a, α) then (a, α) ∈ Ã or each 

neighborhood of (a, α) contains a fuzzy point (an, αn) ≠ (a, α) so that (a, α) is the limit of Ã. Hence (a, α) ∈ Fcl(Ã). 

 In an analogous manner to (Theorem (1.4-5), [12]), the following result is proved over the fuzzy metric space rather 
than the ordinary metric space.                                                                            

 Theorem 3.2 

Let (F̃, ℳ̃) be an FM- space. Then, fuzzy Cauchy defined for all fuzzy convergent sequence in (F̃, ℳ̃). 
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Proof 

Suppose {(an, αn)} a fuzzy sequence in F̃ that converges to the fuzzy point (an, αn) ∈ F̃. Assume that ε > 0 then also 
ε

2
> 0. Because {(an, αn)} converges to (a, α) then the positive number is N ∈ ℕ so ℳ̃(an, a, γ) <

ε

2
 . Hence for each n, 

m > N we have 

 ℳ̃(an, am, γ) ≤ ℳ̃(an, a, γ) + ℳ̃(a, am, γ) 

                        <
ε

2
+

ε

2
 = ε  

Thus {(an, αn)} is a fuzzy Cauchy sequence. 

 Proposition 3.3 

Let (F̃, ℳ̃) be an FM- space. If a fuzzy Cauchy sequence  {(an, αn)} in F̃ consist of a fuzzy convergent subsequence 
{(ank, αnk)}, so the fuzzy sequence convergence to the same fuzzy limit as the subsequence. 

Proof  

Consider {(an, αn)} fuzzy Cauchy sequence in F̃, so it is an integer number N with ℳ̃(an, am, γ) < ε where ε > 0, 
m, n > N. Let {(ank, αnk)} be a fuzzy converges subsequence of a fuzzy sequence {(an, αn)} . That is mean for each 
ε > 0 ,  ℳ̃(anm, an, γ) < ε , m, n > N . Now we have ℳ̃(a, an, γ) ≤ ℳ̃(a, anm, γ) + ℳ̃(anm, an, γ) < ℳ̃(a, anm, γ)+  ε . 
Letting m → ∞ so we obtain limm→∞ ℳ̃(a, anm, γ) = 0 i.e ℳ̃(a, anm, γ) < ε so the fuzzy sequence {(an, αn)} converges 
to (a, α).                                                                   

The following proposition describes the behavior of the fuzzy convergence sequence in a fuzzy metric space. 

 Proposition 3.4 

A fuzzy convergence sequence in an FM-space (F̃, ℳ̃) is a fuzzy bounded and it's unique for a fuzzy limit. 

Proof  

Consider {(an, αn)} be a fuzzy sequence that converges to a fuzzy point  (a, α). Put ε > 0 we can find a positive  
integer number N with ℳ̃(an, a, γ) < ε  where  n > N. Assume that s = min {ℳ̃(a1, a, γ), ℳ̃(a2, a, γ), … , ℳ̃(aN, a, γ)}, 
then we have ℳ̃(an, a, γ) ≤ ℳ̃(an, aN, γ) + ℳ̃(aN, a, γ) < s +  ε. Put r = s + ε, hence ℳ̃(an, a, γ) < r and this shows 
that {(an, αn)} is fuzzy bounded. Now we claim that {(an, αn)} has a unique fuzzy limit point. Let {(an, αn)} → (a, α) 
and {(an, αn)} → (b, β)  so  limn→∞ ℳ̃(an, a, γ) = 0  and limn→∞ ℳ̃(an, b, γ) = 0 . Now we obtain ℳ̃(a, b, γ) ≤
ℳ̃(a, an, γ) + ℳ̃(an, b, γ). By taking limit for both sides as n → ∞ we conclude that   ℳ̃(a, b, γ) ≤ 0 + 0 = 0. Hence 
(a, α) =(b, β).  

 Theorem 3.5 

An FM-space (F̃, ℳ̃) is a fuzzy topological space.  

Proof  

Suppose that (F̃, ℳ̃) be an FM-space. Put 𝒯ℳ̃ = {Ã ⊆ F̃: ( a, α) ∈ Ã if and only if there is ε > 0 such that Õε(a, α) ⊆ Ã}. 
We shall prove that 𝒯ℳ̃  is a fuzzy topology on F̃. Clearly ∅ and F̃ belong 𝒯ℳ̃ . Let Ã1, Ã2, … , Ãn ∈ 𝒯ℳ̃   and put 
Ũ = ⋂ Ãi

n
i=1  . We  must show that Ũ ∈ 𝒯ℳ̃  . Assume that ( a, α) ∈ G̃ so for each 1 ≤ i ≤ n, ( a, α) ∈ Ãi therefore there is 

ε1 > 0 with Õε1
(a, α) ⊆ Ãi . Let t = min {εi: 1 ≤ i ≤ n}  hence t ≤ εi  for each 1 ≤ i ≤ n so Õεn

(a, α) ⊆ Ãi . Therefore 
Õε(a, α) ⊂ ⋂ Ãi

n
i=1 = Ũ. That is mean Ũ ∈ 𝒯ℳ̃ . Now let {Ãi: i ∈ I} ∈ 𝒯ℳ̃  and put Ṽ = ⋃ Ãi

n
i=1  we prove that Ṽ ∈ 𝒯ℳ̃ . Let 

( a, α) ∈ Ṽ then ( a, α) ∈ ⋃ Ãi
n
i=1  that follows ( a, α) ∈ Ãi for some ∈ I. Since  Ãi ∈ 𝒯ℳ̃  then there is a ε > 0 with 

Õε(a, α) ⊆ Ãi . We have  Õε(a, α) ⊆ Ãi ⊆ ⋃ Ãi
n
i=1 = Ṽ  and this shows that Ṽ ∈ 𝒯ℳ̃ . Hence (F̃, ℳ̃) is a fuzzy topological 

space. 

 Proposition 3.6 

In an FM-space (F̃, ℳ̃) every fuzzy closed ball is a fuzzy closed set. 
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Proof 

Suppose B̃ε[a, α] fuzzy closed ball in an FM-space (F̃, ℳ̃) and let (b, β) ∈ Fcl(B̃ε[a, α]). Then by Theorem (3.1), there 
is a fuzzy sequence  {(bn, βn)}  in a fuzzy closed ball B̃ε[a, α]  such that {(bn, βn)} → (b, β) . That is mean 
limn→∞ ℳ̃(bn, b, γ) = 0. Now we have ℳ̃(a, b, γ) ≤ ℳ̃(a, bn, γ) + ℳ̃(bn, b, γ) and taking the limit as n → ∞ we get  
ℳ̃(a, b, γ) ≤ lim

n→∞
ℳ̃(a, bn, γ) + lim

n→∞
ℳ̃(bn, b, γ) < ε + 0 = ε. Hence (b, β) ∈ B̃ε[a, α] and B̃ε[a, α] is a fuzzy closed set.                                                                                                         

The remainder of this section devoted to proving some theorems and properties of FM-space based on the fuzzy 
open ball and the fuzzy open ball notions.  

 Theorem 3.7 

In an FM-space (F̃, ℳ̃) every distinct fuzzy point of F̃ can be separated by disjoint fuzzy open balls.                                                                                                                                

Proof 

Suppose that (F̃, ℳ̃) be an FM-space and let (a, α), (b, β) ∈ F̃ with (a, α) ≠ (b, β). Letting ℳ̃(a, b, γ) = 2ε where 
γ = max {α, β ∈ (0,1]}. Consider two fuzzy open balls say, Õε(a, α) and Õε(b, β). If (c, δ) ∈ Õε(a, α) ∩ Õε(b, β) , i.e  
(c, δ)  ∈ Õε(a, α)  implies ℳ̃(a, c, γ) < ε   where γ = max {α, δ ∈ (0,1]}  and  (c, δ)  ∈ Õε(b, β)  implies ℳ̃(b, c, γ) < ε , 
γ = max {β, δ ∈ (0,1]}. Thus ℳ̃(a, c, γ) + ℳ̃(c, b, γ) < ε+ ε = 2ε = ℳ̃(a, b, γ) and this contradicts the definite of a 
fuzzy metric so  Õε(a, α) ∩ Õε(b, β) = ∅. Hence the fuzzy open balls must be disjoint.                                  

 Proposition 3.8 

Suppose that (F̃, ℳ̃) be an FM-space and let Õε1
(a, α) , Õε2

(a, α) be two fuzzy open balls with center (a, α) ∈ F̃ and 
radius ε1, ε2 > 0. So either Õε1

(a, α) ⊆ Õε2
(a, α) or Õε2

(a, α) ⊆ Õε1
(a, α).                      

Proof 

Suppose Õε1
(a, α) , Õε2

(a, α) be a fuzzy open ball with the center (a, α) ∈ F̃ and radius ε1, ε2 > 0. If  ε1 = ε2 then the 
proposition holds. Now we assume that ε1 < ε2  and let (b, β) ∈ Õε1

(a, α)  .That is mean ℳ̃(a, b, γ) <  ε1  so 
ℳ̃(a, b, γ) <  ε2. Hence (b, β) ∈ Õε2

(a, α) and this shows that Õε1
(a, α) ⊆ Õε2

(a, α) since by assumption ε1 < ε2. In 
the same way, we can show that Õε2

(a, α) ⊆ Õε1
(a, α).                   

 Proposition 3.9 

In an FM-space (F̃, ℳ̃) any fuzzy open ball is a fuzzy open set.      

Proof 

Suppose Õε(a, α) be a fuzzy open ball in F̃ and let (b, β) any fuzzy point in a fuzzy open ball Õε(a, α) that is follow 
ℳ̃(a, b, γ) <  ε. We must find a fuzzy open ball Õε̃(b, β) contained in Õε(a, α).we define ε̃ = ε − ℳ̃(a, b, γ), then for 
any (c, δ) ∈ Õε̃(b, β) implies ℳ̃(b, c, γ) < ε̃ . Therefore ℳ̃(a, c, γ) ≤ ℳ̃(a, b, γ) + ℳ̃(b, c, γ) < ℳ̃(a, b, γ) + ε̃ < ε and  
this shows (c, δ) ∈ Õε(a, α). Thus Õε̃(b, β) ⊆ Õε(a, α). 

4. Conclusion 

Some properties of the fuzzy metric space have been presented in this paper. Several concepts for example fuzzy 
convergent sequences, fuzzy Cauchy sequences, fuzzy open ball and fuzzy closed ball and FM-space are introduced 
and most of the main theorems are proved. 
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