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A B S T R A C T 

   This paper considers with the reliability of a multicomponent system of k components 𝑅(𝑆,𝐾)  

estimation problem of a stress-strength model. 𝑅(𝑆,𝐾) is obtained when the strength and stress 

variables have the two-parameters Rayleigh-Pareto distribution 𝑅𝑃(𝜎, 𝜌). (𝜎) is the known 
scale parameter and (𝜌) is an unknown shape parameter for stress - strength distribution of 
Rayleigh-Pareto. The system contains (K) components with its strength (𝑌1, 𝑌2, … . . , 𝑌𝐾), which 
represent random variables distributed independently and symmetrically, and each 
component suffers from random stress is (X). The system regards as active system only if at 
least strength components  exceed the stress. Parameter estimation using Least Squares (LS) , 
Relative Least Squares RLS , Wight Least Squares (WLS) and Ridge Regression Method (RRM) 
have discussed. The estimating of reliability parameters obtained from all the approaches 
above are compared with the Mean Square Error (MSE) and Mean Absolute Percentage Error 
(MAPE) criteria based on Monte-Carlo simulation experiment. Significantly, WLS and LS 
estimators have shown better performance compared with other methods. 
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1- Introduction: 

The Stress – Strength system is one of the most important models used frequently in data analysis in different areas such as 

industrial engineering, military applications, health and applied Sciences[10].  The reliability of the stress- strength  system 

is the evaluation of the reliability of a component in terms of the random variable (X) that represents the stress the 

component is exposed to, (Y) represents the strength of the component available to overcome the potential stress. The 

system fails when the stress surpasses the strength. The impression of the reliability of the stress resistance 𝑅 = P(Y > X) 

was presented in Birnbaum [1] and settled in Birnbaum and McCarty [2]. Bhattacharyya and Johnson was the first 

researchers interested in studying and deriving the reliability of the stress strength model due to its practical applications 
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[3]. The reliability of the multicomponent stress- strength (S-out-of-K) indicated by 𝑅(𝑆,𝐾) was widely recognized by many 

researchers, as the system operates at a minimum (1≤ S ≤ K) of components, and it works better when (K) components 

resist common stress. Noted that, when S = 1 and S = K is respectively referring to parallel and series systems. When 

strength and stress variables for parallel and series systems follow exponential distribution,  Pandit and Kantu [7],  

discussed the estimation of multicomponent stress-strength reliability When K components being independently and 

identically generalized Pareto distributed random variables, Pandit and Joshi, they arrangements with the estimation of 

multicomponent system reliability, Abdulateef and Salman, they estimated the reliability of the multicomponent system in 

stress–strength model for Exponentiated Pareto distribution, using; Maximum Likelihood and Shrinkage methods. 

Recently, Hassan and Basheikh.[6] They considered estimation of the multicomponent stress – strength system reliability 

underline Weibull distribution based  on upper record values data. In a multi-component stress and strength system 

estimating the survival probability does not receive much attention from specialists, especially when tracking stress 

variables - the strength of the Rayleigh-Pareto distribution. Therefore, in this research  we estimate R(S,K) based on a two-

parameter Rayleigh-Pareto RP(σ, ρ)  distribution whereas σ  is scale known parameter and  ρ  is an unknown shape 

parameter using regression estimation methods such as, LS , RLS , WLS and RRM. The  simulation study by Monte Carlo 

method is conducted to compare the reliability estimates via mean squared error (MSE) and Mean Absolute Percentage 

Error (MAPE) criteria. The probability density (p. d.f ) and cumulative distribution (c. d .f)  functions based on  Rayleigh-

Pareto distribution are known as: 

 

𝑑(𝑥; 𝜎, 𝜌) =  
𝜌

𝜎𝜌
𝑥𝜌−1𝑒−(

𝑥

𝜎
)𝜌

                    for   0 < 𝑥 < ∞ , 𝜌 > 0 , 𝜎 > 0                      (1) 

and 

𝐷(𝑥;  𝜎, 𝜌) = 1 − 𝑒−(
𝑥

𝜎
)𝜌

                                                                                                            (2) 

where 0 < 𝑥 < ∞ , 𝜌 > 0 , 𝜎 > 0 , 𝜎  is  a scale  parameter  and 𝜌 is  a shape parameter. 

2- Experimental Aspect of Reliability in multicomponent stress-strength 

A multicomponent system of k component having Y strengths such as that  𝑌1, 𝑌2, … . . 𝑌𝐾  are identity independent Rayleigh-

Pareto random variables with parameters (𝜌1, 𝜎) and subject to common stress random variable X which is distributed as 

Rayleigh-Pareto distribution with parameters (𝜌2, 𝜎). Now, Bhattacharyya and Johnson established the reliability in the 

model of the multicomponent stress-strength as [3]: 

𝑅(𝑆,𝐾)=P (at least S of   𝑌1, 𝑌2, … , 𝑌𝑘 exceed X) 

          𝑅(𝑆,𝐾) = ∑ 𝐶𝑎
𝑘𝑘

𝑎=𝑠 ∫ [1 − 𝐷𝑦(𝑋)]𝑎𝐷𝑦(𝑋)𝑘−𝑎∞

−∞
𝑑𝐷(𝑋)                                                                         (3) 

Here,  X and Y are independent random variables follow  Rayleigh-Pareto distribution with parameters (𝜌1, 𝜎) and (𝜌2, 𝜎) 

respectively. By unknown shape parameters 𝜌1 ,    𝜌2 and shared known scale parameter 𝜏. The 𝑅(𝑆,𝐾) of Rayleigh-Pareto 

distribution can be obtained equation  (3)  by: 

𝑅(𝑆,𝐾) = ∑ (𝑘
𝑖
)𝑘

𝑖=𝑠 ∫ [𝑒−(
𝑥

𝜎
)𝜌2

]𝑖∞

0
[1 − 𝑒−(

𝑥

𝜎
)𝜌2

]𝑘−𝑖 𝜌1

𝜎𝜌1
𝑥𝜌1−1𝑒−(

𝑥

𝜎
)𝜌1

𝑑𝑥  

= ∑ (𝑘
𝑖
)𝑘

𝑖=𝑠 ∫ [𝑒−𝑧

𝜌2
𝜌1 ]𝑖∞

0
[1 − 𝑒−𝑧

𝜌2
𝜌1 ]𝑘−𝑖 𝑒−𝑧𝑑𝑧  

= ∑ (𝑘
𝑖
)𝑘

𝑖=𝑠 (−1) ∫ [𝑢
𝜌2
𝜌1]𝑖1

0
[1 − 𝑢

𝜌2
𝜌1]𝑘−𝑖 𝑑𝑢  

=
𝜌1

𝜌2
∑ (𝑘

𝑖
)𝑘

𝑖=𝑠 (−1) ∫ [𝑡]𝑖1

0
[1 − 𝑡]𝑘−𝑖 𝑡

𝜌1
𝜌2

−1
𝑑𝑡  

=
𝜌1

𝜌2
∑ (𝑘

𝑖
)𝑘

𝑖=𝑠 (−1) ∫ [1 − 𝑡]𝑘−𝑖 1

0
𝑡

𝑖+
𝜌1
𝜌2

−1
𝑑𝑡  

=
𝜌1

𝜌2
∑ (𝑘

𝑖
)(−1)𝑘

𝑖=𝑠 𝐵 ((𝑖 +
𝜌1

𝜌2
) , (𝑘 − 𝑖 + 1) ),        

After the simplification we get 
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𝑅(𝑆,𝐾) =
𝜌1

𝜌2
∑

𝑘!

𝑖!

𝑘
𝑖=𝑠 (∏ (−1)𝑗(

𝜌1

𝜌2
+ 𝑗)𝑘

𝑗=𝑖 )
−1

                                      (4) 

where 𝐵 = ∫ 𝑡𝛼−1(1 − 𝑡)𝛽−11

0
𝑑𝑡  , ands, k, i and j are integers. 

3- Estimation methods of 𝐑(𝐒,𝐊)  

3-1- Least squares method  (L S ) . [4] 

The probability density (p. d. f. ) and cumulative distribution functions (c. d. f.) of the proposed distribution are given in 

equation (1) and (2), respectively.  Here, we take logarithm of both sides of Eq.(2) as follows:  ln( 𝑒−(
𝑥𝑖
𝜎

)𝜌
) = ln(1 −

𝐷(𝑥𝑖)), then  

                           −(
𝑥𝑖

𝜎
)𝜌 = 𝑙𝑛(1 − 𝐷(𝑥𝑖))                                                                                                          (5)  

We convert the nonlinear equation (5) into a linear equation by taking logarithm for both sides, so that 

         ln 𝑋𝑖 = ln 𝜎 +
1

𝜌
[𝑙𝑛(−𝑙𝑛(1 − 𝐷(𝑥𝑖))].                                                                                      (6) 

Since equation (6) is a linear equation, it is expressed as follows 

                                     𝑌𝑖 = 𝑎 + 𝑏𝑋𝑖  ,    𝑖 = 1,2, … , 𝑛                                                                                              (7) 

where Yi = ln xi  , a = ln σ , b =
1

ρ
 , Xi = [ln( − ln(1 − D(xi)]  and n the sample size. We obtain the least square estimates 

(LS) of b as follows: 

�̂�𝐿𝑆 = (�̂�𝐿𝑆)
−1

=
𝑛 ∑ 𝑋𝑖

2𝑛
𝑖=1 − (∑ 𝑋𝑖

𝑛
𝑖=1 )2

𝑛 ∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1

 

Suggested by, Swain et al. [5] for estimating the parameters of beta distributions. But, it can be used for other cases, too. 

Let 𝑌1, 𝑌2, … … . 𝑌𝑛  be a random sample of size n from a c.d.f. 𝐷(𝑌𝑖). Let 𝑌(𝑖),    𝑖 = 1,2, … , 𝑛 indicate denote the order 

statistics of the  𝑌1, 𝑌2, … … . 𝑌𝑛 . In the suggested technique procedures the c.d.f. of 𝑌(𝑖) is estimated and replaced by the 

median rank method as follows: 

 𝐷(𝑌𝑖) =
(i − 0.3)

(n + 0.4)
           , i = 1,2, … , n  and  (𝑌1 < 𝑌2. . … < 𝑌𝑛 )  

Because  𝐷(𝑌𝑖)of the mean rank method  

𝐸(𝐷(𝑌𝑖)) =
i

(n + 1)
 =  𝐿𝑖  ,   

where 𝐿𝑖   the plotting position. The LS estimator of 𝜌1𝐿𝑆 and 𝜌2𝐿𝑆 , say  �̂�1𝐿𝑆, and �̂�2𝐿𝑆 take the following forms 

 

                     ρ̂1LS =
𝑛 ∑ (𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))))2𝑛

𝑖=1 −(∑ 𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))𝑛
𝑖=1 )2

𝑛 ∑ 𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))) 𝑙𝑛 𝑌𝑖
𝑛
𝑖=1 −∑ 𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))) 𝑙𝑛 𝑌𝑖

𝑛
𝑖=1

 ,                                        (8) 

and  

                      ρ̂2LS =
𝑛 ∑ (𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))))

2𝑚
𝑗=1 −(∑ 𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))𝑚

𝑗=1 )2

𝑛 ∑ 𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))) 𝑙𝑛 𝑋𝑗
𝑚
𝑗=1 −∑ 𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))) 𝑙𝑛 𝑋𝑗

𝑚
𝑗=1

 .                                    (9) 

For  i= 1,2,…,n and j=1,2,…, m. We substitute equation (8) and (9) into equation (4) to find 𝑅(𝑆,𝐾), as 

                             R̂(S,K) =
ρ̂1LS

ρ̂2LS
∑

𝑘!

𝑖!

𝑘
𝑖=𝑠 (∏ (−1)𝑗(

ρ̂1LS

ρ̂2LS
+ 𝑗)𝑘

𝑗=𝑖 )
−1

,                                                        (10)         

3-2-Relative Least  Squares method ( RLS) . [12] 

The relative least squares estimators of a and b can be obtained by minimizing the sum of squares ∑ (
𝑌𝑖−𝑎−𝑏𝑋𝑖

𝑌𝑖
)

2

 𝑛
𝑖=1  of the 

relative residuals with respect to a and b, Hence we have 

                �̂�𝑅𝐿𝑆 = (�̂�𝑅𝐿𝑆)
−1

=
(∑ 𝑊𝑖𝑍𝑖

𝑛
𝑖=1  )

2
−∑ 𝑊𝑖

2
𝑖
𝑍𝑖

𝑛
𝑖=1

∑ 𝑊𝑖𝑍𝑖 ∑ 𝑊𝑖
𝑛
𝑖=1 −∑ 𝑊𝑖

2𝑍𝑖
2𝑛

𝑖=1
𝑛
𝑖=1

 .                                                                    (11) 

where  𝑊𝑖 =
1

ln 𝑋𝑖
  , and    𝑍𝑖 =

ln(− ln(1−𝐷(𝑋𝑖)))

ln 𝑋𝑖
 . Then the RLS estimator of 𝜌1𝑅𝐿𝑆 and 𝜌2𝑅𝐿𝑆 , say  �̂�1𝑅𝐿𝑆, and �̂�2𝑅𝐿𝑆 take the 

following forms 
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�̂�1𝑅𝐿𝑆 =
(∑

1

𝑙𝑛 𝑌𝑖
  

𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1  )

2

− ∑ (
1

𝑙𝑛 𝑌𝑖
)

2

 
𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1

∑
1

𝑙𝑛 𝑌𝑖
 

𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1  ∑

1

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1  – ∑ (

1

𝑙𝑛 𝑌𝑖
)

2

( 
𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑌𝑖))

𝑙𝑛 𝑌𝑖
)

2 
𝑛
𝑖=1

  ,                                 (12)  

and 

�̂�2𝑅𝐿𝑆 =  
(∑

1

𝑙𝑛 𝑋𝑗
  

𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1  )

2

− ∑ (
1

𝑙𝑛 𝑋𝑗
)

2

 
𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1

∑
1

𝑙𝑛 𝑋𝑗
 
𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1 ∑

1

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1  −  ∑ (

1

𝑙𝑛 𝑋𝑗
)

2

( 
𝑙𝑛(− 𝑙𝑛(1−𝐷(𝑋𝑗))

𝑙𝑛 𝑋𝑗
)

2

𝑚
𝑗=1

 ,                           (13) 

We substitute Equation (12) and (13) into Equation (4), we get 

R̂(S,K) =
�̂�1𝑅𝐿𝑆

�̂�2𝑅𝐿𝑆
∑

𝑘!

𝑖!

𝑘
𝑖=𝑠 (∏ (−1)𝑗(

�̂�1𝑅𝐿𝑆

�̂�2𝑅𝐿𝑆
+ 𝑗)𝑘

𝑗=𝑖 )
−1

                                                                                    (14) 

3-3- Weighted Least Square method (WLS). [8] 
The weighted least squares estimators can be obtained by minimizing the following equation  

∑ Wi[D(Yi) − E(D(Yi))]2n
i=1 ,                                                                  (15) 

with respect to the unknown parameters .Note that E(D(Yi)) =
i

n+1
 , and Wi =

1

var[D(Yi)]
=

(n+1)2(n+2)

i(n−i+1)
,   i = 1,2, … n.  In our 

case, the WLS estimator of 𝜌1𝑊𝐿𝑆 and 𝜌2𝑊𝐿𝑆 , say  �̂�1𝑊𝐿𝑆, and �̂�2𝑊𝐿𝑆 take the following forms  (when 𝜎 is known) : 

 

�̂�𝑊𝐿𝑆 = (�̂�𝑊𝐿𝑆)
−1

=
∑ 𝑊𝑖 ∑ 𝑋𝑖

2𝑊𝑖
𝑛
𝑖

𝑛
𝑖 −∑ 𝑋𝑖𝑊𝐼

𝑛
𝑖

∑ 𝑋𝑖𝑌𝑖𝑊𝑖 ∑ 𝑊𝑖
𝑛
𝑖

𝑛
𝑖 −∑ 𝑋𝑖𝑊𝑖 ∑ 𝑌𝑖𝑊𝑖

𝑛
𝑖

𝑛
𝑖

 .                    (16) 

Then, 

                     �̂�1𝑊𝐿𝑆 =
∑

1

𝑙𝑛 𝑌𝑖
∑ ( 

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖
)

2
1

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1

𝑛
𝑖=1 −∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖
   

1

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1

∑
𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖
  𝑙𝑛 𝑌𝑖 

1

𝑙𝑛 𝑌𝑖
∑

1

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1

𝑛
𝑖=1 −∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖
 

1

𝑙𝑛 𝑌𝑖
 ∑  𝑙𝑛 𝑌𝑖  

1

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1

𝑛
𝑖=1

 .                          (17)              

and 

                       �̂�2𝑊𝐿𝑆 =
∑

1

𝑙𝑛 𝑋𝑗
∑ ( 

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗
)

2
1

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1

𝑚
𝑗=1 −∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗
   

1

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1

∑
𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗
  𝑙𝑛 𝑋𝑗 

1

𝑙𝑛 𝑋𝑗
∑

1

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1

𝑚
𝑗=1 −∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗
 

1

𝑙𝑛 𝑋𝑗
 ∑  𝑙𝑛 𝑋𝑗  

1

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1

𝑚
𝑗=1

                      (18)              

We substitute Equation (17), and (18) into Equation (4) to find 𝑅(𝑆,𝐾), 

R̂(S,K) =
�̂�1𝑊𝐿𝑆

�̂�2𝑊𝐿𝑆
∑

𝑘!

𝑖!

𝑘
𝑖=𝑠 (∏ (−1)𝑗(

�̂�1𝑊𝐿𝑆

�̂�2𝑊𝐿𝑆
+ 𝑗)𝑘

𝑗=𝑖 )
−1

                                                                                        ( 19 )    

3-4- Ridge Regression method (RRM) . [5] 

In 1978, Ronald and Raymond  introduced the ridge regression estimators as 𝜌𝑟𝑖𝑑𝑔 = (𝑋′𝑋 + 𝐺𝐼)−1𝑋′𝑌 ,where (0 < G < 1) 

is the biased ridge factor, I is the W*W identity matrix and W is the number of parameters 

𝑋′𝑋 = [
𝑛 ∑ 𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖

2𝑛
𝑖=1

]  and 𝑋′𝑌 = [
∑ 𝑦𝑖

𝑛
𝑖=1

∑ 𝑦𝑖𝑥𝑖
𝑛
𝑖=1

]  ,  

𝜌𝑅𝑅𝑀 = [
𝑎𝑅𝑅𝑀

𝑏𝑅𝑅𝑀
] = [

𝑛 + 𝐾 ∑ 𝑥𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖

2 + 𝐾𝑛
𝑖=1

]

−1

[
∑ 𝑦𝑖

𝑛
𝑖=1

∑ 𝑦𝑖𝑥𝑖
𝑛
𝑖=1

]           for  K > 0     

The estimated value of  𝑏𝑅𝑅𝑀  after some simplifications can be written as 

�̂�𝑅𝑅𝑀 = (�̂�𝑅𝑅𝑀)
−1

=
(𝑛+𝐾)[∑ 𝑥𝑖

2+𝐾𝑛
𝑖=1 ]−(∑ 𝑥𝑖

𝑛
𝑖=1 )

2

(𝑛+𝑘)[∑ 𝑦𝑖𝑥𝑖
𝑛
𝑖=1 ]−∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

.                                                                          (20 ) 

The ridge regression estimator for the parameter unknown strength �̂�𝑖𝑅𝑅𝑀  and the known stress parameter can be 

formulated as follows ,  

�̂�1𝑅𝑅𝑀 =
(𝑛+𝐾)[∑ ( 

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖
)

2

+𝐾𝑛
𝑖=1 ]−(∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1 )

2

(𝑛+𝑘)[∑
𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖
𝑙𝑛 𝑌𝑖 

𝑛
𝑖=1 ]−∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑌𝑖)

𝑙𝑛 𝑌𝑖

𝑛
𝑖=1 ∑ 𝑙𝑛 𝑌𝑖 

𝑛
𝑖=1

       ,  

and 

�̂�2𝑅𝑅𝑀 =

(𝑛+𝐾)[∑ ( 
𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗
)

2

+𝐾𝑚
𝑗=1 ]−(∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗

𝑚
𝑗=1 )

2

(𝑛+𝑘)[∑
𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗
𝑙𝑛 𝑋𝑗 

𝑚
𝑗=1 ]−∑

𝑙𝑛(−𝑙𝑛(1−𝐷(𝑋𝑗)

𝑙𝑛 𝑋𝑗 

𝑚
𝑗=1 ∑ 𝑙𝑛 𝑋𝑗 

𝑚
𝑗=1

                                       (21) 

with 𝐺 = 𝑒−(
𝑛

𝑚
)
 and n , m are sample sizes. We substitute (21) into Equation (4) to find 
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R̂(S,K) =
�̂�1𝑅𝑅𝑀

�̂�2𝑅𝑅𝑀
∑

𝑘!

𝑖!

𝑘
𝑖=𝑠 (∏ (−1)𝑗(

�̂�1𝑅𝑅𝑀

�̂�2𝑅𝑅𝑀
+ 𝑗)𝑘

𝑗=𝑖 )
−1

 ,                                                 (22) 

 

 

4- Numerical Results  

Here, in order to compare the performance of estimating the reliability of multicomponent stress strength a simulation study 

is conducted. The samples are generated from Rayleigh – Pareto distribution using inverse transformation method and LS , 

WLS, RLS, and RRM methods are used to compute the proposed estimators. The assessment of the estimates are 

completed through the Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE)  criteria. Subject to 

computer time restrictions, we do comparison by taking sample sizes for n and m  as 25, 50, 75 , and 100 with pair of (𝑠, 𝑘) 

= (2, 4), (3,5) for the strength and stress population. The results are based on 7000 replication turns. The true values of 

(𝜎, 𝜌1,𝜌2) are =(1.2, 3, 1.8), =(1.2, 1.7, 2.3),  =(1.2, 1.5, 1.5) are used for assessment. The true values of s – out – of – k 

system with  (𝑠, 𝑘) = (2, 4) are  0.45378 , 0.67719,  0.60000 while, for (𝑠, 𝑘) = (3, 5)  are for 0.34034, 0.58998, 0.50000 

for  𝑅(𝑆,𝐾). Results of Mean, MSE and MAPE values of the reliability estimates over 7000 replications where MSE(R̂) =

1

q
∑ (R̂i − R)

2q
i=1  and  MAPE(R̂) =

1

q
∑

|(R̂i−R)|

|R|

q
i=1  , are given in Table[1-3]. From the Tables (1) , (2) and (3) below, it is 

observed the MSE and MAPE values for estimates shrinkages as the sample size rises in all the estimator methods. Then, 

when (𝑠, 𝑘) = (2, 4), the best MSE and MAPE value is for WLS estimator. However, when (𝑠, 𝑘) = (3, 5), the best MSE and 

MAPE value is for RLS estimator. 

  

Table (1): The Means, MSEs and MAPEs for the estimators of 𝑅(𝑆,𝐾) . 𝑅(2,4) = 0,24828  and 𝑅(3,5) = 0.21849 when 

 𝜎 = 1.2, 𝜌1 = 3, 𝜌2 = 1.8. and q=7000 

Method 

 

m,n 

 

(S , K) 

 

 

 

LS 

 

WLS 

 

RLs 

 

RRM 

 

Best 

 

(25,25) 

 

(2,4) 

Mean 

MSE 

MABE 

0.2406 

8.4205e-09 

4.4175e-06 

0.2399 

1.0039e-08 

4.8234e-06 

0.26815 

5.6418e-08 

1.1434e-05 

0.24077 

8.0627e-09 

4.3226e-06 

- 

RG 

RG 

 

(50,50) 

 

(2,4) 

Mean 

MSE 

MABE 

0.2715 

7.7042e-08 

1.3362e-05 

0.28334 

1.7558e-07 

2.0172e-05 

0.26057 

2.1564e-08 

7.0692e-06 

0.27167 

7.8142e-08 

1.3457e-05 

- 

RL 

RL 

 

(75,75) 

 

(2,4) 

Mean 

MSE 

MABE 

0.24923 

1.2982e-10 

5.485e-07 

0.24699 

2.3772e-10 

7.4224e-07 

0.20065 

3.2409e-07 

2.7406e-05 

0.24934 

1.6014e-10 

6.0919e-07 

- 

LS 

LS 

 

(100,100) 

 

(2,4) 

Mean 

MSE 

MABE 

0.27445 

9.7859e-08 

1.5059e-05 

0.28057 

1.4896e-07 

1.858e-05 

0.24581 

8.7371e-10 

1.423e-06 

0.27448 

9.8068e-08 

1.5075e-05 

- 

RL 

RL 

 

(25,25) 

 

(3,5) 

Mean 

MSE 

MABE 

0.21349 

3.5635e-09 

3.2656e-06 

0.22228 

2.0552e-09 

2.48e-06 

0.24259 

8.3019e-08       

1.5762e-05 

0.21334 

3.7851e-09 

3.3656e-06 

- 

LS 

LS 

 

(50,50) 

 

(3,5) 

Mean 

MSE 

MABE 

0.22633 

8.7897e-09 

5.1288e-06 

0.21548 

1.2893e-09 

1.9643e-06 

0.29896 

9.2511e-07 

5.2616e-05 

0.22636 

8.8484e-09 

5.1458e-06 

- 

WLS 

WLS 

 

(75,75) 

 

(3,5) 

Mean 

MSE 

0.22946 

1.7204e-08 

0.22399 

4.3333e-09 

0.27095 

3.9321e-07 

0.22956 

1.7516e-08 

- 

WLS 
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MABE 7.1752e-06 3.6011e-06 3.4303e-05 7.2401e-06 WLS 

 

(100,100) 

 

(3,5) 

Mean 

MSE 

MABE 

0.21859 

1.4409e-12 

6.5666e-08 

0.22567 

7.375e-09 

4.6979e-06 

0.55106 

1.58e-05  

0.00021745 

0.2186 

1.6641e-12 

7.0569e-08 

- 

LS 

LS 

 

Table (2): The Means, MSEs and MAPEs for the estimators of 𝑅(𝑆,𝐾). 𝑅(2,4) = 0.171785 and 𝑅(3,5) ==    0.13827when 

 𝜎 = 1.2, 𝜌1 = 1.7, 𝜌2 = 2.3. and q=7000 

Method 

 

m,n 

 

(S , K) 

 

 

 

LS 

 

WLS 

 

RLS 

 

RRM 

 

Best 

 

(25,25) 

 

(2,4) 

Mean 

MSE 

MABE 

0.14473 

1.0508e-07 

2.2545e-05 

0.14542 

9.9829e-08 

2.1975e-05 

0.14997 

6.838e-08 

1.8187e-05 

0.14452 

1.0675e-07 

2.2724e-05 

- 

RL 

RL 

 

(50,50) 

 

(2,4) 

Mean 

MSE 

MABE 

0.17295 

1.7149e-10 

9.1079e-07 

0.17414 

7.4674e-10 

1.9005e-06 

0.13442 

2.0014e-07 

3.1114e-05 

0.17298 

1.8253e-10 

9.3965e-07 

- 

LS 

LS 

 

(75,75) 

 

(2,4) 

Mean 

MSE 

MABE 

0.15716 

3.083e-08 

1.2212e-05 

0.15606 

3.563e-08 

1.3128e-05 

0.10205 

6.9614e-07 

5.8028e-05 

0.15716 

3.085e-08 

1.2216e-05 

- 

LS 

LS 

 

(100,100) 

 

(2,4) 

Mean 

MSE 

MABE 

0.14357 

1.1431e-07 

2.3514e-05 

0.14614 

9.4457e-08 

2.1375e-05 

0.17135 

3.6343e-11 

4.1928e-07 

0.14354 

1.1453e-07 

2.3537e-05 

- 

RL 

RL 

 

(25,25) 

 

(3,5) 

Mean 

MSE 

MABE 

0.19262 

4.2197e-07 

5.6153e-05 

0.21233 

7.835e-07 

7.6516e-05 

0.4633 

1.5092e-05  

0.00033582 

0.19265 

4.2251e-07 

5.6189e-05 

- 

LS 

LS 

 

(50,50) 

 

(3,5) 

Mean 

MSE 

MABE 

0.13874 

3.2407e-11 

4.921e-07 

0.13695 

2.4752e-10 

1.36e-06 

0.16086 

7.2929e-08 

2.3344e-05 

0.13875 

3.3574e-11 

5.0088e-07 

- 

LS 

LS 

 

(75,75) 

 

(3,5) 

Mean 

MSE 

MABE 

0.13784 

2.5628e-11 

4.3761e-07 

0.13333 

3.4775e-09 

5.0976e-06 

0.1432 

3.482e-09 

5.1009e-06 

0.13779 

3.2764e-11 

4.948e-07 

- 

LS 

LS 

 

(100,100) 

 

(3,5) 

Mean 

MSE 

MABE 

0.11825 

5.7247e-08 

2.0683e-05 

0.10931 

1.1979e-07 

2.9919e-05 

0.27518 

2.678e-06    

0.00014146 

0.11824 

5.7311e-08 

2.0694e-05 

- 

LS 

LS 

 
 
. Table (3): The Means, MSEs and MAPEs for the estimators of 𝑅(𝑆,𝐾). 𝑅(2,4) = 0.20000,  and 𝑅(3 ,5) = 0.16667when 

 𝜎 = 1.2, 𝜌1 = 1.5, 𝜌2 = 1.5 and q=7000 

Method 

 

m,n 

 

(S , K) 

 

 

 

LS 

 

WLS 

 

RLS 

 

RRM 

 

Best 

 

(25,25) 

 

(2,4) 

Mean 

MSE 

MABE 

0.19231 

8.4586e-09 

5.4963e-06 

0.19561 

2.7493e-09 

3.1335e-06 

0.23748 

2.0063e-07 

2.6768e-05 

0.19236 

8.3309e-09 

5.4546e-06 

- 

WLS 

WLS 

 

(50,50) 

 

(2,4) 

Mean 

MSE 

MABE 

0.1923 

8.4684e-09 

5.4995e-06 

0.1962 

2.0629e-09 

2.7143e-06 

0.37693 

4.472e-06 

0.0001268 

0.19223 

8.6292e-09 

5.5514e-06 

- 

WLS 

WLS 

 

(75,75) 

 

(2,4) 

Mean 

MSE 

MABE 

0.19412 

4.9401e-09 

4.2004e-06 

0.18855 

1.8725e-08 

8.1776e-06 

0.1134 

1.0713e-06 

6.1855e-05 

0.1941 

4.979e-09 

4.2169e-06 

- 

LS 

LS 
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(100,100) 

 

(2,4) 

Mean 

MSE 

MABE 

0.18298 

4.137e-08 

1.2155e-05 

0.17995 

5.7419e-08 

1.432e-05 

0.16405 

1.8458e-07 

2.5675e-05 

0.18296 

4.1469e-08 

1.217e-05 

- 

LS 

LS 

 

(25,25) 

 

(3,5) 

Mean 

MSE 

MABE 

0.16093 

4.6993e-09 

4.9161e-06 

0.1576 

1.1731e-08 

7.7674e-06 

0.21548 

3.4041e-07 

4.1841e-05 

0.16077 

4.9739e-09 

5.0577e-06 

- 

LS 

LS 

 

(50,50) 

 

(3,5) 

Mean 

MSE 

MABE 

0.15379 

2.3693e-08 

1.1039e-05 

0.14549 

6.4082e-08 

1.8154e-05 

0.11862 

3.2979e-07 

4.1183e-05 

0.15377 

2.3762e-08 

1.1055e-05 

- 

LS 

LS 

 

(75,75) 

 

(3,5) 

Mean 

MSE 

MABE 

0.17292 

5.5798e-09 

5.3569e-06 

0.16067 

5.141e-09 

5.1419e-06 

0.15697 

1.3444e-08 

8.3151e-06 

0.17292 

5.5934e-09 

5.3634e-06 

- 

WLS 

WLS 

 

(100,100) 

 

(3,5) 

Mean 

MSE 

MABE 

0.16533 

2.554e-10 

1.1461e-06 

0.16585 

9.6426e-11 

7.042e-07 

0.27386 

1.6413e-06 

9.1876e-05 

0.16533 

2.5543e-10 

1.1461e-06 

- 

WLS 

WLS 

 

5-Conclusions 

The results are recorded in Table (1), (2)and (3). From these tables, we see that the estimated reliability using WLS and LS 

are better in many cases  than others methods based MSE and MAPE criteria in mutually circumstances of (S, K).  
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