

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Bounded Linear Transformations in G-Fuzzy Normed Linear Space

*Mayada N. Mohammedalia, * , Raghad I. Sabri^b*

^aApplied Science Department, University of Technology, Baghdad, Iraq, e-mail: 10856@uotechnology.edu.iq, [maiada.nazar@yahoo.com.](mailto:maiada.nazar@yahoo.com)

^bApplied Science Department, University of Technology, Baghdad, Iraq, e-mail: 100247@uotechnology.edu.iq, raghadasm@yahoo.com.

ARTICLE INFO

Article history: Received: 03 /02/2021 Rrevised form: 18 /02/2021 Accepted : 25 /02/2021 Available online: 26 /02/2021

Keywords:

G-norm, bounded transformation, Gfuzzy norm, continuous functions, Gfuzzy normed linear space.

ABSTRACT

In a host of mathematical applications, the bounded linear transformation arises. The aim of the present work is to report the definition of continuous for linear transformation by using the idea of G-fuzzy normed linear space (GFNLS) with proving the main theorem regarding the continuity. Besides, the notion of a bounded linear transformation depending on GFNLS is presented and some basic properties related to this notion are proved. Furthermore, the extension of a bounded linear transformation is discussed and proved. Finally, a characterization for the notion $G-B(X,Y)$ which is consisting of all bounded linear transformations is presented and proved that this characterization is a complete GFNLS if the space Y is complete.

MSC. 41A25; 41A35; 41A36

DOI [: https://doi.org/10.29304/jqcm.2021.13.1.75](https://doi.org/10.29304/jqcm.2021.13.1.7)6

1. Introduction

A generalization the idea of usual metric and D-metric to translate more results from usual metric to D-metric was attempted by the author B. C. Dhange [1]. But the topological structure of D-metric spaces was proved to be incorrected [2]. The concept of G-metric space is proposed by Mustafa and Sims [3], in which the tetrahedral inequality is substituted by an inequality consisting the repetition of indices. Following such new approach, the concept of Q-fuzzy metric and studied some applications in this space were developed by [4-7].As a result of the strong correlation between fuzzy normed spaces and fuzzy metric spaces theories. The concept of generalized call (G-norm) is presented by K. A. Khan [8]. Depending on the concepts of Q-fuzzy metric and G-norm, the space of Gfuzzy normed is presented in [9]. The fuzzy functional analysis is improved and a wide variety of domains the concept of the fuzzy norm has been used, for examples one can see [10-18].

The main objective of this article is to suggest a new approach for the space of linear transformation defined on a GFNLS. In [19], Bag and Samanta introduced the boundedness of a linear operator as a study in this field and

[∗]Corresponding author: *Mayada N. Mohammedali*.

Email addresses : 10856@uotechnology.edu.iq.

Communicated by: Alaa Hussein Hamadi.

different types of linear bounded transformation by distinct authors introduced for more details [20- 24]. This paper is organized as follows: In Section 2, the definition of G-fuzzy norm is recalled and and given as a generalization with development of the idea of G-norm given by Chatterjee, Bag and Samanta. Some basic notions and important properties of G-fuzzy normed linear space are also included in section 2. Section 3 introduces continuous and bounded notions for linear transformation. Moreover, different properties for these notions are proved. In Section 4, a G-fuzzy norm for the notion of bounded linear transformations is defined in order to prove that space (G-B(X, Y), G_{NLT} , Δ) is a complete G-fuzzy normed linear. The conclusion is listed in Section 5.

2. Preliminaries

Some basic definitions and are given throughout this section.

Definition 2.1 [25]

A binary operation Δ: $[0,1]^2$ → $[0,1]$ is a triangular norm if for all α, β, μ and σ ∈ $[0,1]$ the following conditions hold

(1) α∆β = β∆α

(2) If α ≤ μ and β ≤ σ then α∆β ≤ μ∆σ

(3) (α∆β)∆μ = α∆(β∆μ)

(4) $αΔ1 = α$

Remark 2.2 [25]

For any $\alpha > \beta$ there is δ , $0 < \delta < 1$ such that $\alpha \Delta \delta \geq \beta$ and for any γ there is μ with μ $\Delta \mu \geq \gamma$ where α , δ , β , γ, $\mu \in$ (0,1)

The GFNLS definition is given as below

Definition 2.3 [9]

A 3-tuple (X, G_N , Δ) is GFNLS if X is a linear space, G_N is a fuzzy subset of $X \times X \times X \times \mathbb{R}$ and Δ represents the general triangular norm then for each x, y, $z \in X$, $c \in \mathbb{F}$, the following properties are satisfied

 (G_N1) For all $t \in \mathbb{R}$, $t \leq 0$, $G_N(x, y, z, t) = 0$

 (G_N^2) For all $t \in \mathbb{R}$, $t > 0$, $G_N(x, y, z, t) = 1$ if and only if $x = y = z = \theta$

 $(G_N3) G_N(x, y, z, t) = G_N(P(x, y, z), t)$, (symmetry) where P is a permutation function of x, y, z

 $(G_N 4)$ For all $t \in \mathbb{R}$, $t > 0$, $G_N(cx, cy, cz, t) = G_N(x, y, z, \frac{t}{C_N})$ $\frac{c}{|c|}$), if $c \neq 0$

 $(G_N 5)$ For all t, $s \in \mathbb{R}$, x, y, z, \overline{x} , \overline{y} , $\overline{z} \in X$

 $G_N(x + \overline{x}, y + \overline{y}, z + \overline{z}, t + s) \ge G_N(x, y, z, t) \Delta G_N(\overline{x}, \overline{y}, \overline{z}, s)$

 (G_N6) lim_{t→∞} $G_N(x, y, z, t) = 1$

 $(G_N 7)$ For all x, y, z \in X $G_N(x + y, \theta, z, t) \ge G_N(x, y, z, t)$

Example 2.4 [9]

Let $X = C[0,1]$ is the linear space of real-valued continuous function then a function $||...||: X \times X \times X \rightarrow \mathbb{R}$ is defined by $||f, g, l|| = max_{t \in [0,1]} { |f(t)| + |g(t)| + |l(t)| }$ where f, g, l $\in C[0,1]$. Then $(X, ||, \ldots ||)$ is a GFNLS. Define

 $G_N(f, g, l, t) = [\exp(||f, g, l||/t)]^{-1}$ for all $f, g, l \in C[0, 1]$, $t > 0$, $G_N(f, g, l, t) = 0$ for all $t \le 0$ and $\alpha \Delta \beta = \alpha \beta$. Hence the linear space (X, G_N, Δ) is G-fuzzy normed.

Definition 2.5 [9]

Suppose that the linear space (X, G_N, Δ) be a GFNLS. For a given x, z belong to X, $\varepsilon \in (0,1)$ and $t > 0$, we define an open ellipse $\mathrm{E_{G_{N}}(x,z,\epsilon,t)}$ to be a subset of X by

$$
E_{G_N}(x, z, \epsilon, t) = \{y \in X : G_N(x - y, y - z, z - x, t) > 1 - \epsilon\}
$$

Definition 2.6 [9]

Let the linear space (X, G_N, Δ) be a GFNLS. For a given x belong to X, t > 0 and $\varepsilon \in (0,1)$, we define an open ball $B_{G_N}(x, \varepsilon, t)$ to be a subset of X by

$$
B_{G_N}(x,\epsilon,t) = \{y \in X : G_N(x-y, y-x, \theta, t) > 1 - \epsilon\}
$$

Note that $B_{G_N}(x, \epsilon, t) = E_{G_N}(x, x, \epsilon, t)$ for an open ball $B_{G_N}(x, \epsilon, t)$.

Definition 2.7 [24]

Let A ⊆ X then set A is said to be closed in a GFNLS (X, G_N, Δ) if $\lim_{n\to\infty} G_N(x_n - x, x_n - x, x_n - x, t) = 1$ implies that $x \in A$, for all $t > 0$.

Definition 2.8 [9]

A sequence $\{x_n\}$ in a G-fuzzy normed linear space (X, G_N, Δ) is converges to the element $x \in X$ if for each ε , $0 < \varepsilon < 1$, $t > 0$, $\exists N_\circ(\varepsilon, t) \in \mathbb{N}$ such that $G_N(x_n - x, x_m - x, x_\ell - x, t) > 1 - \varepsilon$, $\forall n, m, \ell \ge N_\circ$

Note that the limit of the sequence $\{x_n\}$ in a GFNLS (X, G_N, Δ) is unique if ' Δ' is continuous at (1,1).

3. A G-Fuzzy Norm for the Notion of Transformations

Some essential definitions and properties are studied in this section. The notion of the linear transformation in terms of a GFNLS is studied and proved. So the definition of a continuous transformation is introduced initially

Definition 3.1

The smallest closed set contains A where A ⊂ X in a GFNLS (X, G_N, Δ) is called the closure of the set A and denoted by CL(A).

Lemma 3.2

If (X, G_N, Δ) is a G-fuzzy normed linear space such that Δ is continuous at (1,1) and A be a subset of X, then $a \in CL(A)$ if and only if there is a sequence $\{a_n\}$ in A with $\lim_{n\to\infty} G_N(a_n - a, a_n - a, a_n - a, t) = 1$ for all $t > 0$

Proof

Suppose that a ∈ CL(A), If a ∉ A, then a is a limit point of A.Since Δ is continuous at (1,1), this leads to the limit point a is unique, thus by $G_N(a_n - a, a_n - a, a_n - a, t) > (1 - 1/n)$ for each $(n = 1, 2, 3, ...)$ and $t > 0$ we construct the sequence {a_n} in A. E_{GN}(a, a, ε, t) is the ball that contains the sequence {a_n} in A and this sequence converges to a because $\lim_{n\to\infty} G_N(a_n - a, a_n - a, a_n - a, t) = 1$, for all $t > 0$. If $a \in A$ then the sequence of that type (a, a, a, … . . , a, …) is taken

Conversely, let {a_n} be a sequence in A and it converges to a then a \in A or every neighborhood of a contains points $a_n \neq a$, hence a is the limit point of A and by definition of CL(A), we obtain $a \in A$

Definition 3.3

Let the linear spaces (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) are G-fuzzy normed. A transformation H: (D(H), G_{NX}, Δ) → (Y, G_{NY}, Δ) where $(\mathcal{D}(H), G_{NX}, \Delta)$ is a subspace of (X, G_{NX}, Δ) is continuous at the point $x_0 \in \mathcal{D}(H)$, if for a given $b \in D(H)$ and $0 < \varepsilon_s < 1$ there is δ_s , $0 < \delta_s < 1$ and $d \in D(H)$ such that $G_{NY}(Hx - Hx_s, Hx_s - Hb, Hb -$ Hx), t) > 1 – ε \forall x \in D(H), t > 0 for which G_{NX} (x – x_°, x_° – d, d – x, t) > 1 – δ _°. H is said to be is continuous if it is continuous at every point in $D(H)$

The next theorem gives a characterization of the continuous transformation

Theorem 3.4

Let (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) are G-fuzzy normed linear spaces. Then H: $(D(H), G_{NX}, \Delta) \rightarrow (Y, G_{NY}, \Delta)$ where $(D(H), G_{NX}, \Delta)$ is a subspace of (X, G_{NX}, Δ) is continuous transformation at the point x_∘ in D(H) if and only if whenever a sequence $\{ {\rm x}_n \}$ converges to ${\rm x}_\circ$, then the sequence $\{ {\rm Hx}_n \}$ converges to $\rm \ Hx_\circ$

Proof

Assume that the Transformation H: (D(H), G_{NX}, Δ) \rightarrow (Y, G_{NY}, Δ) is continuous at x_∘ and assume that {x_n} be a sequence in Ɗ(H) converges to x[∘] . Let 0 < ε[∘] < 1 and b ∈ Ɗ(H) be given. Hence by the continuity of a transformation H at x_∘, there is $0 < \delta_{\circ} < 1$ and d ∈ D(H) Such that $\forall x \in D(H) \ni t > 0$ G_{NY}(Hx – Hx_°, Hx_° – Hb, Hb – Hx, t) > 1 – ε for which $G_{NX}(x - x_o, x_o - d, d - x, t) > 1 - \delta$. Since $\{x_n\}$ converges to x_o then $\exists N_\circ(\delta_\circ, t_\circ) \in \mathbb{N} \,\forall\, 0 < \delta_\circ < 1, t > 0$ such that $G_{NX}(x_n - x_\circ, x_m - x_\circ, x_\ell - x_\circ, t) > 1 - \delta_\circ \,\forall n, m, \ell \ge N_\circ$. Therefore, when $n, m, \ell \ge N$, implies $G_{NY}(Hx_n - Hx_0, Hx_m - Hx_0, Hx_\ell - Hx_0, t) > 1 - \epsilon_0$. Hence $\{Hx_n\}$ converges to the point Hx_∘. Conversely, suppose that ∀ {x_n} in D(H) converging to x_° has the property that {Hx_n} converges to Hx_°. Let H is the transformation not continuous at x_0 , it means there is $0 < \varepsilon_s < 1$, $b \in D(H)$ for which no δ_0 , $0 < \delta_s < 1$ and d ∈ D(H) can satisfy the requirement that ∀x ∈ D(H), t > 0 for which $G_{NX}(x-x_o, x_o-d, d-x, t) > 1-\delta_o$ implies $G_{NY}(Hx - Hx_0, Hx_0 - Hb, Hb - Hx, t) > 1 - ε_0$. This means that for every $δ_0, 0 < δ_0 < 1, d ∈ D(H)$ such that that ∀x ∈ D(H), for which $G_{NX}(x - x_0, x_0 - d, d - x, t) > 1 - \delta_0$ but $G_{NY}(Hx - Hx_0, Hx_0 - Hb, Hb - Hx, t) \le 1 - \epsilon_0$. The sequence {x $_n$ } converges to x $_{\circ}$ but the sequence {Hx $_n$ } doesn't converge to Hx $_{\circ}$. This contradicts the supposition that ∀ {x_n} in D(H) converging to x_° has the property that {Hx_n} converges to Hx_°, therefore the transformation H must be continuous.

The following definition introduces the concept of a bounded linear transformation.

Definition 3.5

Suppose that the linear spaces (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) are two G-fuzzy normed. A linear transformation H: $(D(H), G_{NX}, \Delta) \rightarrow (Y, G_{NY}, \Delta)$ where $(D(H), G_{NX}, \Delta)$ is a subspace of (X, G_{NX}, Δ) is said to be bounded if there is a number α , $0 < \alpha < 1$ such that $G_{\text{NY}}(Hx, Hx, Hz, t) \ge (1 - \alpha) \Delta G_{\text{NX}}(x, y, z, t)$ $\forall x, y, z \in \mathcal{D}(H), t > 0$

The next example explains the concept of a bounded linear transformation

Example 3.6

Let $X = C[0,1]$ with $||f, g, ||| = max_{t \in [0,1]} { |f(t)| + |g(t)| + |l(t)| }$ where $f, g, l \in C[0,1]$. Consider $G_{NX}(f, g, l, t) =$ $[exp(||f, g, l||/t)]^{-1}$ for all f, g, $l \in C[0,1]$, $t > 0$ and $G_{NX}(f, g, l, t) = 0$ for all $t \le 0$. Then by example 2.4 the linear space (X, G_{NX}, Δ) is G-fuzzy normed where $\alpha\Delta\beta = \alpha\beta$. Assume that H: X \rightarrow X defined as $h_1 = Hf$, $h_2 = Hg$ and $h_3 = Hl$ with $h_1(t) = \int_0^1 K(t, r)$ $\int_0^1 K(t, r) f(r) dr$, $h_2(t) = \int_0^1 K(t, r)$ $\int_0^1 K(t, r) g(r) dr$ and $h_3(t) = \int_0^1 K(t, r)$ $\int_0^1 K(t, r) l(r) dr$ where $K(t, r)$ is a continuous function on $\hat{G} = [0,1] \times [0,1]$ and K(t, r) is bounded, it means that a positive number c exists such that $|K(t,r)| \leq c$ for all $(t, r) \in \hat{G}$. This transformation H is linear. Now, to prove that H is bounded

Since $\{|f(t)| + |g(t)| + |l(t)|\} \leq \max\{|f(t)| + |g(t)| + |l(t)|\} = ||f, g, l||$ for all $t \in [0,1]$

Therefore,
$$
||h_1, h_2, h_3|| = ||Hf, Hg, H1|| = \max_{t \in [0,1]} \left\{ \left| \int_0^1 K(t, r) f(r) dr \right| + \left| \int_0^1 K(t, r) g(r) dr \right| + \left| \int_0^1 K(t, r) l(r) dr \right| \right\}
$$

\n $\leq \max_{t \in [0,1]} \left\{ \int_0^1 |K(t, r)| |f(r)| dr + \int_0^1 |K(t, r)| |g(r)| dr + \int_0^1 |K(t, r)| |l(r)| dr \right\}$
\n $\leq \max_{t \in [0,1]} \left\{ \int_0^1 c |f(r)| dr + \int_0^1 c |g(r)| + \int_0^1 c |l(r)| dr \right\}$
\n $\leq c ||f, g, l||$

Hence, G_{NX}(Hf, Hg, Hl, t) = [exp(||Hf, Hg, Hl||/t)]⁻¹ \geq $\left(\frac{1}{c}\right)$ $\frac{1}{c}$) Δ ([exp (||f, g, l||/t)]⁻¹) = $\left(\frac{1}{c}\right)$ $\frac{1}{c}$ $\Delta G_{\rm{NX}}(f, g, l, t)$.

Put $1/c = 1 - \alpha$, for some $\alpha \in [0,1]$, it follows that $G_{NX}(Hf, Hg, Hl, t) \ge (1 - \alpha)\Delta G_{NX}(f, g, l, t)$

Definition 3.7

Suppose that (X, G_{NX}, Δ) is a GFNLS and $A \subseteq X$. Then A is said to be bounded if there is a number α , $0 < \alpha < 1$ such that $G_{NX}(x, y, z, t) \ge (1 - \alpha)$, $\forall x, y, z \in A, t > 0$

Proposition 3.8

If (X, G_{NX} , Δ) be a GFNLS. Then:

(a) The sum of any two bounded subsets of X is bounded

(b) The scalar multiple of any bounded subset of X by a real number is bounded

Proof

Suppose that the two subsets A, B are bounded of X, we prove that

(a) $A + B$ is bounded. According to our assumption, A and B are bounded, so there are two numbers β and δ , where $0 < \beta < 1$ and $0 < \delta < 1$ such that $G_{NX}(x, y, z, t) \ge (1 - \beta)$, $\forall x, y, z \in A$, $t > 0$ and $G_{NX}(d, h, v, s) \ge$ (1 − δ), \forall d, h, v ∈ B. Let α be a number such that $(1 - \alpha) \le (1 - \beta)\Delta(1 - \delta)$. Let p, q, r ∈ A + B, then there exist x, y, z \in A, d, h, v \in B such that p, q, r = x + d, y + h, z + v. We have that $G_{NX}(p, q, r, t + s) = G_{NX}(x + d, y + s)$ $h, z + v, t + s$) ≥ $G_{NX}(x, y, z, t) \Delta G_{NX}(d, h, v, s) \ge (1 - \beta) \Delta (1 - \delta) \ge (1 - \alpha)$. Hence $G_{NX}(p, q, r, t + s) \ge (1 - \alpha)$, so $A + B$ is bounded.

(b) c A is bounded. Since the subset A is bounded of X, so there is β , $0 \le \beta \le 1$ such that $G_{NX}(x, y, z, t) \ge$ $(1 - \beta) \forall x, y, z \in A, t > 0$. Now, if $c \neq 0$, then $G_{NX}(cx, cy, cz, t) = G_{NX}(x, y, z, \frac{t}{c})$ $\frac{1}{|c|}$ \geq $(1 - \beta)$ \forall t $\in \mathbb{R}$, t > 0 . Thus $G_{NX}(cx, cy, cz, t) \ge (1 - \beta)$. Hence c A is bounded.

Remark 3.9

Suppose that the linear spaces (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) are two G-fuzzy normed, then the G-B(X, Y) is the set of all bounded linear transformations in which $\{H: (D(H), G_{NX}, \Delta) \to (Y, G_{NY}, \Delta) : G_{NY}(Hx, Hy, Hz, t) \geq (1 \alpha$) $\Delta G_{\rm{NX}}(x, y, z, t)$, $t > 0$ }.

The following lemma demonstrates the addition transformation of two bounded transformations must be bounded transformation.

Lemma 3.10

Let $H_1, H_2 \in G$ -B(X, Y) then $H_1 + H_2 \in G$ -B(X, Y), where the linear spaces (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) are G-fuzzy normed.

Proof

Let H₁ and H₂ be bounded linear transformations then there are two numbers p_1, p_2 , with $0 < p_1 < 1$ and $0 < p_2 < 1$ such that $G_{NY}(H_1x, H_1y, H_1z, t) \ge (1 - p_1)\Delta G_{NX}(x, y, z, t)$ and $G_{\text{NY}}(H_2x, H_2y, H_2z, s) \ge (1 - p_2) \Delta G_{\text{NX}}(x, y, z, t)$ for any $x, y, z \in D(H_1) \cap D(H_2)$ and $t > 0$. Now

$$
G_{NY}((H_1 + H_2)(x, y, z), t) = G_{NY}(H_1x + H_2x, H_1y + H_2y, H_1z + H_2z, t)
$$

\n
$$
\geq G_{NY}\left(H_1x, H_1y, H_1z, \frac{t}{2}\right)\Delta G_{NY}\left(H_2x, H_2y, H_2z, \frac{t}{2}\right)
$$

\n
$$
\geq (1 - p_1)\Delta G_{NX}\left(x, y, z, \frac{t}{2}\right)\Delta (1 - p_2)\Delta G_{NX}\left(x, y, z, \frac{t}{2}\right)
$$

\n
$$
= ((1 - p_1)\Delta (1 - p_2))\Delta \left[G_{NX}\left(x, y, z, \frac{t}{2}\right)\right]
$$

We can find α with $0 < \alpha < 1$ such that $(1 - p_1)\Delta(1 - p_2) = (1 - \alpha)$

So $G_{NY}((H_1 + H_2)(x, y, z), t) \ge (1 - \alpha) \Delta G_{NX}(x, y, z, t/2) \forall H_1, H_2 \in G-B(X, Y).$

Therefore, $H_1 + H_2 \in G-B(X, Y)$

One more characterization for the bounded transformation is assigned in the following theorem

Theorem 3.11

Let (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) are two G-normed linear spaces. Then H(A) is bounded for every bounded subset A of D(H) if and only if H: (D(H), G_{NX} , Δ) \rightarrow (Y, G_{NY} , Δ) is a bounded linear transformation

Proof

Let that $D(H)$ be a bounded then $H(D)$ is bounded, so there is a number $p, 0 < p < 1$ such that $G_{\rm NY}(\rm{Hx},\rm{Hy},\rm{Hz},t) \ge (1-p)\Delta G_{\rm NY}(x,y,z,t) \forall x,y,z \in \mathcal{D}(\rm{H})$, $t > 0$. Hence we can find a number α with $(1-p) \le (1-p)\Delta G_{\rm NY}(x,y,z,t)$ $\alpha)$ Δ $G_{NX}(x, y, z, t)$ thus $G_{NY}(Hx, Hy, Hz, t) \ge (1 - \alpha) \Delta G_{NX}(x, y, z, t) \forall x, y, z \in D(H)$. Conversely, Let H be bounded, so there is a number p, $0 < p < 1$ such that $G_{NY}(Hx, Hy, Hz, t) \ge (1 - p)\Delta G_{NX}(x, y, z, t)$ \forall x, y, z $\in \mathcal{D}(H)$, $t > 0$. Let A be a bounded such that $A \subseteq D(H)$, then there exists a number q, $0 < q < 1$ such that $G_{\text{NX}}(x, y, z, t) \ge 1 - q$, $\forall x, y, z \in A$, we can find a number α with $(1 - \alpha) \ge (1 - p)\Delta(1 - q)$. Therefore $G_{NY}(Hx, Hy, Hz, t) \ge (1 - \alpha)$.

4. The Extension of the Bounded Linear Transformation and the Completeness of all Bounded Linear Transformations Space G-B(X,Y)

This section is devoted to extending the bounded linear transformation according to a GFNLS. The extension of any bounded linear transformation in the case that complete condition is available for a GFNLS (Y, G_{NY}, Δ) is proved. Moreover, the completeness for the space G-B(X, Y) is proved.

First, a G-fuzzy norm for the space G-B(X, Y) is defined, and that the linear space G-B(X, Y) is proved to be a Gfuzzy normed as follow:

Theorem 4.1

Suppose that (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) are two G-fuzzy normed linear spaces, $(G-B(X, Y), G_{NLY}, \Delta)$ is GFNLS where the function $G_{NLT}(H_1, H_2, H_3, t) = inf_{x,y,z \in D(H)} G_{NY}(Hx, Hy, Hz, t) \forall H \in G-B(X, Y), t > 0$ where $H_1 = Hx$, $H_2 =$ Hy and $H_3 = Hz$.

Proof

 $(G_N1) G_{NLT}$ $(H_1, H_2, H_3, t) = 0, \forall t \in \mathbb{R}, t \leq 0$, since $G_{NY}(Hx, Hy, Hz, t) = 0$ for all $x, y, z \in \mathcal{D}(H)$ and $t \leq 0$.

 (G_N^N2) G_{NLT} $(H_1, H_2, H_3, t) = 1$ if and only if $\inf_{x,y,z \in D(H)} G_{NY}(Hx,Hy,Hz,t) = 1$ if and only if $G_{NY}(Hx,Hy,Hz,t) = 1$ if and only if $Hx = Hy = Hz = \theta$ for all $x, y, z \in \mathcal{D}(H)$ if and only if $H_1 = H_2 = H_3 = \theta$ $\forall t \in \mathbb{R}, t > 0$

 (G_N3) Since $G_{\text{NV}}(Hx, Hy, Hz, t) = G_{\text{NY}}(Hy, Hg, Hz, t) = G_{\text{NY}}(Hx, Hz, Hy, t) = \dots$ for all x, y, z $\mathcal{D} \in (H)$. Therefore, G_{NLT} (H_1 , H_2 , H_3 , t) = G_{NLT} (H_2 , H_3 , H_1 , t) = G_{NLT} (H_1 , H_3 , H_2 , t).

This means that G_{NLT} (H₁, H₂, H₃, t) = G_{NLT} (P(H₁, H₂, H₃), t), (symmetry) where P is a permutation function

 (G_N4) If $c \neq 0$, for all $t \in \mathbb{R}$, $t > 0$

$$
G_{\text{NLT}} (cH_1, cH_2, cH_3, t) = \inf_{x, y, z \in D(H)} G_{\text{NY}}(c(Hx, Hy, Hz), t)
$$

= $\inf_{x, y, z \in D(H)} G_{\text{NY}}(cHx, cHy, cHz, t)$
= $\inf_{x, y, z \in D(H)} G_{\text{NY}}(Hx, Hy, Hz, t/|c|)$
= $G_{\text{NLT}}(Hx, Hy, Hz, \frac{t}{|c|})$
= $G_{\text{NLT}}(H_1, H_2, H_3, t/|c|)$

 $(G_N 5)$ For all t, $s \in \mathbb{R}$, H_1 , H_2 , H_3 , \overline{H}_1 , \overline{H}_2 , $\overline{H}_3 \in G$ -B(X, Y)

 G_{NLT} $(H_1 + \overline{H}_1, H_2 + \overline{H}_2, H_3 + \overline{H}_3, t + s) = \inf_{x,y,z \in \mathcal{D}(H) \cap \mathcal{D}(H)} G_{NY}((H + \overline{H})(x), (H + \overline{H})(y), (H + \overline{H})(z), t + s)$

 $= \inf_{x \text{ y } z \in \text{D(H)} \cap \text{D(H)}} G_{\text{NY}}(H(x) + \overline{H}(x), H(y) + \overline{H}(y), H(z) + \overline{H}(z), t + s)$ $\geq \inf_{x,y,z\in \mathcal{D}(H)} G_{NY}(H(x),H(y),H(z),t) \Delta \inf_{x,y,z\in \mathcal{D}(\overline{H})} G_{NY}(\overline{H}(x),\overline{H}(y),\overline{H}(z),s)$ $= \inf_{x,y,z \in \mathcal{D}(H)} G_{\text{NY}}(Hx,Hy,Hz,t) \Delta \inf_{x,y,z \in \mathcal{D}(H)} G_{\text{NY}}(Hx,Hy,Hz,s)$

 $\geq G_{\rm NLT} (H_1, H_2, H_3, t) \Delta G_{\rm NLT} (\overline{H}_1, \overline{H}_2, \overline{H}_3, s)$ $(G_N 6)$ $\lim_{t\to\infty} G_{NLT} (H_1, H_2, H_3, t) = \lim_{t\to\infty} \inf G_{NY}(Hx, Hy, Hz, t) = \inf \lim_{t\to\infty} G_{NY}(Hx, Hy, Hz, t) = 1$

 $(G_N 7)$ For all x, y, z \in X, G_{NLT} (H₁ + H₂, θ , H₃, t) = inf_{x,y,z \in _{D(H)} G_{NY} (Hx + Hy, θ , Hz, t)}

 $\geq \inf_{x,y,z\in \mathcal{D}(H)} G_{NY}(Hx,Hy,Hz,t)$

 $= G_{NLT}(H_1, H_2, H_3, t)$

Therefore, the linear space (G-B(X, Y), G_{NLT} , Δ) is G-fuzzy normed.

Now we establish that a bounded linear transformation has an extension in the following theorem.

Theorem 4.2

Assume that (X, G_{NX}, Δ) be a GFNLS and (Y, G_{NY}, Δ) be a complete GFNLS. Let H: $(D(H), G_{NX}, \Delta) \to (Y, G_{NY}, \Delta)$ be a bounded linear transformation. Then H has an extension \tilde{H} : (CL($\mathcal{D}(H)$, G_{NX} , Δ) \rightarrow (Y, G_{NY} , Δ) bounded linear with G_{NLT} (H₁, H₂, H₃, t) = G_{NLT} (H₁, H₂, H₃, t) \forall t > 0

Proof

Assume that $x \in CL(D(H))$, then by Lemma 3.2 there is a sequence $\{x_n\} \in CL(D(H))$ with $\{x_n\}$ converges to x. Since H is a bounded linear transformation, then for some $0 < \alpha < 1$ we have $G_{NLT}(H_1, H_2, H_3, t) \ge (1 - \alpha)$ and since $\{x_n\}$ converges to x then for each ε , $0 < \varepsilon < 1$, $t > 0$, $\exists N_\circ(\varepsilon, t) \in \mathbb{N}$ such that $G_{\text{NX}}(x_n - x, x_m - x, x_\ell - x, t) >$ $1 - \varepsilon, \forall n, m, \ell \ge N$. Thus by remark 2.2, there exists $0 < (1 - p) < 1$ with $(1 - \alpha)\Delta(1 - \varepsilon) > 1 - p$. So $G_{\text{NY}}(Hx_n - Hx_m, Hx_m - Hx_\ell, Hx_\ell - Hx_n, t) = G_{\text{NY}}(H(x_n - x_m), H(x_m - x_\ell), H(x_\ell - x_n), t) \ge$

 $G_{NLT}(H_1, H_2, H_3, t)\Delta G_{NX}(x_n - x_m, x_m - x_\ell, x_\ell - x_n, t) \ge (1 - \alpha)\Delta(1 - \epsilon) > 1 - p \forall n, m, \ell \ge N_\circ$, this implies that the sequence $\{Hx_n\}$ in (Y, G_{NY}, Δ) is Cauchy. By our assumption (Y, G_{NY}, Δ) is complete for this reason $\{Hx_n\}$ converges to the point y in Y. Define $\tilde{H}x = y$. Suppose that two sequences $\{x_n\}$ and $\{\bar{x}_n\}$ converges to x then $\{z_n\} = \{x_1, \bar{x}_1, x_2, \bar{x}_2, ...\}$ is the sequence that converges to x. Therefore, $\{Hz_n\}$ converges, and the subsequences{Hx_n}, {Hx_n} of {Hz_n} must have an equal limit by [Remark 1, 24]. This shows that for every x in $CL(D(H))$, H̃ is well defined. The transformation H̃ is linear also for every x in $D(H)$, H̄x = Hx hence H̄ is an extension of H. Now, we have

 $G_{\text{NY}}(H_1X_n, H_2X_n, H_3X_n, t) \ge G_{\text{NLT}}(H_1, H_2, H_3, t) \Delta G_{\text{NX}}(X_n, X_n, X_n, t)$

Let $n \to \infty$ then Hx_n converges to $\tilde{H}x = y$ this implies that

 $G_{\text{NY}}(\widetilde{H}_1 x, \widetilde{H}_2 x, \widetilde{H}_3 x, t) \ge G_{\text{NLT}}(H_1, H_2, H_3, t) \Delta G_{\text{NS}}(x, x, x, t)$

Thus \tilde{H} is bounded transformation and $G_{NLT}(\tilde{H}_1, \tilde{H}_2, \tilde{H}_3, t) \ge G_{NLT}(H_1, H_2, H_3, t)$ but by the definition of G-fuzzy norm which defined by an infimum $G_{NLT}(\tilde{H}_1, \tilde{H}_2, \tilde{H}_3, t) \leq G_{NLT} (H_1, H_2, H_3, t)$, together we obtain that $G_{\text{NLT}}(\tilde{H}_1, \tilde{H}_2, \tilde{H}_3, t) = G_{\text{NLT}}(H_1, H_2, H_3, t)$

The following definition gives the notion of bounded linear functional.

Definition 4.3

A linear functional F from the space (X, G_{NX}, Δ) into the space $(\mathbb{F}, G_{N\mathbb{F}}, \Delta)$ is called bounded if there exist α , $0 < \alpha < 1$ such that $G_{N,F}(Fx, Fy, Fz, t) \ge (1 - \alpha) \Delta G_{NX}(x, y, z, t)$ for each x, y, z, $\in \mathcal{D}(F)$, $t > 0$.

Furthermore, a G-fuzzy norm of F is G_{NLT} (F_1, F_2, F_3, t) = inf_{x,y,z $\in D(F)$} G_{NF} (Fx, Fy, Fz,t) and G_{NF} (Fx, Fy, Fz,t) \ge $G_{\rm NF}$ (Fx, Fy, Fz, t) $\Delta G_{\rm NX}$ (x, y, z, t).

The set of all bounded linear functional is denoted by $G-B(X, F)$ with $G-B(X, F) = {F: F$ is bounded linear functional}.

The Cauchy sequence in a GFNLS, (X, G_N, Δ) is given in [9] as follows:

A sequence $\{x_n\}$ is Cauchy if for each ε , $0 < \varepsilon < 1$, $s > 0$, $\exists N_\circ(\varepsilon, s) \in \mathbb{N}$ such that $G_N(x_n - x_m, x_m - x_\ell, x_\ell - x_\ell)$ x_n , s) > 1 – ε, ∀n, m, $\ell \geq N_o$.In a GFNLS, (X, G_N, Δ) every convergent sequence is Cauchy.

The completeness of the G-fuzzy normed linear space (X, G_N, Δ) is satisfied if Cauchyness implies convergence in X. The complete property of the space $G-B(X, Y)$ is discussed in the following theorem.

Theorem 4.4

Let the linear spaces (X, G_{NX}, Δ) and (Y, G_{NY}, Δ) be two G-fuzzy normed. If the linear space (Y, G_{NY}, Δ) is complete G-fuzzy normed where ∆ is continuous on (1,1) then G-B(X, Y) is complete GFNLS.

Proof

Assume that the sequence ${H_n}$ be Cauchy in G-B(X, Y), so for each α , $0 < \alpha < 1$, $t > 0$ ∃N∘(α , $t \in \mathbb{N}$ such that $G_{\text{NY}}(H_n - H_m, H_m - H_\ell, H_\ell - H_n, t) > 1 - \alpha$, $\forall n, m, \ell \geq N_o$. Now, for the vectors x, y, z \in X and each $n, m, \ell \geq N_o$ the following formula say (A) is given:

$$
G_{\rm NY}(H_{\rm n} - H_{m}, H_{m} - H_{\ell}, H_{\ell} - H_{n}, t) > (1 - \alpha)
$$

Now for x, y, $z \in X$ and $n, m, \ell \geq N_0$

 $G_{\rm NY}(H_nx - H_mx, H_my - H_\ell y, H_\ell z - H_nz, t) \ge G_{\rm NY}((H_n - H_m)(x), (H_m - H_\ell)(y), (H_\ell - H_n)(z), t) > (1 - \alpha)\Delta$ $G_{\text{NX}}(x, y, z, t)$.

Hence, for any fixed vectors x, y, z, given β , $0 < \beta < 1$ and from formula (A) the following is obtained:

 $G_{\text{NV}}(H_n x - H_m x, H_m y - H_\ell y, H_\ell z - H_n z, t) > (1 - \beta) \Delta G_{\text{NV}}(x, y, z, t).$

Therefore, $\{H_n x\}$ is Cauchy in Y, since (Y, G_{NY}, Δ) is complete G-fuzzy normed linear space so $\{H_n x\}$ converges to $d \in Y$. Defines an operator H: $(X, G_{NX}, \Delta) \rightarrow (Y, G_{NY}, \Delta)$ by Hx = d such that the vector d depends on $x \in X$. We will prove that

1- The transformation H is linear

Since $H(c_1a + c_2b) = \lim_{n \to \infty} H_n(c_1a + c_2b)$ $= c_1 \lim_{n \to \infty} H_n a + c_2 H_n \lim_{n \to \infty} b_n$ $= c_1H(a) + c_2H(b)$

2- The transformation H is bounded and the element H is the limit of the sequence ${H_n}$.

Since the formula (A) holds ∀ $m \ge N_o$, $H_m x$ converges to Hx, $H_m y$ converges to Hy and $H_m z$ converges to Hz we may allow $m \to \infty$

So for all x, y, z \in X , t > 0 and $n, \ell \ge N$, formula (A) gives:

$$
G_{NY}((H_n - H)(x), (H_m - H)(y), (H_\ell - H)(z), t) =
$$

 $G_{\text{NY}}(H_n x - \lim_{m\to\infty} H_m x, H_m y - \lim_{m\to\infty} H_m y, H_\ell z - \lim_{m\to\infty} H_m z, t) =$

$$
\lim_{m\to\infty} G_{\rm NY}((H_{\rm n}-H_m)(x), (H_m-H_m)(y), (H_{\ell}-H_m)(z), t) =
$$

 $\lim_{m\to\infty} G_{\text{NV}}((H_n - H_m)(x), (H_m - H_\ell)(y), (H_m - H_m)(z),t)$ by the conditions (G_N3) and (G_N4) .

Since (Δ) is contiuous on (1,1) then the following formula say (B) is obtained

 $G_{NY}((H_n - H)(x), (H_m - H)(y), (H_\ell - H)(z), t) = \lim_{m \to \infty} G_{NY}((H_n - H_m)(x), (H_m - H_\ell)(y), (H_m - H_m)(z), t) > (1 \alpha$) $\Delta G_{\rm{NX}}(x, y, z, t)$

Therefore, ${H_n - H}$ is bounded but ${H_n}$ is bounded hence ${H = H_n - (H_n - H)}$ is bounded transformation, it means that H ∈ G-B(X, Y)and from formula (B) by taking the infimum \forall x, y, z gives:

$$
G_{NLT}(H_n - H, H_m - H, H_\ell - H, t) > (1 - \alpha) \Delta G_{NX}(x, y, z, t)
$$

Now, we take ε with $ε ∈ (0,1)$ with $G_{NX}(x, y, z, t) = 1 - ε$ for some ε

Hence $(1 - \alpha)\Delta(1 - \epsilon) = 1 - \epsilon$ for some $0 < \epsilon$ < 1 this implies that

 $\mathsf{G}_{\text{NLT}}(\mathsf{H}_{\text{n}}-\mathsf{H},\mathsf{H}_{\text{m}}-\mathsf{H},\mathsf{H}_{\ell}-\mathsf{H},\mathsf{t})\geq 1-\epsilon$ $\forall n,m,\ell\geq \mathsf{N}$, $\;$ t $>0.$ That is H is the limit of the sequence $\{\mathsf{H}_{n}\}$.

According to the previous theorem, proof of the following corollary immediately follows it

Corollary 4.5

Suppose that (X, G_{NX}, Δ) and (F, G_{NF}, Δ) are two G-fuzzy normed linear spaces. Then the space G-B(X, F) is complete GFNLS when (\mathbb{F} , G_{N \mathbb{F}}, Δ) is complete

5. Conclusion

The continuity property for a linear transformation in terms of GFNLS was introduced; a bounded linear transformation using the concept of GFNLS was defined. An illustrated example of this definition was given and some essential properties are proved. Finally, the class $G-B(X, Y)$ that is consisting of all bounded linear transformations is presented with the proving that this space is complete GFNLS while the space Y is complete. We believe the results established in this work will help authors to generalize further studies and results like the adjoint transformation of bounded transformation.

References

- [1] B. C. Dhage, "Generalised metric spaces and mappings with fixed point", Bulletin of the Calcutta Mathematical Society, vol. 84 (4), (1992), pp. 329-336.
- [2] Z. Mustafa and B. Sims, "Some remarks concerning D-metric space", Proceedings of the International Conferences on Fixed Point Theory and Applications", Valencia (Spain), (2003), pp. 189-198.
- [3] Z. Mustafa, and B. Sims, "A new approach to generalized metric spaces", Journal of Nonlinear and convex Analysis, vol. 7 (2), (2006), pp. 289-297.
- [4] G. Sun and K. Yang, "Generalized fuzzy metric spaces with properties", Research Journal of Applied Sciences, Engineering and Technology, vol. 2 (7), (2010), pp. 673-678.
- [5] A. F. Sayed, A. Alahmari and S. Omran, "On Fuzzy Soft G-Metric Spaces", Journal of Advances in Mathematics and Computer Science, vol. 27 (6), (2018), pp. 1-15.
- [6] M. Jeyaraman, R. Muthuraj, M. Sornavalli and Z. Mustafa, "Common Fixed Point Theorems for W-Compatible maps of type (P) in Intuitionistic Generalized Fuzzy Metric Spaces", International Journal of Advances in Mathematics, vol. (5), (2018), pp. 34-44.
- [7] M. Rajeswari and M. Jeyaraman, "Fixed Point Theorems for Reciprocally Continuous Maps in Generalized Intuitionistic Fuzzy Metric Spaces", Advances in Mathematics, Scientific Journal, vol. 8 (3), (2019), pp. 73–78.
- [8] K. A. Khan, "Generalized normed spaces and fixed point theorems", Journal of Mathematics and Computer Science, vol. 13, (2014), pp. 157-167.
- [9] S. Chatterjee, T. Bag and S. K. Samanta, "Some results on G-fuzzy normed linear space", Int. J. Pure Appl. Math., vol. 120 (5), (2018), pp. 1295– 1320.
- [10] M. Khanehgir, M. M. Khibary, F. Hasanvanda, A. Modabber, "Multi-Generalized 2-Normed Space", Published by Faculty of Sciences and Mathematics, vol. 31 (3), (2017), pp. 841–851.
- [11] J. Xiao and X. Zhu, "Fuzzy normed spaces of operators and it is completeness", Fuzzy sets and Systems, vol. 133, (2004), pp.437-452.
- [12] B. Lafuerza-Guillén, J. A. Rodríguez-Lallena and C. Sempi, "A study of boundedness in probabilistic normed spaces", J. Math. Anal. Appl., vol. 232, (1999), pp. 183–196.
- [13] I. Sadeqi, and F. S. Kia, "Fuzzy normed linear space and its topological structure", Chaos Solitons Fractals, vol. 40, (2009), pp. 2576–2589.
- [14] A. Szabo, T. Bînzar, S. N˘ad˘aban and F. Pater, "Some properties of fuzzy bounded sets in fuzzy normed linear space", In Proceedings of the AIP Conference Proceedings, Thessaloniki, Greece, 25-30 September (2017); AIP Publishing: Melville, NY, USA; Vol. 1978.
[15] A. Szabo, T. Bînzar, S. [Nădăban](https://aip.scitation.org/author/N%C4%83d%C4%83ban%2C+Sorin) and F. [Pater,](https://aip.scitation.org/author/Pater%2C+Flavius) "Some properties of fuzzy bounded sets in fuzzy normed
- [Proceedings](https://aip.scitation.org/journal/apc) 1978, 390009, (2018)[, https://doi.org/10.1063/1.5043993.](https://doi.org/10.1063/1.5043993)
- [16] N. F. Al-Mayahia, and D. S. Farhood, "Separation Theorems For Fuzzy Soft normed space." Journal of Al-Qadisiyah for computer science and mathematics, vol. 11 (3), (2019), p. 89.
- [17] B. T. Bilalov, S. M. Farahani and F. A. Guliyeva, "The Intuitionistic Fuzzy Normed Space of Coefficients", Abstract and Applied Analysis, Article ID 969313, 11 pages, (2012), [https://doi.org/10.1155/2012/969313.](https://doi.org/10.1155/2012/969313)
- [18] T. Bag and S. Samanta, "Fuzzy bounded linear operators", Fuzzy sets and Systems, vol. 151 (3), (2005), pp. 513-547.
- [19] J. Zhao, C. M. Lin and F. Chao, "Wavelet Fuzzy Brain Emotional Learning Control System Design for MIMO Uncertain Nonlinear Systems", Front. Neurosci, vol. 12, (2018), pp. 918.
- [20] M. Janfada, H. Baghani and O. Baghani, "ON FELBIN'S-TYPE FUZZY NORMED LINEAR SPACES ANDFUZZY BOUNDED OPERATORS", Iranian Journal of Fuzzy Systems, vol. 8 (5), pp. 117-130.
- [21] K. Nomura, "Linear transformations that are tridiagonal with respect to the three decompositions for an LR triple", Linear Algebra and its Applications, vol. 486, (2015), pp. 173-203.
- [22] P. Sinha, G. Lal and D. Mishra, "Fuzzy 2-Bounded Linear Operators," International Journal of Computational Science and Mathematics", vol. 7 (1), (2015), pp. 1-9.
- [23] S. Chatterjee, T. Bag and S. K. Samanta, "Some Fixed Point Theorems in G-fuzzy Normed Linear Spaces", Recent Advances in Intelligent Information Systems and Applied Mathematics, (2020), 87-101.
- [24] T. Bag and S. Samanta, "Finite dimensional fuzzy normed linear spaces", J. Fuzzy Math. Vol. 11 (3), (2003), pp. 687-705.