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1- Introduction:

All the rings in this article are commutative and have 1 and any module is unitary. In [1], "a proper submodule N of M is
called maximal, if whenever W is a submodule of M with N € of W € M implies that W = M". In [2] "a proper
submodule N of an R -module M is called a prime submodule if for each r € R, x € M, such that rx € N, then either x € N
orr € [N: M], where N: M= {r:r € R, vM € N}". In [3], "we study nearly prime as a generalization of prime submodules
and they define a nearly prime submodule as follows:

a proper submodule N of an R -module M is called nearly prime, if whenever rx € N, r € R, x € M implies either x € N +
JM)ore N+ ] M: M".

the author in [4] showed "a proper submodule L of a module M is called small (denoted by L « M), if for every proper
submodule K of M, L + K # M". In [4] "a non-zero module M is called a hollow if every proper submodule N of M is a
small submodule of M (N « M) that is N + W # M for every W <M".
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In [5],"Inaam and Riadh studied a generalization of maximal submodule in details". In [6], " a submodule N of M is called
essential, if whenever NNL= (0), then L = (0) for each submodule L of M". In [1], "Muna did a generalization of maximal
submodule namely nearly maximal submodules, but in this paper, we try to do same this generalization for hollow
module". In other words; nearly maximal of small submodule in hollow module M (NM-hollow module).

2- The Main Result

In this section, we present several conditions about any submodule N of M to obtain a generalization of hollow module.
Before we start, we showed introduce the following definitions and some examples and Remarks.

Definition (2.1). [7] "The submodule N of M is called prime if N#+ M and, given r € R and m € M such that rme N, either
me Norr € (N: M)".

Definition (2.2). “An R-module M is called projective if and only if for any epimorphism f:C—V such that C,V are any
R-modules and for any homomorphism g:M—V 3 a homomorphism h:M—C such that foh=g” [8].

Recall that an indecomposable module with projective module gives local module, also every local module is hollow
module.

Note that the maximal submodule means any submodule H of M (H< M) is named maximal if W< M; HCWCM, so
W=M.

From definition of maximal submodule and nearly maximal submodule, we can introduce the following remarks and some
examples:

Remark (2.3). Every maximal submodule is a NM-submodule.

Example (2.4). Z submodule in Z-module Q is NM-submodule but we have Q is not maximal 3 Q is rational ring.
Remark (2.5). Every M-hollow is NM-hollow.

Example (2.6). If N=(0)< M simple, then N is NM-hollow module.

Remark (2.7). We can say the radical of a module M is:

Rad(M)=N {N;: N; is maximal submodules of M}

Note that since M is any local module has only one maximal submodule, so M has only one NM-local. Also, if Rad(M)
= M, this means M has no maximal submodule. On the other hand, if N is NM-hollow with Rad(M)=0, then N is a
maximal of hollow module.

¢ If N, N, are two small proper submodules of M and N;NN, is NM-submodule of M, so N;and N, are NM-submodule.
Hence M is NM-hollow module.

¢ If M is NM-hollow, then % is NM-hollow.

Theorem. (2.8). Let M, A and B R-modules and @ be a mapping from A into B. If A is NM-hollow module, then @(A) is
NM-submodule of B (B is NM-hollow module).

Proof.

Take M is and R-module. Let H<B 3 @( k)cH, k<A. To prove that @(K) cH and H + Rad(B)=B. Since A is NM-
hollow, so N<A is NM-submodule. Also, ker (§)SN, then @(N)<B.

So
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@(N)cH and hence Nc @' (H).

Hence
¢! (H)y+Rad(A)=A,
So
@(@" (H) +Rad(A)) = B(A) =B.
Then

@(0" (H)+ B(Rad(A)) =A.
But @ onto so HtRad(B). F(N) is NM-submodule of B. Thus, B is NM- Hollow module.
Corollary. (2.9). If M is NM-hollow, then (%) is NM-hollow 3 N, H&K M and HCN.

Theorem (2.10). The image of epimorphic of near maximal hollow is also near maximal hollow module.
Proof.
By last Theorem.
Definition (2.11). [6]. "Any module M is called finitely generated if M=} xi ri 3 x; €M and r; ER".
Proposition (2.12). Let M be an R-module. If:

1- Mis a f.generated;

2- M is faithful and N=IM

3- N<< M. Then M is NM-hollow when R is NM-hollow as a module.
Proof.

Suppose that R is NM-hollow module. Suppose 0# N« M. Since M is a multiplication module, then N=IM. I is NM-ideal
of R, so N is NM-submodule of M [1]. Thus, M is NM-hollow module.

Theorem (2.13). A direct sum of NM-hollow is an NM-hollow module.
Proof.

Assume that M is NM-hollow module. Assume that M =A@B 3 A<M, B< M. Take 0# N, proper small submodule of A
(N;KA).

Let H;<A 3 N,cH, with N;cH;+Rad(A)cA. So
N,@®BcH,+Rad(A)DB.
But N;®B is NM-small submodule of M. Hence
(H,+Rad(A)) ®B+Rad(M)= M.
Also

Rad(M)= Rad(A)@® Rad(B).
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Then
H,+Rad(A)+B+(Rad(A)® Rad(B)) € H,+Rad(A)) ©B..
So
H,+Rad(A)=A.

Therefore, N; is a NM-submodule of A. Thus, A is NM-hollow submodule. That is M is NM-hollow module.
Corollary (2.14). Let M be a hollow R-module with

1- M=A+B;

2- A and B are NM-hollow modules;

3- Ann(A)+ann(B)=R; then M is NM-hollow.
Proof.
Assume that 0+ K< M and H< M 3 KcH. We have ann(A)+ann(B)=R. Then

K=K,®K, 3 K,<A and K,<B with

H=H,@®H, 3 H,<A and H,<B.

Now
K ®K,cH ,®H,+Rad(A®B) CADB.
But
Rad(A®B) =Rad(A)® Rad(B).
Then
K,cH;+Rad(A)cA.
Hence

K,cH,+Rad(B)cB.
But K,EA and A is NM-hollow modules. So H;+ Rad(A)=A. Similarly
H,+Rad(B)=B.
So
H,®H,+Rad(A+B) =A®B.
Then
H+Rad(M)= M.

Hence K;®K,=K is small NM-submodule. of M. Thus, M is NM-hollow module.
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