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A B S T R A C T 

The onset of thermal convection of a fluid saturated anisotropic bidisperse porous medium 
under the condition of local thermal non-equilibrium is investigated. We have studied the 
case of flow in the macropores and micropores when the porous materials are of Darcy type. 
The temperatures in the macropores and micropores are allowed to be different. We 
concentrate our attention on the state of a permeability tensor is transversely isotropic with 
the isotropy axis in the vertical direction of gravity and the permeability ratios of vertical to 
horizontal are different in the macropores and micropores . The effect of various parameters 
on the stationary convection is discussed. In particular the effects of macro permeabilities, the 
micro permeabilities, the measure between the permeability in the macro phase and micro 
phase ,  and various interaction parameters on the stationary convection are studied. The 
numerical results are presented for free-free boundary conditions. 
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1. Introduction  

       Thermal convection in a bidispersive porous medium is one of much current interest due to its practical 
applications in various fields, such as in heat pipes technologies, catalytic chemistry, methane recovery from coal 
deposits, and thermal insulation see e.g., Szczygieł [1], Lin et al. [2], Shi and Durucan [3], and Straughan [4]. 
However, the effects of anisotropy in permeability on thermal convection in porous media are receiving atopic a 
particular interest. 
 
       There are many applications of bidispersive anisotropic porous medium. Such as to carbon sequestration, 
landslides, nuclear waste treatment, stockpiling of coal, hydraulic fracturing for natural gas see e.g. Straughan [5, 6], 
Carneiro [7], Hill and Morad [8], Borja et al. [9], Montrasio et al. [10], Di et al. [11], Kim and Moridis [12], Hooman 

https://www.sciencedirect.com/topics/engineering/macropores
https://www.sciencedirect.com/topics/engineering/micropores
https://www.sciencedirect.com/topics/engineering/macropores
https://www.sciencedirect.com/topics/engineering/micropores
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and Maas [13], Hooman et al. [14] and Said et al. [15]. It is worth mentioning that the effect of anisotrop on thermal 
convection in a bidispersive porous medium has been the subject of much recent research. See for example 
Straughan [16], who investigated the onset of convection for thermal convection in a bidispersive porous medium, 
when the horizontal permeability are the same in the macopores and the micopores  The same author in Straughan 
[16] performed the linear and nonlinear stability methods when the permeability ratios in the macropores and the 
micropores are taken to be different. Saleh and Haddad [17] presented an analysis of linear and nonlinear stability 
to study the anisotropy parameter with soret coefficient effects on the onset of thermal convection in double 
porosity media. Saleh [18] also considered the Brinkman model to investigate thermosolutal convection in a 
bidispersive porous medium with anisotropic permeability effect. Recently, Capone et al. [19] performed linear and 
nonlinear stability analysis for the problem of thermal convection in an inisotropic and rotating bidisperse porous 
medium. They found that the linear theory is capturing the physics of the onset of thermal convection. It is 
important to note that the above mentioned studies have been conducted assuming local thermal equilibrium 
between the fluid and solid matrix phases. However, for a single porosity body, the effect of anisotropy with local 
thermal non-equilibrium on thermal instability has been studied intensely by many researchers. For instance, 
Govender and Vadasz [20] considered the effect of the thermal anisotropy and mechanical anisotropy on the 
stability, where both the fluid and solid phase are in thermal non-equilibrium. Later, Malashetty et al. [21] analyse 
the linear instability theory to investigate the effect both of the thermal non-equilibrium and permeability 
anisotropy on the onset of convection. Shivakumara et al. [22] also deal with the effect of local thermal non-
equilibrium and the mechanical and thermal anisotropy parameters on the stability of the system. The same 
authors, in Shivakumara et al. [23] also deal with the effect of anisotropy combined with the local thermal non-
equilibrium effect on thermal convection in a rotating fluid saturated porous medium. Kulkarni Sridhar [24] 
performed linear instability for a rotating anisotropic porous medium in the presence of thermal non-equilibrium. 
We take this opportunity to point out that the effects of various parameters such as Peclet  number, magnetic 
parameter,Grashof number, radiation parameter, rotating, Hall parameter, Hartman number, Reynolds number and 
artificial compressibility parameter, are investigated in general by many authors cf. Mohammed et al. [25], Al-
Aridhee et al. [26 ], Hasen and Abdulhadi [27],  Ali and  Abdulhadi [28], Jassim and Al-Muslimawi [29]. 
 
        In this paper, we restrict our attention to the case of the macro permeability tensor and the micro permeability 
tensor are horizontally isotropic the case in which the permeability varies in the vertical direction cf. Tyvand [30] 
and Straughan [31]. The main reason for the interest in horizontally isotropic permeability is that most materials 
possess this property such as soils or rocks cf. Karmakar and Raja Sekhar [32], Ayan et al. [33] and Widarsono et al. 
[34]. 
Our main interest is to investigate the combined effect of anisotropy parameter and thermal non-equilibrium on the 
onset of convection .The values of critical Rayleigh number of linear instability theory are obtained numerically by 
using Matlab routines. 
 
       In the following section the basic equations and the non-dimensionalised perturbation equations are presented. 
Linear stability is the subject of sections 3. In section 4, the numerical results are reported. 
 

2. Governing Equations 

       We consider an incompressible fluid saturated a horizontal bidispersive porous layer {(x, y) ∈ ℝ2 × (0 < z < d)}  
with the temperatures Ts = Tf = Tp = TL at z = 0 and Ts = Tf = Tp = TU at z = d, where TL, TU are constants with 
TL > TU. Furthermore, we suppose that the solid phase and fluid phase of the medium are in local thermal non-
equilibrium and the permeabilities of the saturated bidisperse porous medium are anisotropic. Therefore, the 
permeability tensors may be written as  

mij
f = [

μ/KI
f 0 0

0 μ/KI
f 0

0 0 μ/K⊥
f

]     ,                  mij
p

= [

μ/KI
p

0 0

0 μ/KI
p

0

0 0 μ/K⊥
p

], 

where KI
f  is the horizontal component of macro permeability, K⊥

f  is the vertical component of the macro 

permeability, KI
p

 is the horizontal component of the micro permeability , and K⊥
p

 is the vertical component of micro 

permeability. Where KI
f, K⊥

f , KI
p

, K⊥
f  are constants. 
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       The basic equation for thermal convection in an anisotropic bidispersive porous medium of Darcy type  with Ui
f 

and Ui
p

 being the pore-averaged velocities in the macropores and micropores, pf and pp are the pressures in the 
macropores and micropores, μ is the dynamic viscosity, gi is the gravity vector, ρo is reference density, ζ is an 
interaction coefficient and α  the thermal expansion coefficient of the fluid may be written as, cf. Straughan [35] and 
Saleh and Haddad [17]  

−mij
f Ui

f − ζ (Ui
f − Ui

p
) − p,i

f −
giρoαϕ

D
Tf −

giρoα(1−ϕ)ε

D
Tp = 0,

Ui,i
f = 0,

−mij
p
Ui

p
− ζ (Ui

p
− Ui

f) − p,i
p
−

giρoαϕ

D
Tf −

giρoα(1−ϕ)ε

D
Tp = 0,

Ui,i
p

= 0,

ε1(ρc)sT,t
s = ε1κsΔTs + s1(T

f − Ts) + s2(T
p − Ts),

ϕ(ρc)fT,t
f + ϕ(ρc)fVi

fT,i
f = ϕκfΔTf + h(Tp − Tf) + s1(T

s − Tf),

ε2(ρc)pT,t
p
+ ε2(ρc)pVi

p
 T,i

p
= ε2κpΔTp + h(Tf − Tp) + s1(T

s − Tp).

                 (1) 

where D = ϕ + (1 − ϕ)ε,  Ts, Tf and  Tp, respectivety, are reference values of temperature in the macropores,  
micropores, and solid skeleton. ϕ is the microporosity, ε is the microporosity. Standard indicial notation is 

employed in (1) and throughout. We let Ui
f = ϕVi

f and Ui
p

= (1 − ϕ)εVi
p

 are the fluid velocities in the macropores 

and micropores, Vi
f and Vi

p
 are the pore average velocities in the macropores and micropores. 

where ε1 = (1 − ε)(1 − ϕ), ε2 = (1 − ϕ)ε. Here (ρc)s, (ρc)f, (ρc)p are the products of the density and the specific 

heat at constant pressure in the solid in the fluid in the macropores, and in the fluid in the micropores, respectively. 
The terms κs, κf and κp are thermal conductivities in the solid, and in the fluid in the macropores and micropores, 

respectively. We denote by s, f and p the solid, the macropores, and the micropores The terms h, s1 and s2 are 

interaction coefficients, and we have here assumed that the interactions are linear in the temperature differences.  

The permeability tensors Dij
f  and Eij

p
 are defined as  

Dij
f = [

1 0 0
0 1 0
0 0 h∗

] ,              Eij
p

=[
1 0 0
0 1 0
0 0 k∗

] 

where h∗ = KI
f/K⊥

f    and   k∗ = KI
p
/K⊥

p
 refer to the measure between the permeability in horizontal and vertical 

directions, respectively, in the macro permeability and the micro permeability, then we may write  

 mij
f =

μ

KI
f Dij

f ,              mij
p

=
μ

KI
p Eij

p
. 

Suppose that the fluid-saturated bidispersive porous medium satisfies equation (1). The velocity boundary 

conditions are Ui
fni = 0, Ui

p
ni = 0 at z = 0, d The steady solution in whose stability we are interested has form  

 U̅i
f ≡ 0       , U̅i

p
≡ 0,         T̅s = T̅f = T̅p = −β1z + TL = 0 

where  
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 β1 =
TL−TU

d
,      

To investigate the stability of the steady solution, the perturbation is introduced (ui
f, ui

p
, πf, πp, θf, θp, θs) in such a 

way that  

      Ui
f = U̅i

f + ui
f,                         Ui

p
= U̅i

p
+ ui

p
,

     pf = p̅f + πf,                            pp = p̅p + πp,

Ts = T̅s + θs,       Tf = T̅f + θf,       Tp = T̅p + θp.
 

The nonlinear perturbation equations arising from equation (1) are 

−mij
f ui

f − ζ(ui
f − ui

p
) − π,i

f −
g kiρ0αϕ

D
θf −

g kiρ0α(1−ϕ)ε

D
θp = 0,

ui,i
f = 0,

−mij
p
ui

p
− ζ(ui

p
− ui

f) − π,i
p

−
g kiρ0αϕ

D
θf −

g kiρ0α(1−ϕ)ε

D
θp = 0,

ui,i
p

= 0,

ε1(ρc)sθ,t
s = ε1κsΔθs + s1(θ

f − θs) + s2(θ
p − θs),

ϕ(ρc)fθ,t
f + (ρc)fui

fθ,i
f − (ρc)fβ wf = ϕκfΔθf + h (θp − θf) + s1(θ

s − θf),

ε2(ρc)pθ,t
p

+ (ρc)pui
p
θ,i

p
− (ρc)pβ wp = ε2κpΔθp + h (θf − θp) + s2(θ

s − θp).

                    (2) 

where wf = u3
f  and wp = u3

p
, while ki = (0,0,1). The nonlinear perturbation equations are non‐ dimensionalisation 

with the scallings   

τ =
d2(ρc)f

kf
,     p = dζU,     U =

kf

(ρc)fd
,       χ =

ζKI
f

μ
,        ŵ =

KI
f

KI
p,      T# = U√

βμ(ρc)fd
2

ρoαgKI
fκm

, 

where  �̂� the measure between the permeability in the macro phase and micro phase. 

The Rayleigh number 𝑅𝑎 = 𝑅2 is given by  

R2 =
(ρc)fd

2βgρoαKI
f

μϕκf
. 

Other non‐dimensional variables are required and these are given by  

Ls =
(ρc)s

(ρc)f
, LP =

(ρc)p

(ρc)f
, ξs = Ls

ε1

ϕ
,    ξp = LP

ε2

ϕ
          S1 =

s1d
2

ϕkf
,        S2 =

s2d
2

ϕkf
, 

H =
hd2

ϕkf
,        Γs =

ε1ks

ϕkf
,        Γp =

ε2kp

ϕkf
. 

The nonlinear non-dimensional perturbation equations are  



Israa M. Mankhi et al.,                                                                           JCM - Vol.13(2) 2021 , pp  Math.  181–192         185                                                                                              

 

 

−Dij
f ui

f − χ(ui
f − ui

p
) − π,i

f + R
ϕki

D
θf + R

(1−ϕ)εki

D
θP,

ui,i
f = 0,

−ŵEij
p
ui

p
− χ(ui

p
− ui

f) − πi
p

+ R
ϕki

D
θf + R

(1−ϕ)εki

D
θP,

ui,i
p

= 0,

ξsθ,t
s = ΓsΔθs + S1(θ

f − θs) + S2(θ
p − θs),

θ,t
p

+
1

ϕ
ui

fθ,i
f = Rwf + Δθf + H(θp − θf) + S1(θ

s − θf),

ξpθ,t
p
+

Lp

ϕ
ui

p
θ,i

p
= RLpw

p + LpΔθp + H(θf − θp) + S2(θ
s − θp).

 (3) 

 The corresponding boundary conditions for the problem are  

 wf = u3
f = 0,    wp = u3

p
= 0,    θf = 0,    θp = 0,    θs = 0,    at  z = 0,1 (4) 

3. Linear Instability 

       In this section, in order to study the linear instability of the system (3) we neglect nonlinear term. We then 
assume  

 

        𝑢𝑖
𝑓

= 𝑢𝑖
𝑓
(𝑥)𝑒𝜎𝑡,        𝑢𝑖

𝑝 = 𝑢𝑖
𝑝(𝑥) 𝑒𝜎𝑡,

        𝜋𝑓 = 𝜋𝑓(𝑥) 𝑒𝜎𝑡,        𝜋𝑝 = 𝜋𝑝(𝑥) 𝑒𝜎𝑡,

𝜃𝑓 = 𝜃𝑓(𝑥) 𝑒𝜎𝑡,    𝜃𝑝 = 𝜃𝑝(𝑥) 𝑒𝜎𝑡,    𝜃𝑠 = 𝜃𝑠(𝑥) 𝑒𝜎𝑡.
 

where 𝜎 is a general eigenvalue to obtain. Then 𝜋𝑓 and 𝜋𝑝 are eliminated by taking the curl curl of equations (3)1 
and (3)2, and using the third component yields 

 

(ℎ∗Δ∗𝑤𝑓 + 𝑤,𝑧𝑧
𝑓

) + 𝜒(Δ𝑤𝑓 − Δ𝑤𝑝) − 𝑅
𝜙

𝐷
Δ∗𝜃𝑓 − 𝑅

(1−𝜙)𝜀

𝐷
Δ∗𝜃𝑝 = 0,

𝑢𝑖,𝑖
𝑓

= 0,

�̂�(𝑘∗Δ∗𝑤𝑝 + 𝑤,𝑧𝑧
𝑝 ) + 𝜒(Δ𝑤𝑝 − Δ𝑤𝑓) − 𝑅

𝜙

𝐷
Δ∗𝜃𝑓 − 𝑅

(1−𝜙)𝜀

𝐷
Δ∗𝜃𝑝 = 0,

𝑢𝑖,𝑖
𝑝 = 0,

𝜎𝜉𝑠𝜃,𝑡
𝑠 = Γ𝑠Δ𝜃𝑠 + 𝑆1(𝜃

𝑓 − 𝜃𝑠) + 𝑆2(𝜃
𝑝 − 𝜃𝑠),

𝜎𝜃,𝑡
𝑓

= 𝑅𝑤𝑓 + Δ𝜃𝑓 + 𝐻(𝜃𝑝 − 𝜃𝑓) + 𝑆1(𝜃
𝑠 − 𝜃𝑓),

𝜎𝜉𝑝𝜃,𝑡
𝑝 = 𝑅𝐿𝑝𝑤𝑝 + Γ𝑝Δ𝜃𝑝 + 𝐻(𝜃𝑓 − 𝜃𝑝) + 𝑆2(𝜃

𝑠 − 𝜃𝑝),

 (5) 
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where Δ∗ = ∂2/ ∂𝑥2 + ∂2/ ∂𝑦2, is the horizontal Laplacian. Then we  employ the normal modes to solve (5), cf. 

Chandrasekhar [36], with the representations for wf, wp, θf, θp and 𝜃𝑠 in the form of 

 

𝜃𝑓 = Θ𝑓(𝑧)𝑓(𝑥, 𝑦),        𝜃𝑝 = Θ𝑝(𝑧)𝑓(𝑥, 𝑦),        𝜃𝑠 = Θ𝑠(𝑧)𝑓(𝑥, 𝑦), 
 

𝑤𝑓 = 𝑊𝑓(𝑧)𝑓(𝑥, 𝑦),        𝑤𝑝 = 𝑊𝑝(𝑧)𝑓(𝑥, 𝑦) 

where 𝑓 is the horizontal plan form, which satisfies Δ∗𝑓 = −𝑎2𝑓, 𝑎 is a wavenumber. Then, allow 𝑊𝑓 ,𝑊𝑝, Θ𝑓 , Θ𝑝  and 
Θ𝑠 to be composed of sin𝑛𝜋𝑧 for 𝑛 ∈ 𝑁 which satisfies the boundary conditions equation (4). The system (5) may be 
written in the form  

[
 
 
 
 
 
 −(Λℎ∗ + 𝜒Λ) 𝜒Λ 𝑅

𝜙

𝐷
𝑎2 𝑅

(1−𝜙)𝜀

𝐷
𝑎2 0

𝜒Λ −(�̂�Λ𝑘∗ + 𝜒Λ) 𝑅
𝜙

𝐷
𝑎2 𝑅

(1−𝜙)𝜀

𝐷
𝑎2 0

0 0 −𝑆1 −𝑆2 𝜉𝑆𝜎 + Γ𝑆Λ + 𝑆1 + 𝑆2

−𝑅 0 𝜎 + Λ + 𝐻 + 𝑆1 −𝐻 −𝑆1

0 −𝐿𝑝𝑅 −𝐻 𝜉𝑝𝜎 + Γ𝑝Λ + 𝐻 + 𝑆2 −𝑆2 ]
 
 
 
 
 
 

[
 
 
 
 
𝑊𝑓

𝑊𝑝

Θ𝑓

Θ𝑝

Θ𝑠 ]
 
 
 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

,         (6)                         

 

where Λ = 𝑛2𝜋2 + 𝑎2,   Λℎ
∗ = 𝑛2𝜋2 + ℎ∗𝑎2   and   Λ𝑘

∗ = 𝑛2𝜋2 + 𝑘∗𝑎2. Then, one may consider the following two cases.  

 3.1 Stationary convection 

Substituting (𝜎 = 0) in equation (6) and setting the determinant of the matrix to zero, one may show 

Rsta
2 =

DΛ[P0A1+P0A2]

a2[ϕ(P2B3−P1B1)+(1−ϕ)ε(P1B2−P2B4)]
.              (7) 

With the coefficients 𝑃0, 𝑃1, 𝑃2, , 𝐴1, 𝐴2 , 𝐵1, 𝐵2 , 𝐵3,  and 𝐵4 given by  

𝑃0 = 𝜒2Λ2 − ((Λℎ∗ + 𝜒Λ)(�̂�Λ𝑘∗ + 𝜒Λ)) 

𝑃1 = 2𝜒Λ + Λℎ∗  

𝑃2 = 2𝜒Λ + �̂�Λ𝑘∗  

𝐴1 = 2𝑆1𝑆2𝐻 + 𝑆2
2(Λ + 𝐻 + 𝑆1) + 𝐻2(Γ𝑠Λ + 𝑆1 + 𝑆2), 

𝐴2 = (Γ𝑝Λ + 𝐻 + 𝑆2)(𝑆1
2 − (Λ + 𝐻 + 𝑆1)(Γ𝑠Λ + 𝑆1 + 𝑆2)), 

𝐵1 = 𝑆1𝑆2𝐿𝑝 + 𝐿𝑝𝐻(Γ𝑠Λ + 𝑆1 + 𝑆2), 

𝐵2 = 𝑆1
2𝐿𝑝 − 𝐿𝑝(Λ + 𝐻 + 𝑆1)(Γ𝑠Λ + 𝑆1 + 𝑆2), 

𝐵3 = (𝑆2
2 − (Γ𝑠Λ + 𝑆1 + 𝑆2)(Γ𝑝Λ + 𝐻 + 𝑆2), 

𝐵4 = 𝑆1𝑆2 + 𝐻(Γ𝑠Λ + 𝑆1 + 𝑆2). 

 

3.2 Oscillatory convection 

In this section the instability is considered by oscillatory convection. Put 𝜎 = 𝑖𝜎𝐼  into equation (6), where 𝜎𝐼 ∈ ℝ. 
After solving the determinant equation, one can obtain 

𝑅𝑜𝑠
2 =

𝐷Λ[𝑃0(ℎ1+ℎ2+ℎ3)]

−𝑎2[𝑃1𝐿𝑝𝜉𝑠(1−𝜙)𝜀+𝑃2𝜙𝜉𝑠𝜉𝑝]
. (8) 

where ℎ1, ℎ2 and ℎ3 are the coefficients as given   
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ℎ1 = 𝜉𝑠(Γ𝑝Λ + 𝐻 + 𝑆2), 

ℎ2 = 𝜉𝑝(Γ𝑠Λ + 𝑆1 + 𝑆2), 

ℎ3 = 𝜉𝑠𝜉𝑝(Λ + 𝐻 + 𝑆1). 

Numerical method are used to find the stationary and oscillatory convection threshold, respectively, by minimizing 
𝑅2 in equations (8) and (9) over 𝑎2. The numerical results are presented in the next section.  

4. Numerical results 

       In the present analysis, we study numerically system (2) to compute the critical Rayleigh number for stationary 
convection equation(7) and oscillatory convection equation (8), for free-free boundary condition, by using Matlab 
routines. All numerical results are obtained by varying the number of ℎ∗, 𝑘∗, �̂� and for different values of the 
porosity modified interaction coefficients 𝑆1 and 𝑆2. The parameters Γ𝑠, Γ𝑝, 𝐿𝑝, 𝜀, 𝜙 and 𝐻 for all cases we have 

studied are fixed at 0.1, 0.1, 15, 0.00001, 0.9999 and 0.00001, respectively. The effect of both anisotropy and 
thermal non-equilibrium on the onset of convection is investigated. It is important to note that the Critical Rayleigh 
number for oscillatory convection in the presence of anisotropy permeability, in all cases, the instability manifests 
as stationary convection.  

       In Table (1), and in Figures(1) and (2) taking �̂� = 0.1,0.5,1,2 and 10 with fixed values 𝑆1 = 0.01 and 𝑆2 = 0.1, 
and allowing ℎ∗ and 𝑘∗ to vary between 0.1 and 10. Here we find that as ℎ∗ increases with 𝑘∗ fixed, the critical 
Rayleigh number increases and the critical wavenumber decreases. For example, for fixed values of 𝑘∗, �̂� = 10 and 
ℎ∗ = 0.1 see from Table (1) that the critical Rayleigh number 𝑅𝑎 = 46.0297 and the critical wavenumber is 
𝑎𝑠𝑡𝑎 = 5.134487, whereas when ℎ∗ = 10 for the same parameters 𝑘∗ = 1 and �̂� = 10, the critical Rayleigh number 
is 𝑅𝑎 = 56.130845 and the critical wavenumber is 𝑎𝑠𝑡𝑎 = 4.6605867. Therefore, the effect of increasing the 
horizontal macro permeability to the vertical macro permeability ℎ∗ is seen to increas the critical Rayleigh number 

and thus the convection occures more easily and the layer more stable as shown in Figures(1). Furthermore, the 
critical wavenumber decreases which corresponds to the wider convection cells. Figures (2), shows when the 
horizontal micro permeability to the vertical micro permeability 𝑘∗ increases as well as �̂� increases, the critical 
Rayleigh number ,𝑅𝑎, increases. This indicates that the system became more stable. It is also interesting to note that 
when ℎ∗ = 𝑘∗ the 𝑅𝑎 increases and 𝑎𝑠𝑡𝑎  decreases as �̂� increases. Note that the critical Rayleigh number became 
significantly higher, 𝑅𝑎 = 89.75967, at ℎ∗ = 𝑘∗ = 10 and the critical wave number became smaller, 𝑎𝑠𝑡𝑎 = 1.798598, 

which leads to stabilizer  the system and the convection cells became wider as seen in Table (1). 

       In Figures (3) and (4) and Table (2), we show how critical Rayleigh number, 𝑅𝑎, respectively, varies with the 
porosity modified interaction coefficients 𝑆1 and 𝑆2 for various value of 𝑘∗ = ℎ∗. We observe that as ℎ∗ and 𝑘∗ 
increases from 𝑘∗ = ℎ∗ = 1 to 𝑘∗ = ℎ∗ = 10 and for fixed value of 𝑆1 and the critical Rayleigh number , 𝑅𝑎, increases. 
This means when the horizontal macro permeability to the vertical macro permeability ℎ∗ and the horizontal micro 
permeability to the vertical micro permeability 𝑘∗ increases, the stability becomes more pronounce. For example, 
for 𝑘∗ = ℎ∗ = 1 and fixed values of 𝑆1 = 0.1 and 𝑆2 = 2 we see from Tabel (2) that the critical Rayleigh number is 
𝑅𝑎 = 347.9993 and the critical wavenumber is 𝑎𝑠𝑡𝑎 = 5.55105, whereas when 𝑘∗ = ℎ∗ = 10, 𝑆1 = 0.1 and 𝑆2 = 2 the 
critical Rayleigh number is 𝑅𝑎 = 1363.6499 and the critical wavenumber is 𝑎𝑠𝑡𝑎 = 1.421105. 

       Figures (3) and (4) and Table (3) indicate that in interesting the porosity modified interaction coefficients 𝑆2 for 
a fixed value of ℎ∗ and 𝑘∗ has the effect of making the system more stable wheres an opposite behavior is noticed 
when 𝑆1 increases, for fixed values of ℎ∗ and 𝑘∗  

      In Figures (5) and (6), the critical Ra Rayleigh yleigh number , 𝑅𝑎, variation as 𝑆1 and 𝑆2 varies, respectively, in 
the range 0.1-1 for 𝑘∗ = 10 and various values of ℎ∗. It is observe that keeping the micro permeability 𝑘∗ the same, 

increasing the horizontal micro permeability to the vertical micro permeability strongly increases the critical 
Rayleigh number as 𝑆2 increases as shown in Figure (5). The opposite behaviour is seen when 𝑆1 increases as shown 
in Figure (6). This indicates that increasing ℎ∗ with 𝑆1 is to hasten the onset of convection. For example, from Table 
(2), taking 𝑆2 = 0.1 and 𝑘∗ = 10, it is found that the value of  𝑅𝑎 = 57.2762, 𝑎𝑠𝑡𝑎 = 2.5259 when ℎ∗ = 1 and 𝑆1 = 1, 
whereas when ℎ∗ = 10 and 𝑆1 = 2 the value of 𝑅𝑎 = 48.0992, 𝑎𝑠𝑡𝑎 = 2.7559. In addition, for 𝑆1 = 0.1 and 𝐾∗ = 10, 
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we have 𝑅𝑎 = 322.1577, 𝑎𝑠𝑡𝑎 = 2.4911 when ℎ∗ = 1 and 𝑆2 = 1. From Figures (7) and (8) and from Table (2) we 
show the behaviour of 𝑅𝑎 versus 𝑆1 and 𝑆2, respectively, for a fixed value of ℎ∗ = 10 and 𝑘∗ = 1 increasing to 
𝑘∗ = 10. We note that as the horizontal micro permeability to the vertical micro permeability 𝑘∗ increases, the 
critical Rayleigh number , 𝑅𝑎, increases. This indicates that keeping the macro permeability ℎ∗ the same, increasing 
𝑘∗ delay the onset of convection. The effect of increasing 𝑆1 for a fixed value of 𝑆2, and increasing 𝑆2 for a fixed value 
of 𝑆1, on the onset of convection is qualitatively similar to that show, respectively, in Figures (5) and (6). 

       In Figures (9) and (10), we fixed ℎ∗ = 10 and 𝑘∗ = 0.1 and show the critical Rayleigh number , 𝑅𝑎, varation as 𝑆1 
and 𝑆2 varies, for various interaction coffeccient 𝜒 = 0.1 to 𝜒 = 0.9. The same trend as already reported, in Figures 
(7) and (8), is again found that with fixed values of 𝑆2 and 𝜒, once 𝑆1 increased will advance the onset of convection. 
However, when 𝑆2 increased with fixed values of 𝑆1, the critical Rayleigh number , 𝑅𝑎, increases and it becomes more 

difficult for convection to occur. 

      Table (3), presents details of 𝑅𝑎 and 𝑎𝑠𝑡𝑎  varation as 𝑆1 and 𝑆2 increases and 𝜒 taking the values 0.1 and 0.9 when 
𝑆1 = 𝑆2 = 0.1 increasing to 𝑆1 = 𝑆2 = 10, the critical Rayleigh number , 𝑅𝑎, increases and the critical wavenumber 
decreases but relatively slowly as 𝜒 increase from 0.1 to 0.9. Thus, the interaction coefficient 𝜒 and the porosity 
modified interaction coefficient 𝑆1 and 𝑆2 play a major role on the stability characteristics of the system.  

                    Fig. 1- Critical  values of ,𝐑𝐚 ,                                                                 Fig. 2- Critical  values of ,𝐑𝐚 

 aginst 𝐡∗ with �̂�  = 𝟎. 𝟏, increasing  to  �̂�  = 𝟏𝟎                          aginst  𝒌∗  with �̂�  = 𝟎. 𝟏, increasing  to  �̂�  = 𝟏𝟎 

 

Table 1 – Critical Rayleigh numbers and wave number, aginst  𝐡∗, 𝐤∗𝐚𝐧𝐝   �̂�, for 

𝛆 = 𝟎. 𝟎𝟎𝟎𝟎𝟏, 𝛟 = 𝟎. 𝟗𝟗𝟗𝟗, 𝛘 = 𝟎. 𝟏, 𝚪𝐬 = 𝟎. 𝟏, 𝚪𝐩 = 𝟎. 𝟏, 𝐋𝐩 = 𝟏𝟓, 𝐒𝟏 = 𝟎. 𝟎𝟏, 𝐒𝟐 = 𝟎. 𝟏, 𝐇 = 𝟎. 𝟎𝟎𝟎𝟎𝟏. 

𝒉∗ 𝒌∗ �̂� 𝑹𝒂 𝒂𝒔𝒕𝒂 
0.1 1 0.1 44.8954 5.0061 
2 1 0.1 45.5109 4.9727 
1 0.1 0.1 43.4108 5.5998 
1 2 0.1 47.0077 4.5163 
1 1 0.1 45.1902 4.9898 

0.1 1 0.5 45.5642 5.0814 

2 1 0.5 46.9500 5.0081 
1 0.1 0.5 42.3791 6.8396 
1 2 0.5 49.8623 4.1667 
1 1 0.5 46.2243 5.0458 

0.1 1 10 46.0297 5.1345 

10 1 10 56.1308 4.6606 
1 0.1 10 41.8479 8.5853 
1 10 10 75.4490 2.0384 

10 10 10 89.7597 1.7986 
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         Fig. 3- Critical  values of ,𝐑𝐚 ,                                                                                 Fig. 4- Critical  values of ,𝐑𝐚 ,  

aginst 𝐒𝟏 , 𝐡∗  = 𝟏  ,  increasing  to  𝐡∗  = 𝟏𝟎                                            aginst 𝐒𝟏 , 𝐤∗ = 𝟏,  increasing  to 𝐤∗ = 𝟏𝟎 

             Fig. 5- Critical  values of ,𝐑𝐚 ,                                                                           Fig. 6- Critical  values of ,𝐑𝐚 ,  

 aginst 𝐒𝟏 , 𝐡∗ = 𝐤∗ = 𝟏,  ncreasing to  𝐡∗ = 𝐤∗ = 𝟏𝟎                              aginst 𝐒𝟐 ,  𝐡∗ = 𝟏,  increasing  to 𝐡∗ = 𝟏𝟎 

                Fig. 7- Critical  values of ,𝐑𝐚 ,                                                                           Fig. 8- Critical  values of ,𝐑𝐚 ,  

 aginst 𝐒𝟐 ,  𝐤∗ = 𝟏,  increasing  to  𝐤∗ = 𝟏𝟎                                 aginst 𝐒𝟐 ,  𝐡∗ = 𝐤∗ = 𝟏,   increasing to 𝐡∗ = 𝐤∗ = 𝟏𝟎 
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Table 2 - Critical Rayleigh numbers and wave number, aginst  𝒉∗  𝒌∗  𝑺𝟏, 𝑺𝟐, for      𝜺 = 𝟎. 𝟎𝟎𝟎𝟎𝟏, 𝝓 = 𝟎. 𝟗𝟗𝟗𝟗, 
 𝝌 = 𝟏, 𝚪𝒔 = 𝟎. 𝟏, 𝚪𝒑 = 𝟎. 𝟏, 𝑳𝒑 = 𝟏𝟓, �̂� = 𝟐, 𝑯 = 𝟎. 𝟎𝟎𝟎𝟎𝟏. 

𝒉∗ 𝒌∗ 𝑺𝟏 𝑺𝟐 𝑹𝒂 𝒂 
1 1 1 0.1 38.2805 4.7950 
1 1 2 0.1 35.1126 4.8010 
1 1 0.1 1 161.6976 5.7807 
1 1 0.1 2 347.9993 5.5510 

10 10 1 0.1 54.5551 2.6132 
10 10 2 0.1 48.0992 2.7560 
10 10 0.1 1 612.5364 1.4963 
10 10 0.1 2 1363.6499 1.4211 
1 10 1 0.1 57.2762 2.5259 
1 10 10 0.1 48.7789 2.5675 

10 1 1 0.1 33.2996 5.2134 
10 1 10 0.1 21.4513 6.2194 
1 10 0.1 1 322.1577 2.4911 
1 10 0.1 10 4118.2939 2.2338 

10 1 0.1 1 353.6250 3.4807 
10 1 0.1 10 4361.9037 3.1430 

 

                      Fig. 9- Critical  values of ,𝐑𝐚 ,                                                             Fig. 10- Critical  values of ,𝐑𝐚 , 

                     𝝌 = 𝟎. 𝟏 increasing to  𝝌 = 𝟎. 𝟗                                                        𝝌 = 𝟎. 𝟏 increasing to  𝝌 = 𝟎. 𝟗 

 

Table 3 - Critical Rayleigh numbers and wave number, aginst  .𝑺𝟏  𝑺𝟐, 𝝌, for  
𝜺 = 𝟎. 𝟎𝟎𝟎𝟎𝟏, 𝝓 = 𝟎. 𝟗𝟗𝟗𝟗,   𝚪𝒔 = 𝟎. 𝟏, 𝚪𝒑 = 𝟎. 𝟏, 𝑳𝒑 = 𝟏𝟓, �̂� = 𝟐,   𝒉∗ = 𝟏𝟎, 𝒌∗ = 𝟎. 𝟏,   𝑯 = 𝟎. 𝟎𝟎𝟎𝟎𝟏. 

𝑺𝟏 𝑺𝟐 𝝌 𝑹𝒂 𝒂 
0.1 0.1 0.1 43.0294 7.7427 
10 0.1 0.1 12.3711 11.0881 
0.1 10 0.1 3558.1226 5.6885 
10 10 0.1 91.7649 10.4634 
0.1 0.1 0.9 45.6435 6.0105 
10 0.1 0.9 18.0277 7.7772 
0.1 10 0.9 3734.3842 4.2977 
10 10 0.9 124.1974 7.4850 
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5. Conclusion 

     The stability of the Darcy flow in a bidispersive  porous medium is analysed, under the assumption that the fluid 
phase and solid phase of the porous medium are in local thermal non-equilibrium. For all situations, the convection 
instability threshold for stationary is show to be below the oscillatory convection. 

     Our analysis emphasied that the effect of macro permeabilities ℎ∗ and the micro permeabilities 𝑘∗ when ℎ∗ = 𝑘∗ 
as �̂� increase, for fixed values of 𝑆1 and 𝑆2, is to stabilize the system. It is also very noticeable that the convection 
sets in earlier for small value of 𝑘∗ < 1   and large value of �̂�. However, as 𝑘∗ increase, for a fixed value of ℎ∗ and �̂�, 
𝑅𝑠𝑡𝑎 increases. The same qualitative behavior is found when �̂� and 𝑘∗ are fixed and ℎ∗ increase. This indicates that 
the effect of the measure between the permeability in the macro phase and micro phase �̂�, the horizontal macro 
permeability to the vertical macro permeability ℎ∗, and the horizontal micro permeability to the vertical micro 
permeability 𝑘∗  is to enhance the stability of the system. It may be argued from the results that the onset of thermal 
convection is significantly influenced by the porosity modified interaction cofficients 𝑆1and 𝑆1. Increasing the value 
of  𝑆2, for fixed values of ℎ∗ and 𝑘∗, and for fixed value of interaction coefficient is to increase, the critical Rayleigh 
number. The effects of increasing 𝑆1 were seen to advance the onset of convection. 
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