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A B S T R A C T 

In this paper, we use the cubic B-splines method to solve the singular perturbed delay partial 
differential equations where the propagation term is multiplied by a small perturbation 
coefficient. In general, solutions to this type of problem have a boundary layer. The accuracy 
of the method was tested with two numerical examples and the results were compared with 
exact solutions and other methods. 
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1.1. Introduction 

Parabolic convection-diffusion equations are singularly emerging in various sciences and engineering divisions. 
Fluid flows are common examples and appear in related topics, such as water quality concerns in river networks, 
simulation of the extraction of oil from underground wells, problems with convective heat transport typically, these 
forms of problems have boundary layers and their highest spatial derivative is multiplied by an arbitrarily tiny one, 
to the   𝜀 parameter [14]. 

  It is hard to solve these problems numerically by using classical problems. Finite-difference /element / volume on a uniform mesh [1]. 

Numerical methods for parabolic partial differential equations that are singularly perturbed Partial differential equations (PDEs) were 

extensively studied by several authors (without the time for the delay) many scholars have thoroughly researched it. The theory and the 

numerical solution of uniquely disturbed DPDEs, however, are still at the primary level. We can find only a few papers in recent years 
concerned with the numerical solution of use singularly PDEs [2]. Problems defined by differential equations with 

https://doi.org/10.29304/jqcm.2021.13.3.821


                        Zahraa Salman Bloshi and  Bushra A. Taha.                                                                     Vol.13(3) 2021 , pp  Math.   1–12                                         2

 

large or small parameters become more complex, and thus it is normal to use them in their study methods 
asymptotic. The asymptotic analysis for differential operators, however, has an established theory primarily for the 
case of frequent disturbances, if with regard to the undisturbed operator, the disruptions bear a subordinate 
character. In some issues, the disturbances are very operational over very narrow regions in which the dependent 
variable is subjected to very rapid such narrow regions also follow the limits of the domain. of interest, because of 
the fact that the small parameter multiplies the highest derivative. Accordingly, these are generally referred to in 
fluid mechanics as boundary layers, solid mechanics as edge layers, electrical applications as skin layers, fluid, and 
solid mechanics as shock layers, quantum mechanics as transition points, and mathematics as Stokes lines and 
surfaces. The theory of fluid mechanics was diverging in two mutually exclusive directions by the end of the 19th 
century: theoretical hydrodynamics and hydraulics. The former developed and reached a high degree of 
completeness from Euler equations for in viscid flows. Unfortunately, the findings obtained by using this so-called 
classical science were in stark contrast to the experimental findings. The famous Paradox of d’Alembert is an 
illustrative case. This prompted the researchers to establish their own hydraulics analytical science, which was 
focused primarily on a large number of experimental results. Prandtl showed that a body’s flow can be handled by 
splitting it into two regions: a very thin layer near the body (which he called the boundary layer) where frictional 
effects are prominent, and the rest of the outside area Prandtl stressed the significance of viscous flows on the basis 
of this theory, without delving into the statistical complexities involved. The foundation stone for modern fluid 
dynamics has been this boundary-layer theory [10][15].  

Thus, at the third International Congress of Mathematicians in Heidelberg in 1904, singulardisturbances were 
born. The seven-page study by Prandtl was included in the conference proceedings[3]. The term singular 
disturbances, however, was first used in the work of  Friedrichs and Wasow [4] , a paper that followed a popular 
seminar on nonlinear vibrations at New York University. The solution to problems of singular disruption usually 
involves layers while Prandtl introduced the terminology boundary layer at this meeting, Wasow’s important work 
achieved much greater generality [5]. Two main approaches to addressing singular disturbance are problems 
numerical analysis and asymptotic analysis. Since the targets and the groups of the problem are quite different, 
there has not been much interaction between these strategies. The numerical analysis seeks to provide quantitative 
information on a specific problem, while asymptotic analysis seeks to gain insight into a family of problems’ 
qualitative behavior, any specific family member details. Numerical approaches are designed for a wide range of 
issues and seek to mitigate problem solver demands. Asymptotic approaches treat relatively narrow problems and 
require a certain  in terpretation of the behavior of the solution singular disturbances have been  flourishing since 
the mid-1960s. The topic is now usually part of the training of graduate students in applied mathematics and in 
many fields of engineering. In this field, numerous good textbooks have appeared, either dealing with asymptotic 
approaches or numerical ones. Some of the books deal with the two. The academic papers on singularly disturbed 
partial differential equations are included in this survey. Most of the analysis has begun to appear in the singularly 
perturbed  PDEs since the late 1980s . From 1980 onwards, according to their appearance in the different standard 
international journals/conference proceedings, we gave the survey (chronologically). Nevertheless, refs are some of 
the important papers (which appeared before 1980) that are either connected to singularly perturbed  PDEs or 
singularly perturbed  ODEs but acted as a basis for PDEs [6,7,8,9],[17]. 

The following are considered singularly perturbed delay parabolic initial-boundary-value problems [11]: 

   

   

 

 

2

2

( , ) ( , )
( , ) ( , ) ( , ) ( , ) ( , ), ( , ) 0,1 0,

( , ) ( , ), ( , ) 0,1 ,0 (1)

(0, ) ( ), 0,

(1, ) ( ), 0,

T

R

u x t u x t
a x t u x t b x t u x t f x t x t T

t x

u x t x t x t

u t t t T

u t t t T

 

 





 
      

 

    

  

  

  

where   0 1     is perturbed singular parameter, ( , )f x t , ( , ), ( , ), ( , ), ( )Tx t a x t b x t t   and ( )R t   are 
assumed to be sufficiently smooth and bounded  and satisfy; 

( , ) 0, ( , ) 0a x t b x t      . 
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1.2. Cubic B-spline Method 

B-spline functions can be represented by the sequence of their nodes either uniformly or asymmetrically. The B-
spline curve is uniform if the node spacing between all nodes is equal on the real line. If the curve is uniform, then it 
will be the active portion of the entire foundation. Functions form the same shape over each interval. To develop an 
assembly method based on the cubic B-spline functions of determination of impact strength [8],[9],[13]. 

We define the uniform cubic B-spline for 0,1,..., ,i N  

 

 

We consider a mesh  0 1 1... N Na x x x x b         as a uniform partition of the solution domain  by 

the knots ix  with 1 ,i i

b a
h x x

N



    0,1,..., .i N  

Table 1: Coefficient of extended cubic B-splines and its derivatives at knots ix   

 

 

 

 

 

 

 

 

Let  1 0 1 1, , ,.., NB B B B   and 3( ) span    . The functions   are linearly independent on [0, 1], thus

3( )  is   dimensional. Where 1 0 1 1 1, , ,.., , ,N N NB B B B B B    forms a basis over the region a x b  .  Each 

cubic B-spline covers four elements, so each element is covered by four cubic B-splines [16]. 

Now we define 
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

Where (t)iC  are unknown time-dependent quantities to be determined from the boundary conditions and 

collocation from the differential equation 

1.3. Description of the Numerical Method 

Applying the Taylor series to  Eq. 1 . We have 

2

2
( , ) ( , ) ( , ) ( , ) ( , ). (4)

u u u
a x t u x t b x t u x t f x t

t x t
 

   
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We get 

   
2

2
1 ( , t) ( , ) ( , ) ( , ) ( , ). (5)

u u
b x u x t a x t b x t f x t

t x
 

 
    

 
 

Denote the value at the representative mesh point   ( , )j np x t   by 

( , ) n

jU x t U  

The forward difference approximation for  

1

. (6)

n n

j ju uu

t t
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
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Substitute   jp u  in Eq. 5 . We have  

   
1 2

2
1 ( , ) ( ) ( ) ( , ) ( , ) ( , ). (7)

n n
n n

j j j j

p p
b x t p x p x a x t b x t f x t

t x
 

  
    

 
 

Substitute t k    , we have 
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We have 
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By using the value in Tabel 1. We have 
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For  j=0 
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  

  
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   
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We can see that the system is diagonally and hence nonsingular. So we can solve the system for  0 1, ,..., NC C C  and 

substitute into the boundary conditions (11) and (12) to obtain  1C   and 1NC      . 

1.4. Numerical Result 

We now consider tow numerical examples to illustrate the comparative performance of our method. All 
calculations are implemented by Maple (2018) . 

Example 1: Consider the following equation [11]: 

     

 

 

2
1

2
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(0, ) e , t 0, 2

(1, ) , 0, 2

x
t

t

t

u x t u x t
e u x t x t

t x

u x t e x t

u t

u t e t





 

 
  
 



 

 
     

 





   


 

  



 

The exact solution is: 

( , ) .

x
t

Tu x t e 

 
  
   

In Example 1, the accuracy of the method is measured by L   norm error defined as: 

( , ) ( , ) ,i i
i

L Max U x t u x t    

where, ( , )iU x t   the exact solution and ( , )iu x t  the numerical solution this problem. Table 2 shows the error 

when N= 64 and we compared it with other methods [2], [11] for different values of    .  We apply the scheme (10) 

to solve this problem for different values of N = 32, 64, and compare with the exact solution as shown in Fig. 1.  Figs. 
2 and 3 show that the numerical approximation by cubic B-spline method with exact solution. 
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Table 2: Comparison of the maximum absolute errors of B- spline method with the maximum absolute errors of 
others methods for Example 1. 

 

𝜀 

↓ N→ 

Cubic B-
spline 

64 

Modified 
BICM[12] 

64 

CUM [1] FPUM [1] 

 

64 256 64 256 

102
 1.942e-7 

 

3.287 4e  4.505e-3 6.696e-4 

 

4.505e-3 6.696e-4 

122
 1.01e-11 

 

3.287 4e  1.144e-2 1.161e-3 4.718e-3 8.212e-4 

142
 7.245e-15 

 

3.287 4e  2.642e-2 

 

3.1e-3 

 

4.718e-3 8.212e-4 

162
 8.204e-14 

 

3.287 4e  2.611e-2 

 

1.027e-2 

 

4.505e-3 8.212e-4 

182
 1.310e-12 

 

3.287 4e  1.021e-2 

 

2.607e-2 

 

4.505e-3 8.212e-4 

202
 1.647e-14 3.287 4e  2.664e-3 

 

2.64e-2 4.505e-3 8.212e-4 

 

 

  Fig. 1:  Comparison between exact solution and numerical approximations at 
210  and 0.01t   , 32,64N   

for Example 1. 
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Fig.2 : Exact solution for Example 1at 
210 .                                                   Fig.3 : Numerical solution forExample 1 at   

                                                                                                                          
210 , 0.01.t     

 

Example 2: Consider the following equation [11] 

 
 

   

22
3

2

1

1( , ) ( , )
( , ) ( , ) , ( , ) : 0 1,0 2

2

( , ) 0, , : 0 1, 0

(0, ) 0

(1, ) 0

xu x t u x t
u x t u x t t x t D x t

t x

u x t x t D x t

u t

u t

 



  
          

 



      




 



 

Since the exact solution of Example 2 is not known, to get the numerical precision of a solution and also to show 
the “uniform convergence of the proposed scheme,” we use a variant of the dual network principle to estimate the 
numerical errors and convergence rates. 

We then estimate the errors for different values of ,N and t   by 

,

, , 2 , /2 ,
N Nt

N t N t N t

D
E U U

     

where 
, ( , )N tU U x t   (at Eq.3), Parameter-uniformerrors are computed in the following way, 

, ,max .N t N tE E


   

The error value of the different values of is shown in Table 3. Table 4 shows a comparison of the maximum point 
errors of the B-spline method with another method [11] for different values for Example 2. The maximum point 
errors of the B-spline method for different values of N are shown in Fig. 4. 
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Table 3: The maximum point wise errors of numerical solutions for various values of   and N for Example 2. 

   N→   

𝛿   

↓ 

64 128     256 512 

0.02 1.2538e-13 6.6876e-13 4.10156e-12 3.317991e-10 

0.04 1.2800e-13 6.8267e-13 4.18702e-12 4.428035e-10 

0.06 1.3072e-13 6.9717e-13 4.27613e-12 5.878324e-10 

0.08 1.3356e-13 7.1234e-13 4.36905e-12 7.777987e-10 

 

Table 4 : Comparing the maximum point-wise errors of the B-spline method with other method for different 
values  for Example 2. 

      

  

 

ε   

↓ 

Cubic B-spline 

 

 

N=64 

A Fitted Numerov Method  [11] 

 

N=64 

 

N=128 

 

N=256 

 

N=512 

 

N=1024 

12
 4.96540896e-5 4.5965e-2 2.3365e-2 1.1780e-2  5.9146e-2 2.9635e-3 

22
 4.43491643e-6 4.8072e-2 2.4416e-2 1.2304e-2  6.1765e-3 3.0944e-3 

42
 5.37084066e-9 4.9092e-2 2.4914e-2 1.2550e-2 6.2989e-2 3.1553e-3 

62
 5.03931589e-9 4.9913e-2 2.5333e-2 1.2763e-2  6.4055e-3  3.2088e-3 

82
 5.00875691e-9 5.2462e-2 2.6615e-2 1.3405e2 6.7272e-3 3.3697e-3 

102
 4.86267825e-9 5.3429e-2 2.7108e-2 1.3653e-2  6.8512e-3 3.4318e-3 

122
 

4.53412045e-9 5.3723e-2 2.7268e-2 1.3735e-2 6.8929e-2  3.4529e-3 

142
 

4.37377829e-9 1.5475e-2 1.6134e-1 7.8680e-2  2.5410e-2 6.6458e-3 

162
 

4.31989273e-9 1.7530e-1 2.6093e-1 2.6474e-1 1.6807e-1 7.8391e-1 

182
 

4.29992135e-9 1.7554e-2 2.6692e-2 3.0979e-1 3.0140e-1 2.6136e-1  

202
 

4.19992849e-9 1.7554e-1 2.6693e-1 3.1039e-1 3.1017e-1 3.0689e-1 
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Fig.  4: The Maximum errors for the B-spline method for different values of N. 

1.5. Conclusions 

 The cubic B-spline method is developed for the approximate solution of the singularly perturbed delay partial 
differential equations in this paper. Two examples are considered for numerical illustration of the method. This 
method is shown to be convergent methods which are better than other methods. The numerical results are 
presented in Tables (2-4) and compared with the exact solutions and other methods 

The obtained numerical results show that the proposed method maintain a high accuracy which makes them are 
very encouraging for dealing with the solution of this type of singularly perturbed delay partial differential 
equations. 
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