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A B S T R A C T 

Given the financial challenges facing the oil and gas industry, the value of the information is 
considered relatively high; therefore, data science has been an alternative compensating tool. 
This study aimed to find an optimal neural network topology that provides an ideal data 
solution by studying neural network topology. Therefore, we trained different neural 
networks topologies in terms of the number of hidden neurons and layers. Volve oil field data 
is used in this study to predict the compressional sonic wave travel time. Optimal Neural 
Network topology found using five hidden layers and five hidden neurons while using a single 
layer with different numbers of hidden neurons was ineffective. The highest training and 
testing accuracy with a single hidden layer found 0.94 and 0.914, respectively. In contrast, it 
was found 0.947 and 0.934 with 50 hidden neurons and five hidden layers. Yet, increasing the 
number of hidden layers and hidden neurons is found to cause overfitting; therefore, only an 
optimal topology is a critical factor. 

MSC. 41A25; 41A35; 41A36,, 

DOI : https://doi.org/10.29304/jqcm.2021.13.3.855

1. Introduction  

For centuries, petroleum has been the world's most significant energy source; however, oil and gas prices fluctuations 

adversely affected capital investment. Therefore, the petroleum industry is shifting towards the fourth paradigm shift, 

which is data science [1]. Data science engagement has a significant positive impact on economics, that was adversely 

affected by the high value of information due to market demand challenges.  

One of the most critical parameters in the oil industry is the compressional delta-t travel time (P-wave sonic log). The last is 

used to obtain effective porosity, water saturation, lithology, and seismic correlation [2]. However, obtaining this 

information is subjected to different challenges, such as the wellbore conditions and the value of information [2]. 

Therefore, artificial intelligence (AI) played a significant role in generating synthetic data with least capital and time 

investment.  
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Artificial neural networks (ANNs) have been applied in several industrial fields [3, 4, 5], including the oil and gas industry, 

due to their ability to represent the high dimensional data to discover the complex non-linear features between inputs and 

the desired output such as: real-time quality monitoring in the oil refinery [6], logging predictions [7], inter-well 

connectivity between producers and injectors [8], drilling problems [9], etc. 

Multi-layer perceptron (MLP) is one of the fundamental types in artificial neural networks. MLP has three or more artificial 

layers of neurons (an input layer, hidden layer/layers, and an output layer) [10, 11]. Where neurons are connected by 

synapsis and the strength of the connection is defined by the synaptic weight. A high accuracy MLP model is found with 

the optimum weights. The last is optimized by the process of Backpropagation, which attempts to minimize the Mean 

Square Error (MSE).        

MLP is a regression analysis tool that effectively can approximating functions in high-dimensional spaces. This ability 

come from the nonlinearity embedded in the neurons. Furthermore, Unlike the conventional linear regression algorithms, 

MLPs do not suffer from dependencies between the input dimensionality and the convergence rate [12]. In this paper, a 

Deep MLP regression, ANN with multiple layers, has been used to build a P-wave sonic log regression model considering 

high dimensional input of different well logs, which are: Gama Ray (GR), Caliper (CALI), Resistivity(RT), Neutron 

Porosity (NPHI), Bulk Density (RHOB), Density correction (DRHO), Measured Depth (MD), True Vertical Depth (TVD), 

and Photoelectric factor (PEF). 

2. Related Work 

Recently, ANN had a remarkable ability to determine nonlinearities between inputs and outputs and effectively predict 

various real-world properties. In [13], an ANN was applied to predict the P-wave sonic logs based on three logs (Porosity, 

Density, Gamma-ray). The authors compared their model with the multiple linear regression model MLR, and they 

obtained an excellent output. 

In addition, a type of feedforward ANN, called a supervised Probability Neural Network (PNN), was utilized to predict the 

P-wave logs based on three basic well logs: Density Gamma-ray, and Resistivity logs [14]. Those three logs were used as 

inputs vectors to predict the P-wave log. The authors claimed that using PNN gave the best accuracy after comparing it 

with the traditional methods such as Gardner and Faust method. 

Besides P-wave logs, other authors tested several shear sonic wave travel time (S-wave sonic log) models: including 

support vector machine, regression tree, linear regression, and gaussian process regression. And the Gaussian process 

regression performed better than the simple linear regression model [15]. 

Furthermore, different S-wave sonic log prediction models were deployed based on five other machine learning methods 

[16]: linear regression, random forest, support vector machine, and XGBoost, and ANN. The result concluded that 

XGBoost surpassed the rest of the models in predicting the S-wave logs.   

In this paper, MLP is used for P-wave sonic log prediction. Our model has statistically been built based on nine input 

features: Gama Ray, Caliper, Resistivity, Neutron Porosity, Bulk Density, Density correction, Measured Depth, True 

Vertical Depth, and Photoelectric factor as shown in Fig. 2. Furthermore, to obtain a better correlation coefficient value, we 

have tested different MLP topologies. 

3. Methodology 

Descriptive and predictive models were performed in series after the data mining process. The descriptive analysis 

enhanced the predictive model by utilizing the key performance features as an input. Sequentially, the predictive models 

were generated later for different ANN topologies. 

In 2018, a vast amount of data of Volve field was disclosed to the public; thus, it was an excellent opportunity for 

researchers, IT companies, and universities to utilize this data to deal with several oil issues. The Volve field is located in 

the Norwegian North Sea, with a field life of 2008-2016, produced 63 million barrels from the Hugin Formation [17].  

The Volve field is a small dome-shaped structure and was formed by the collapse of adjacent salt ridges during the Middle 

Jurassic age. Faults as a consequence of salt tectonics are the dominant structures in this field. The structure is heavily 

faulted, especially in the western area, most probably caused by the influence of regional extension. The thickness of the 

reservoir varied as of  20 m at the top of the crest to 100 m on the structure flanks [18].   
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Since this study aims to find the best topology of the P-sonic log ANN predictive model, it is important to note that the 

input and the output parameters shares a hidden physics. Therefore, ANN is trained to understand the hidden physics in a 

complex, vast amount of data. At the same time, the degree of ANN topology complexity is to be linked to the data physics 

complexity.  

 

3.1 Dataset Mining 

In this section, data was cleaned by removing the well logs available for less than ten wells and dropping wells with less 

than 12 available logs, along with dropping rows with empty records. 

Table (1) shows the seven wells' data count within the dataset plus the available well logs. We utilized the second well as 

testing well for later evaluation of our model, and thus, it has not been embedded with the training dataset. 

TABLE 1: NEURAL NETWORKS DATA INPUT SUMMARY 

Wells Rows Count Logs 

'15/9-F-1' 9822 'MD (M)' 

'TVD (M)' 

'CALI (inches)' 

'DRHO (g/cm3)' 

'DT (us/ft)' 

'GR (API)' 

'NPHI (v/v)' 

'RHOB (g/cm3)' 

'RT (ohm.m)' 

'PEF (b/elec)' 

'15/9-F-1 B' (Testing) 3262 

'15/9-F-11 A' 11374 

'15/9-F-11 T2' 19433 

'15/9-F-15' 7146 

'15/9-F-15 A' 9361 

'15/9-F-1 A' 10222 

 

On the other hand, the dataset contains different physical features with various scales, e.g., “MD” values were found within 

thousands while the “NPHI” is on decimals value (refer to Fig. 2). Thus, before determining the inputs and output for our 

model, the dataset must be transformed. Therefore, we used the Yeo Johnson Power Transformation method, whereas the 

power parameter lambda (λ) is changed until the best approximation of a Gaussian likely distribution is reached [19]. 

 

𝜓(𝜆, 𝑦)

{
 
 

 
 ((𝑦 + 1)

𝜆 − 1) 𝜆⁄                                 𝑖𝑓 𝜆 ≠ 0, 𝑦 ≥ 0

log(𝑦 + 1)                                              𝑖𝑓 𝜆 = 0, 𝑦 ≥ 0

−[(−𝑦 + 1)2−𝜆 − 1)] ∕ (2 − 𝜆)      𝑖𝑓 𝜆 ≠ 2, y < 0

− log(−𝑦 + 1)                                      𝑖𝑓 𝜆 = 2, 𝑦 < 0
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Regarding the data preparation, outliers of our cleaned datasets were removed using the one-class support vectors machine 

[20]; thus, 52 outliers were removed from the dataset. According to [21], One-Class SVM distances all the data points 

from their origin, maximizing the distance from this hyperplane. Then it defines the data's density probability across the 

hyperplane (returns +1 for the included data within the hyperplane and −1 for data located outside). The normalized data 

made feature extraction easier, especially for the given well logs: “NPHI” and “RT” which were hard to distinguish 

without data transformation. Once data is normalized, the data is partitioned in the following fashion: 

 

Fig. 1: DATA PARTITIONING SCHEMATIC 

As mentioned earlier, only “15/9-F-1 B” was set aside for testing, which will not contribute to the MLP training, but to test 

the final model for efficiency of generalization. The rest of the wells shown in Table 1 were used to build the predictive 

MLP model with 70% of data only, whereas 30% is left for model validation. The validation will play ‘the watching dog 

role’; it will only help decide when to stop the training. Since the designed MLP model is intended to predict the P-wave 

sonic log (or DT), the output layer will only include the P-wave sonic log, whereas the rest represent the input layers. 

 

3.2 MLP Architecture  

In this section, we defined our MLP model and the initialized hyperparameters. It is well known that there is no general and 

explicit method for choosing MLP hyperparameters. Thus, different MLP hyperparameters can help to satisfy the global 

maximum. Nevertheless, only three hyperparameters were tested. We tested three activation functions: “Logistic”, “Tanh”, 

and “Relu”. Moreover, we tried four maximum iterations:  200, 800, 1200, and 1800. Our validation fraction has three 

values: 10%, 20%, and 30%. And “Adam” optimization algorithm is used for decreasing the objective function of error.  

On the other hand, as the ANN topology (number of hidden neurons and hidden layers) plays an important role in the 

learning phase, any increase or decrease in the number of hidden neurons/layers significantly affects the entire learning 

process. It changes the number of weights and the amount of nonlinearity embedded in the activation functions, thus 

affecting the prediction accuracy. According to novel research, the complexity of data, in terms of the number of clusters, 

could give a hint about the optimal topology; the more clusters in a dataset, the more neurons/layers it requires to reach an 

acceptable error. Thus, we have exploited the hierarchical cluster analysis to explore the situation in the data topology in 

terms of clusters to see such a relation between the data complexity and the optimal topology (hidden neurons/layers). The 

tested ANN topologies were the total possible combinations of the following vectors: Neurons = [10:100] and Layers = 

[1:10]. Results were later compared at each topology to detect the optimal topology that can successfully express the 

complexity of our dataset. 
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Fig. 2: Single well dataset example after the data mining process 
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4. RESULTS and DISCUSSION 

     This section shows the results of the MLP predictive model with eight inputs (or features) and one output, trained on six 

wells. 

4.1 Data Complexity  

    As we mentioned earlier, it is essential to understand the dataset before building the ANN model, as data complexity will 

impact the training process's hyperparameters selection. Fig. 3 shows a Hierarchical cluster analysis of the dataset. The 

clusters were realistic as the depth logs were set within the same cluster (MD and TVD) and for the wellbore geometry-

dependent well logs (DRHO and CALI). We noted four groups with relatively similar features; each group has two 

physically similar features (the distance between the two features is small). It is important to note that “GR” and “NPHI” 

have large distances in compared to any other physical features, and this means having a spacing between some input 

which will indicate the data complexity and features interactions because the network will struggle to find the relationship 

between the inputs due to the presence of this spacing. The network will likely need more than one hidden layer and many 

hidden neurons to express such complexity. 

 

 

                     Fig. 3: Hierarchical cluster analysis of the well log data (Dataset Complexity) 

 

4.2 Optimal Topology and Hyperparameters 

      Once the potential hyperparameters are tested, the optimal MLP predictive model hyperparameters for the given dataset 

were: 200 iterations, 0.0002 Alpha, Relu activation function, and 30% validation fraction. Different Hidden Neurons and 

Hidden layers were tested with [10:100] and [1:10], respectively, after obtaining the hyperparameters and understanding 

the training data's physical complexity. Fig. 4 shows the result determining the training and testing error for neurons 

number versus layers number.  



 Labiba M. Alhelfi, Hana M. Ali, Semaa H. Ahmed                                            Vol.13(3) 2021 , pp  Comp.   142–154                      148

 

 

Fig. 4.  𝑅2 of No. of Hidden Layers Versus No. of Neurons for (A): Training Error. (B) Testing Error. 

   Fig. 4 shows 𝑅2 results for the training and testing dataset based on different predictive models’ topologies. It shows a 

clear example for improving training as a function of the number of layers and number of neurons increase; nevertheless, 

high training accuracy does not necessarily indicate a good generalization due to the overfitting. The last may exhibit noise 

generalization on the testing dataset. According to the empirical analysis, the best topology is within fifty hidden neurons 

and five hidden layers. The training accuracy is high, and there is no gap between the training accuracy and the testing 

accuracy. 

The optimal topology, five layers each with 50 neurons, was chosen based on the highest testing R
2
 obtained from testing 

different 100 MLP topologies. The results were classified as well-trained, overtrained, and poorly-trained topologies, as 

shown in Table 2, proving that the high training accuracy of 0.9658 gave relatively low testing accuracy (classified 

overtrained). The well-trained models agreed with the proposed complexity; several hidden layers satisfied the model 

objectives of high testing accuracy. These findings shed light on the complex hidden physics that need more neurons and 

more hidden layers for more weight fractions (granularity increase). On the contrary, no trained topologies could reach a 

good accuracy with a single layer regardless of the given number of hidden neurons values. Therefore, we have compared 

multiple topologies for the well-trained, overtrained model and poorly-trained topologies and the best single-layer models. 
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TABLE 2: MLP PREDICTIVE MODELS TOPOLOGIES VERSUS  R2 SCORE 

Topology Status 
R2 Score for 

Training 
R2 Score for Testing 

Number of Hidden 

Layers 

Number of Hidden 

Neurons 

Well-trained 

0.9365 

0.9476 

0.9544 

0.9432 

0.9378 

0.9347 

0.9339 

0.9315 

6 

5 

7 

8 

30 

50 

100 

70 

Overtrained 

0.9659 

0.9609 

0.9595 

0.9590 

0.8800 

0.8952 

0.8791 

0.8925 

8 

9 

8 

9 

100 

80 

80 

70 

Poorly-trained 

Model 

0.9258 

0.9300 

0.9314 

0.9326 

0.8481 

0.8485 

0.8522 

0.8528 

2 

5 

10 

9 

10 

20 

10 

10 

Best Single Layer 

Topologies 

0.9364 

0.9404 

0.9156 

0.9146 

1 

1 

80 

100 

 

4.2.1 Well-Trained Topologies  

Fig. 5 shows a comparison of both the actual P-wave sonic log versus the predictive model P-wave sonic log. The 

comparison is shown for both training and testing wells as a function of the measured depth. Both Fig. 5 and Fig. 6 

presented an identical match that analytically validates the P-wave sonic log predictive model. Yet, 50 hidden neurons for 

five layers were the best chosen topology for this study. 

 

Fig. 5. A comparison of well-trained topologies with 50 hidden neurons and five hidden layers 
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Fig. 6.  𝑅2 for '15/9-F-1 B' and '15/9-F-1 A' with 50 hidden neurons and five hidden layers 

4.2.2 OVER TRAINED TOPOLOGY 

    Fig. 7; using the 80 hidden neurons and the eight layers could cause noise generalization problems as shown in Fig. 8 as 

data scattered off the straight-line trend of '15/9-F-1 B'. 

 

 

Fig. 7.  An example of overtrained topology with 80 hidden neurons and eight hidden layers 
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Fig. 8. 𝑅2 for '15/9-F-1 B' and '15/9-F-1 A' with 80 hidden neurons and eight hidden layers 

 

4.2.3 POORLY TRAINED TOPOLOGY 

The given topologies for this class didn’t help to reveal the data complexity for the testing well. The 

predicted and the actual P-wave sonic log did not match relatively, causing some error (refer to Fig. 9 

and Fig. 10). 

 

Fig. 9.  An example of poorly trained topology with ten hidden neurons and two hidden layers 

 

 

 

Noise generalization effect  
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Fig. 10.  𝑅2  for '15/9-F-1 B' and '15/9-F-1 A' with ten hidden neurons and two hidden layers 

4.2.4 SINGLE LAYER TOPOLOGY 

It was noted in Fig. 11 and Fig. 12 that having a single layer for all the given hidden neurons did not help to improve the 

model training based on Table 2. Nevertheless, the highest accuracy for the testing dataset was obtained as 0.915 with one 

hidden layer and 80 hidden neurons. At the same time, the other topology had 100 hidden neurons which notates that the 

complex data might require a high number of hidden neurons due to the granularity increase  

 

Fig. 11. An example of single layer topology with 80 hidden neurons 

 

 

 

Bad topology effect  
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Fig. 12. R2 for '15/9-F-1 B' and '15/9-F-1 A' with 80 hidden neurons and one hidden layer 

 

5. CONCLUSION 

     This study intended to choose the best topology for neural networks to predict the P-wave sonic log. The study tested 

different 100 topology sets, and Hierarchical cluster analysis showed multiple clusters indicating some feature 

complexities. The research also showed that building the predictive model with one hidden layer didn’t improve the model 

compared to the other topologies. Accordingly, it was recommended to increase the number of the hidden neurons as the 

data showed high complexity. In addition, deploying the predictive model with multiple hidden layers and hidden neurons 

might cause overtraining. Therefore, understanding the dataset topology versus ANN topology is essential for an optimal P-

sonic log predictive model. As a result, it was concluded that the best topology is found with 50 hidden neurons and five 

hidden layers. 
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