Page 53-71

Reyadh.D/ Adam.A

ON Locally Lindelöf Spaces, Co-Lindelöf Topologies and Locally LC-Spaces

Reyadh Delfi Ali*

Adam Abdulla Abker** * Department of Mathematics, Faculty of Science Omdurman Islamic University, Sudan

Reyadh_delphi@yahoo.co.uk

** Department of Mathematics, Faculty of Education Wadi Al Nile University, Sudan

 Recived :21\1\2015
 Revised : 19\2\2015
 Accepted :2\3\2015

Abstract:

The aim of this paper is to continue the study of locally Lindelöf spaces, Co-Lindelöf topologies and locally LC - spaces. We also study their relationships to $L_i - spaces$ i = 1, 2, 3, 4.

المستخلص تهدف هذه الورقة دراسة فضاءات Co-Lindelöf وتبولوجيات Co-Lindelöf و فضاءات LC- و فضاءات LClocally وايضا درسنا علاقة علاقة هذه الفضاءات مع الفضاءات $L_i = 1.2,3,4$

KEYWORDS: *LC* – *space*, *P* – *space*, Lindelöf, locally Lindelöf spaces, Co- Lindelöf topologies, locally *LC* – *spaces*

Mathematics Subject Classification :54xx

Reyadh.D/ Adam.A

1. Introduction:

Dontchev, Ganster and Kanibir [2] introduced the class of locally Lindelöf and weakly locally Lindelöf by definitions, a topological space (X,T) is called locally Lindelöf (resp. weakly locally Lindelöf) if each point of X has a closed Lindelöf (resp. Lindelöf) neighborhood.

In 1984, Gauld, Mrsevic, Reilly and Vamanamurthy [8] introduced the Co- Lindelöf topology of a given space (X,T). They showed that

 $l(T) = \{\phi\} \cup \{G \in T : X - G \text{ is Lindelof in } (X,T)\}$ is a topology on X with $l(T) \subseteq T$, called the Co-Lindelöf topology of (X,T).

Ganster, Kanibir and Reilly [6] introduced the class of locally LC – spaces .By definition, a topological space (X,T) is called a Locally LC – space if each point of Xhas a neighborhood which is an LC – subspace. In [6], the authors proved that a space (X,T) is an LC – space if each point of X has a closed neighborhood that is an LC – subspace. Thus every regular locally LC – space is an LC – space, a result first proved by Hdeib and Pareek in [10].

A set F in a topological space is called F_{σ} – closed if it is the union of at most countably many closed sets. A set G is called a G_{σ} – open if it is the intersection of at most countably many open sets [4].

In this paper, we consider and study of locally Lindelöf spaces, Co- Lindelöf

Reyadh.D/ Adam.A

topologies and locally LC - spaces .Furthermore, basic properties, preservation theorems

and relationships of locally Lindelöf spaces, Co- Lindelöf topologies and locally

LC-spaces, are investigated. Moreover, to obtain several characterization and

properties of locally Lindelöf spaces, Co-Lindelöf topologies and locally LC-spaces.

Our terminology is standard. The closure of a subset A of a space (X,T) is denoted

by clA. The set of all positive integer is denoted by ω .

2. locally Lindelöf and weakly locally Lindelöf :

Definition2.1 [2]: A topological space (X,T) is called locally Lindelöf (resp. weakly locally Lindelöf) if each point of X has a closed Lindelöf (resp. Lindelöf) neighborhood. It follows immediately from the definition that every locally Lindelöf space is a weakly locally Lindelöf.

Note that a weakly locally Lindelöf space need not be a locally Lindelöf space.

Definition2.2: A topological space (X,T) is an LC – space if every Lindelöf subset of X is closed [7], [13]. Notice that LC – space is also known under the name L – closed [9], [11] and [14].

Definition2.3[12]: A topological space (X,T) is called P-space if every G_{σ} - open set in X is open.

Definition 2.4 [2]: A topological space (X,T) is called

(1) an L_1 – space if every Lindelöf F_{σ} – closed is closed,

(2) an L_2 – space if clL is Lindelöf whenever $L \subseteq X$ is Lindelöf,

(3) an $L_3 - space$ s if every Lindelöf subset L is an F_{σ} - closed,

(4) an $L_4 - space$ if whenever $L \subseteq X$ is Lindelöf, then there is a Lindelöf F_{σ} - closed F with $L \subseteq F \subseteq clL$.

Reyadh.D/ Adam.A

Theorem2.5 [2]:

- (i) If (X,T) is an LC-space, then (X,T) is a L_i -space, i=1,2,3,4.
- (ii) If (X,T) is an L_1 space and an L_3 space, then (X,T) is an LC space.
- (iii)) Every space which is $L_1 space$ and $L_4 space$ is an $L_2 space$.
- (iv) Every L_2 space is an L_4 space and every L_3 space is an L_4 space.
- (v) Every L_3 space is T_1 .
- (vi) Every Lindelöf space is an L_2 *space*, and every L_2 *space* having a dense Lindelöf

Subset is Lindelöf.

(vii) Every P - space is an L_1 - space.

Definition 2.6 [2]: A topological space (X,T) is called a Q-set space if each subset of X is an F_{σ} -closed sets.

Theorem2.7 [12]: Every Huasdorff P – space is an LC – space.

<u>Corollary2.8</u>: Every Tychonoff P-space is an LC-space. **Proof.** Obvious.

Proposition2.9 [2]: Every weakly locally Lindelöf L_2 – *space* is locally Lindelöf, and so Every weakly locally Lindelöf space which is L_1 and L_4 is locally

Lindelöf.

Theorem2.10 [2]:

Every locally Lindelöf space (X,T) is an L_1 – space if and only if it is a P – space.

<u>Corollary2.11 [2]</u>: Every Huasdorff, locally Lindelöf L_1 – space is an LC – space.

<u>Corollary2.12 [2]</u>: Every weakly locally Lindelöf LC - space(X,T) is a P - space.

Reyadh.D/ Adam.A

Corollary 2.13: For a Lindelöf space X the following are equivalent: (a) X is locally Lindelöf.

(b) X is a weakly locally Lindelöf.

Proof. This is obvious by definition 2.1.

<u>Corollary 2.14</u>: For an L_2 – space X the following are equivalent:

- (a) X is locally Lindelöf.
- (b) X is a weakly locally Lindelöf.

Proof. (a) \Rightarrow (b): This is obvious by definition 2.1. (b) \Rightarrow (a): This is obvious by proposition 2.9.

<u>Corollary 2.15</u>: For a LC – space X the following are equivalent:

(a) X is locally Lindelöf.

(b) X is a weakly locally Lindelöf.

Proof. (a) \Rightarrow (b): This is obvious by definition 2.1.

(b) \Rightarrow (a): This is obvious by theorem 2.5(i)and proposition 2.9.

Theorem 2.16: For a Hausdorff locally Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an $L_1 space$.
- (c) X is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let X be an L_1 – space, since X is a Hausdorff locally Lindelof space,

then X is an LC-space by corollary 2.11.

(b) \Rightarrow (c) : This is obvious by theorem 2.10.

(c) \Rightarrow (b) : This is obvious by theorem 2.10.

Theorem2.17: For Hausdorff weakly locally Lindelöf space *X* the following are equivalent:

(a) X is an LC-space.

(b) X is a P-space.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b):This is obvious by corollary 2.12. (b) \Rightarrow (a):This is obvious by theorem 2.7.

<u>Theorem2.18</u>: Every $P \quad Q - set$ space X is an LC - space.

Proof. If *L* is a Lindelöf subset in *X*, which is a Q-set space, then *L* is an F_{σ} -closed set, but *X* is a P-space, so *L* is a closed set, hence *X* is an LC-space.

Theorem2.19: For a weakly locally Lindelöf Q-set space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 2.12.

(b) \Rightarrow (a): This is obvious by theorem 2.18.

Theorem2.20: For a locally Lindelöf Q - set space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.
- (c) X is an L_1 space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i) and theorem 2.10.

- (b) \Rightarrow (a): This is obvious by theorem 2.18.
- (b) \Rightarrow (c): This is obvious by theorem 2.10.
- (c) \Rightarrow (b): This is obvious by theorem 2.10.

<u>Corollary2.21</u>: For a weakly locally Lindelöf L_2 – *space X* the following are equivalent:

- (a) X is an L_1 space.
- (b) X is a P-space.

Proof. This is obvious by proposition 2.9 and theorem 2.10.

<u>Theorem 2.22</u>: For a locally Lindelöf L_3 – space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an L_1 space.
- (c) X is a P-space.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

- (b) \Rightarrow (a): This is obvious by theorem 2.5(ii).
- (b) \Rightarrow (c): This is obvious by theorem 2.10.
- (c) \Rightarrow (b): This is obvious by theorem 2.10.

Corollary2.23:

- (i) Every weakly locally Lindelöf LC-space is locally Lindelof.
- (ii) Every LC space having a dense Lindelöf Subset is locally Lindelof.

Proof. Obvious.

<u>Corollary2.24</u>: For a regular locally Lindelöf L_1 – *space X* the following are equivalent:

(a) X is an LC-space.

(b) X is T_1 .

Proof. (a) \Rightarrow (b): Obvious.

(b) \Rightarrow (a): Let X be a T_1 – space, since X is a regular, then X is a Hausdorff

Since X is a locally Lindelöf $L_1 - space$, then X is an LC - space by corollary 2.11.

Definition2.25[5]: A topological space (X,T) is a R_1 – space if x and y have disjoint neighborhoods whenever $cl\{x\} \neq cl\{y\}$. Clearly a space is Hausdorff if and only if its T_1 and R_1 .

<u>Corollary2.26</u>: For R_1 locally Lindelöf L_1 – *space X* the following are equivalent: (a) *X* is an *LC* – *space*.

Proof. (a) \Rightarrow (b): Obvious.

(b) \Rightarrow (a): Let X be a T_1 – space, since X is a R_1 , then X is a Hausdorff by definition 2.25.

Since X is a locally Lindelöf L_1 – space, then X is an LC – space by corollary 2.11.

Theorem2.27:

For a Tychonoff weakly locally Lindelöf space X the following are equivalent:

(a) X is an LC-space.

(b) X is a P - space.

⁽b) X is T_1 .

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b):This is obvious by corollary 2.12. (b) \Rightarrow (a):This is obvious by corollary 2.8.

Theorem2.28: For P - space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an $L_3 space$.

Proof. (a) \implies (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let *L* be a Lindelöf subset of *X*, then *L* is F_{σ} - closed set (since *X* is an L_3 - space), so *L* is closed set(since *X* is a *P*-space), hence *X* is an *LC*-space.

<u>Theorem2.29</u>: For a weakly locally Lindelöf L_3 – space X the following are

equivalent:

- (a) X is an LC-space.
- (b) X is a P-space.
- **Proof.** (a) \Rightarrow (b): This is obvious by corollary 2.12. (b) \Rightarrow (a):This is obvious by theorem 2.28.

<u>**Corollary2.30:**</u> Every weakly locally Lindelöf $P L_3 - space$ is locally Lindelöf. **Proof.** Obvious.

Theorem2.31: For a Hausdorff locally Lindelöf space X the following are equivalent: (a) X is an LC-space.

(b) X is a P-space and an $L_2-space$.

Proof. (a) \Rightarrow (b): Let X be an LC - space, then X is an L_2 - space and an L_1 - space

Since X is a locally Lindelöf, then X is a P - space by theorem 2.10.
(b) ⇒(a):Let L be a Lindelöf subset of (X,T) and let x ∉ L.Since (X,T) is Hausdorff, for each y ∈ L there exist an open set V_y containing y with x ∉ clV_y.

Reyadh.D/ Adam.A

Clearly $\{V_y : y \in L\}$ is a cover of L and so there exists a countable set $C \subseteq L$ such that $L \subseteq \bigcup_{y \in C} V_y \subseteq \bigcup_{y \in C} clV_y$. For each $y \in C$, $L \cap clV_y$ is Lindelöf and so $cl(L \cap clV_y)$ is Lindelöf since (X,T) is an L_2 – space. Furthermore, if $W = \bigcup_{y \in C} cl(L \cap clV_y)$ then W is a Lindelöf F_{σ} – closed set and, since

(X,T)

is

is a P – space, W is a closed Lindelöf set not containing x. Thus $x \notin clL$. This shows that L

is closed in (X,T).

<u>Theorem2.32</u>: Every Q – set L_1 – space is an L_2 – space.

Proof. Let L be a Lindelöf subset of X, then L is an F_{σ} - closed set (since X is a

Q-set space), so L is closed set(since X is an $L_1 - space$), then L = clL and clL

a Lindelöf. Hence X is an L_2 – space.

Theorem2.33: For a locally Lindelöf Q-set space X the following are equivalent:

- (a) X is an $L_1 space$.
- (b) X is a P-space and an $L_2-space$.

Proof. (a) \Rightarrow (b): Let X be an L_1 – space, since X is a Q – set space, then X is

an L_2 – *space* by theorem 2.32. Since X is a locally Lindelöf L_1 – *space*, then X is a

P-space by theorem 2.10.

(b) \Rightarrow (a): This is obvious by theorem 2.5(vii).

Definition2.34 [2]: A topological space (X,T) is called aweak P-space if any countable union of regular closed sets is closed. One can show easily that (X,T) is aweak P-space if and only if for every countable family $\{U_n : n \in \omega\}$ of open sets,

$$cl\left(\bigcup_{n\in\omega}U_n\right)=\bigcup_{n\in\omega}clU_n\ .$$

<u>Corollary2.35</u>: Every P - space(X,T) is a weak P - space.

Proof. Let *F* be a countable union of regular closed sets in P – *space* (X,T), then *F* is an

is an F_{σ} – closed set, so F is a closed set(since X is a P – space), hence X is a weak

P-space.

Reyadh.D/ Adam.A

Corollary2.36:

(i) Every locally Lindelöf LC - space(X,T) is weak P - space.

(ii) Every weakly locally Lindelöf LC - space(X,T) is weak P - space.

(iii) Every Lindelöf LC - space(X,T) is weak P - space.

Proof. Obvious.

<u>Corollary2.36</u>: For a Hausdorff locally Lindelöf space *X* the following are equivalent: (a) *X* is an LC-space.

- (b) X is a P-space and an $L_2-space$.
- (c) X is an L_1 space.

Proof. This is obvious by theorem 2.16 and theorem 2.33.

<u>Theorem2.37</u>: Every locally Lindelöf weak P - space(X,T) is $L_4 - space$.

Proof. Let *L* be a Lindelöf subset of (X,T). Each point of *L* has an open neighborhood U_x such that clU_x is Lindelöf. Pick accountable subset *C* of *L* such that $L \subseteq \bigcup_{x \in C} U_x$. Since (X,T) is aweak P-space we have $clL \subseteq \bigcup_{x \in C} clU_x = W$. Since *W* is Lindelöf we conclude that clL is Lindelöf and closed, so clL is Lindelöf F_{σ} -closed set, hence (X,T) is an L_4 -space.

3. Co- Lindelöf Topologies:

Theorem3.1 [2]: For a *space* (X,T) the following are equivalent:

- (a) (X,T) is an L_1 space.
- (b) (X, l(T)) is a P-space.

<u>Corollary3.2</u>: If (X,T) is Lindelöf space then l(T) = T. **Proof**: Obvious.

<u>Corollary3.3</u>: If (X,T) is an LC – space then (X,l(T)) is a P – space. **Proof**: This is obvious by theorem 2.5(i) and theorem 3.1.

Reyadh.D/ Adam.A

Theorem3.4: For a L_3 – space (X,T) the following are equivalent:

- (a) (X,T) is an LC-space.
- (b) (X, l(T)) is a P-space.

Proof. (a) \implies (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is an L_3 – space, then (X,T) is an LC – space by theorem 2.5(ii).

Theorem3.5 [1]: Every Q - set space is an L_3 - space.

<u>Corollary3.6</u>: Every $Q - set L_1 - space$ is an LC - space.

Proof. Let X be Q-set space, then X is an $L_3-space$ by theorem 3.5, since X is an $L_1-space$, then X is an LC-space by theorem 2.5(ii).

<u>Theorem3.7</u>: For a Q-set space (X,T) the following are equivalent:

(a) (X,T) is an LC-space.

(b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a Q-set space, then (X,T) is an LC-space by corollary 3.6.

Theorem3.8: For a locally Lindelöf space (X,T) the following are equivalent:

(a) (X,T) is a P-space.

(b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): Let (X,T) be a *P*-space.Since (X,T) is a locally Lindelof space,then

(X,T) is an L_1 -space by theorem 2.10, hence (X,l(T)) is a *P*-space by theorem 3.1.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a locally Lindelöf space, then (X,T) is an *P*-space by theorem 2.10.

Definition3.9 [1]: A topological space (X,T) is said to be anti – Lindelöf if each Lindelof subset of X is countable.

Reyadh.D/ Adam.A

Theorem3.10 [2]: Every T_1 anti-Lindelöf space is an L_3 – space. Hence every T_1 , anti-Lindelöf L_1 – space is an LC – space.

<u>Theorem3.11</u>: For a T_1 anti-Lindelöf space (X,T) the following are equivalent: (a) (X,T) is an LC-space.

(b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem

3.1. Since (X,T) is T_1 anti-Lindelöf space, then (X,T) is an LC-space by theorem 3.10.

Theorem3.12 [2]: For a Hausdorff space X the following are equivalent:

(a) X is an LC-space.

(b) X is an L_1 – space and an L_2 – space.

Theorem3.13: For a Hausdorff L_2 – space (X,T) the following are equivalent: (a) (X,T) is an LC – space.

(b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a Hausdorff L_2 – *space*, then (X,T) is an LC – *space* by theorem 3.12.

Theorem3.14 [4]: Acountable union of Lindelöf subset is Lindelöf.

Theorem3.15: Every Lindelöf L_1 – space is a P – space.

Proof. For each $n \in \omega$, let A_n be closed in Lindelöf L_1 – space X and $A = \bigcup_{n \in \omega} A_n$

, then A_n is a Lindelöf subset in X and thus A is a Lindelöf subset in X by theorem 3.14. Since X is an L_1 – space, then A is closed in X, hence X is a P – space.

Theorem3.16: For a Hausdorff Lindelöf space X the following are equivalent:

- (a) X is an LC-space.
- (b) X is an $L_1 space$.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let X be an L_1 – space, since X is a Lindelöf space, then X is a P – space by theorem 3.15. Since X is a Hausdorff space, then X is an LC – space by theorem 2.7.

Theorem3.17: For a Hausdorff Lindelöf space (X,T) the following are equivalent:

(a) (X,T) is an LC-space.

(b) (X, l(T)) is a P-space.

Proof: (a) \implies (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is a Hausdorff Lindelöf space, then (X,T) is an LC - space by theorem 3.16.

Theorem3.18: For a Hausdorff locally Lindelöf space (X,T) the following are equivalent:

(a) (X,T) is an LC-space.

(b)
$$(X, l(T))$$
 is a $P-space$.

Proof: (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space theorem 3.1.

Since (X,T) is a Hausdorff locally Lindelöf space, then (X,T) is an LC-space by

corollary 2.11.

<u>Corollary3.19</u>: If (X,T) is an L_1 – space then (X,l(T)) is an L_1 – space.

Proof. Let (X,T) be an L_1 – space, then (X,l(T)) is a P – space by theorem 3.1. Hence

(X, l(T)) is an $L_1 - space$ by theorem 2.5(vii).

Definition3.20[7]: A topological space (X,T) is *cid* – *space* if every countable subset of X is closed and discrete.

<u>Remark3.21[7]</u>: Every LC - space is cid - space.

Theorem3.22: For anti – Lindelöf space *X* the following are equivalent:

(a) X is an LC-space.

(b) X is cid - space.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by remark 3.21.

(b) \Rightarrow (a): Let *L* be a Lindelöf subset of *X*, then *L* is countable (since *X* is anti – Lindelöf), so *L* is a closed set(since *X* is *cid* – *space*), hence *X* is an

LC-space.

<u>Corollary3.23</u>: If (X,T) is a anti-Lindelöf *cid* – *space* then (X,l(T)) is a *P* – *space*.

Proof: Let (X,T) be a anti-Lindelöf *cid* – *space*, then (X,T) is an *LC* – *space* by

theorem 3.22. Hence (X, l(T)) is a *P*-space by corollary 3.3.

Theorem 3.24 [2]: Every $T_1 L_1$ - space is cid.

<u>Theorem3.25</u>: For a T_1 anti-Lindelöf space (X,T) the following are equivalent: (a) (X,T) is *cid* – *space*.

(b) (X, l(T)) is a P-space.

Proof. (a) \Rightarrow (b): Let (X,T) be *cid* – *space*. Since (X,T) is a anti-Lindelof space, Then (X,T) is an L_1 – *space* by theorem 3.22and theorem 2.5(i), hence (X, l(T))

is

a P-space by theorem 3.1.

(b) \Longrightarrow (a): Let (X, l(T)) be a *P*-space, then (X, T) is an L_1 -space by theorem 3.1.

Since (X,T) is T_1 space, then (X,T) is *cid* – *space* by theorem 3.24.

Theorem3.26: If (X, l(T)) is a Lindelöf LC – space then (X, T) is an L_1 – space.

Proof. For each $n \in \omega$, let A_n be closed and Lindelöf in (X,T) and let $A = \bigcup_{n \in \omega} A_n$.

Since (X, l(T)) is a Lindelöf LC-space, then each A_n is closed and Lindelöf in (X, l(T)) and so A is

also closed and Lindelöf in (X, l(T)) by theorem 3.14. Hence A is closed in (X, T) and so (X, T) is an L_1 – space.

4. Locally LC- spaces:

Definition 4.1 [6]: A topological space (X,T) is called a Locally LC – space if each point of X has a neighborhood which is an LC – subspace.

Clearly every LC - space is locally LC - space. In general the converse needs not be true [5], however every regular locally LC - space is LC - space.

Definition 4.2[6]: A topological space (X,T) is called an LC-space if each point of X has a closed neighborhood that is an LC-subspace.

Theorem4.3[3]: Every locally LC – space is T_1 .

Reyadh.D/ Adam.A

<u>Theorem4.4</u>: For a regular P-space X the following are equivalent: (a) X is an LC-space.

- (b) X is a locally LC-space.
- (c) X is an T_1 space.

Proof. (a) \Rightarrow (b): This is obvious by definition 4.1.

(b) \Rightarrow (a): This is obvious by definition 4.1.

(b) \Rightarrow (c):This is obvious by theorem 4.3.

(c) \Rightarrow (b):Let X be a T_1 – space, since X is a regular, then X is a Hausdorff. Since X is a P – space, then X is an LC – space by theorem 2.7, hence X is a locally LC – space by definition 4.1.

<u>Corollary4.5</u>: For a Finite topological *space X* the following are equivalent:

- (a) X is an LC-space.
- (b) X is a locally LC-space.

Proof. Obvious .

2.7,

Theorem4.6: For a R_1 *P*-space *X* the following are equivalent:

- (a) X is an LC-space.
- (b) X is a locally LC-space.
- (c) X is $T_1 space$.
- (d) X is a Hausdorff space.

Proof. (a) \Rightarrow (b): This is obvious by definition 4.1.

(b) \Rightarrow (a): This is obvious by theorem 4.3, definition 2.25 and definition 4.1.

(b) \Rightarrow (c): This is obvious by theorem 4.3.

(c) \Rightarrow (b): Let X be a T_1 – space, since X is a R_1 , then X is a Hausdorff by definition 2.25. Since X is a P – space, then X is an LC – space by theorem

hence X is a locally LC - space by definition 4.1. (c) \Rightarrow (d): This is obvious by definition 2.25. (d) \Rightarrow (c): Obvious .

Reyadh.D/ Adam.A

Theorem4.7: For a regular L_1 , L_2 – space X the following are equivalent:

(a) X is a locally LC-space.

(b) X is T_1 – space.

Χ

is

Proof. (a) \Rightarrow (b): This is obvious by theorem 4.3.

(b) \Rightarrow (a): Let X be a T_1 - space, since X is a regular L_1 L_2 - space, then

is an LC-space by theorem 3.12, hence X is a locally LC-space by definition 4.1.

<u>Theorem4.8</u>: For a regular locally Lindelöf L_1 – *space X* the following are equivalent:

(a) X is a locally LC-space.

(b) X is $T_1 - space$.

Proof. (a) \Rightarrow (b): This is obvious by theorem 4.3.

(b) \implies (a) : Let X be a T_1 – space, since X is a regular locally Lindelöf L_1 – space ,

then X is an LC-space by corollary 2.11, hence X is a locally LC-space by definition 4.1.

Theorem 4.9 [3]: Every locally compact Hausdorff space is T_3 .

<u>Theorem4.10</u>: For a locally compact $R_1 - space X$ the following are equivalent:

- (a) X is an LC-space.
- (b) X is a locally LC-space.

Proof. (a) \Rightarrow (b): This is obvious by definition 4.1.

(b) \Rightarrow (a) : Let X be a locally LC - space, then X is $aT_1 - space$ by theorem 4.3.

Since X is a R_1 – *space*, then X is a Hausdorff by definition 2.25. Since X

a locally compact, so X is a regular by theorem 4.9. hence X is an LC – space by definition 4.1.

Proposition4.11 [3]: For a *space X* the following are equivalent:

(a) X is a locally LC-space.

(b) Every point of X has an open neighborhood, which is an LC – subspace of X.

Reyadh.D/ Adam.A

Theorem4.12: Every 2^{nd} countable (C_{11}) , a locally LC - space is discrete.

Proof. Let (X,T) be 2^{nd} countable and a locally LC – *space*. We may assume that every point $x \in X$ has an open neighborhood U that is both hereditarily Lindelöf and an LC – *space* (since X is a 2^{nd} countable and by Proposition 4.11). But this means that U is an open discrete subspace of (X,T). Hence (X,T) is discrete.

<u>Theorem4.13</u>: If (X,T) a regular space has an open cover by locally LC – *subspaces*,

then X is an LC - space.

Proof. Let $X = \bigcup_{i \in I} G_i$ be an open cover of X where each G_i is a locally LC – *space*, and let $x \in X$. Choose $j \in I$ such that $x \in G_j$. If U_J is an open and closed neighborhood(since X is a regular) of x in G_j such that U_J is an LC – *space* of G_j , then U_J is also open and closed in (X,T). By definition 4.2, (X,T) is an LC – *space*.

Theorem4.14: If (X,T) a regular space has an open cover by LC – *subspaces*, then X is an LC – *space*.

Proof. Let $X = \bigcup_{i \in I} G_i$ be an open cover of X where each G_i is LC - space, and let $x \in X$. Choose $j \in I$ such that $x \in G_j$. If U_J is a closed neighborhood(since X is a regular) of x in G_j such that U_J is an LC - space of G_j , then U_J is also closed in (X, T). By definition 4.2, (X, T) is an LC - space.

We have the following diagrams:

Reyadh.D/ Adam.A

Reyadh.D/ Adam.A

Refereces

[1]Bankston P., The total negation of a topological property, Illinois J. Math. 23 (1979),

241-255.

[2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LC-spaces, Acta

Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 345-353.

- [3] Dontchev J., Ganster M. and Kanibir A., On locally LC- spaces, Math.GN. Vol. arXiv,7(1998), pp. 1-5.
- [4] Engelking R., General Topology. Heldermann Verlag, Berlin, revised and completed edition, 1989.
- [5] Dontchev J., Ganster M., On the product of LC *spaces*, Q & A in General Topology15 (1997), 71–74.
- [6] Ganster M., Kanibir A., Reilly I., Two Comments Concerning Certain Topological Spaces ,Indian J., Pure Appl. Math.29(9)965-967, September1998.
- [7] Ganster M. and Jankovic D., On spaces whose Lindelöf subsets are closed, Q & A in General Topology 7 (1989), 141–148

[8] Gauld D. B., Mrsevic M., Reilly I. and Vamanamurthy M. K., Co-Lindelof topologies

and I-continuous functions, Glasnik Mat. 19(39) (1984),297-308.

[9] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6 (1988), 67-72.

[10] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelof sets are closed, Q & A in

General Topology 4 (1986), 3-13.

[11] Levy R., A non-P L-closed space, Q & A in General Topology 4 (1986), 145-146. [12] Misra A. K., A topological view of P-spaces, Topology & Appl.2(1972),349-362.

[13] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459–474.

[14]Ori R. G., A note on L-closed spaces, Q & A in General Topology 4 (1986/87), 141–143.