Page 53-71

Reyadh.D/ Adam.A

ON Locally Lindelöf Spaces, Co-Lindelöf Topologies and Locally LC-Spaces

Reyadh Delfi Ali*

Adam Abdulla Abker * Department of Mathematics, Faculty of Science Omdurman Islamic University, Sudan**

Reyadh_delphi@yahoo.co.uk

** Department of Mathematics, Faculty of Education Wadi Al Nile University, Sudan

Recived :21\1\2015 Revised : 19\2\2015 Accepted :2\3\2015

Abstract:

.

 The aim of this paper is to continue the study of locally Lindelöf spaces,Co-Lindelöf topologies and locally LC - spaces. We also study their relationships to L_i – *spaces* $i = 1,2,3,4$.

المستخلص تهذف هذه الىرقة دراسة فضاءات Lindelöf locally **وتبىلىجيات** Lindelöf -Co **و فضاءات** *LC* locally **وايضا درسنا عالقة عالقة هذه الفضاءات مع الفضاءات** *Lⁱ* 1.2,3,4 *i***.**

KEYWORDS: $LC - space, P - space$, Lindelöf, locally Lindelöf spaces, Co- Lindelöf topologies, locally *LC spaces*

Mathematics Subject Classification :54xx

Reyadh.D/ Adam.A

1. Introduction:

Dontchev, Ganster and Kanibir |2|introduced the class of locally Lindelöf and weakly locally Lindelöf by definitions, a topological space (X, T) is called locally Lindelöf (resp. weakly locally Lindelöf) if each point of *X* has a closed Lindelöf (resp. Lindelöf) neighborhood.

 In 1984, Gauld, Mrsevic, Reilly and Vamanamurthy 8 introduced the Co- Lindelöf topology of a given space (X, T) . They showed that

 $l(T) = \{\phi\} \cup \{G \in T : X - G \quad \text{is} \quad \text{Lindelof} \quad \text{in} \quad (X,T) \}$ is a topology on X with $l(T) \subseteq T$, called the Co- Lindelöf topology of (X, T) .

Ganster, Kanibir and Reilly $\left[6\right]$ introduced the class of locally LC - spaces .By definition, a topological space (X,T) is called a Locally LC – space if each point of X has a neighborhood which is an $LC \text{–} subspace$. In $|6|$, the authors proved that a space (X,T) is an LC – *space* if each point of X has a closed neighborhood that is an $LC - subspace$. Thus every regular locally $LC - space$ is an $LC - space$, a result first proved by Hdeib and Pareek in |10|.

A set F in a topological space is called F_{σ} – closed if it is the union of at most countably many closed sets. A set G is called a G_{σ} - open if it is the intersection of at most countably many open sets $|4|$.

In this paper, we consider and study of locally Lindelöf spaces, Co- Lindelöf

Reyadh.D/ Adam.A

topologies and locally *LC spaces* .Furthermore, basic properties, preservation theorems

and relationships of locally Lindelöf spaces, Co- Lindelöf topologies and locally

LC spaces , are investigated. Moreover, to obtain several characterization and

properties of locally Lindelöf spaces, Co- Lindelöf topologies and locally *LC spaces* .

Our terminology is standard. The closure of a subset A of a space (X,T) is denoted

by $c\mathcal{I}A$. The set of all positive integer is denoted by ω .

2. locally Lindelöf and weakly locally Lindelöf :

Definition2.1 [2]: A topological space (X,T) is called locally Lindelöf (resp. weakly locally Lindelöf) if each point of X has a closed Lindelöf (resp. Lindelöf) neighborhood. It follows immediately from the definition that every locally Lindelöf space is a weakly locally Lindelöf.

Note that a weakly locally Lindelöf space need not be a locally Lindelöf space.

Definition2.2: A topological space (X,T) is an LC – *space* if every Lindelöf subset of X is closed $|7|$, $|13|$. Notice that LC *- space* is also known under the name L *- closed* $|9|$, |11| and |14|.

Definition2.3[12]: A topological space (X,T) is called P – space if every $\overline{G_{\sigma}-open}$ set in X is open.

Definition2.4 [2]: A topological space (X,T) is called

(1) an L_1 – *space* if every Lindelöf F_σ – *closed* is closed,

(2) an L_2 – *space* if *clL* is Lindelöf whenever $L \subseteq X$ is Lindelöf,

(3) an L_3 – *space* s if every Lindelöf subset L is an F_σ – *closed*,

(4) an L_4 – *space* if whenever $L \subseteq X$ is Lindelöf, then there is a Lindelöf F_{σ} – *closed F* with $L \subseteq F \subseteq cL$.

Reyadh.D/ Adam.A

Theorem2.5 [2]:

- (i) (X,T) is an $LC-space$, then (X,T) is a $L_i - space$, i=1,2,3,4.
- (ii) (X,T) is an L_1 – *space* and an L_3 – *space*, then (X,T) is an LC – *space*.
- (iii)) Every space which is L_1 space and L_4 space is an L_2 space.
- (iv) Every L_2 *space* is an L_4 *space* and every L_3 *space* is an L_4 *space*.
- (v) Every L_3 space is T_1 .
- (vi) Every Lindelöf space is an L_2 space, and every L_2 space having a dense Lindelöf

Subset is Lindelöf.

(vii) Every P – space is an L_1 – space.

Definition2.6 [2]: (X,T) is called a Q – set space if each subset of X is an F_{σ} – closed sets.

Theorem2.7 [12]: Every Huasdorff P – space is an LC – space.

Corollary2.8: Every Tychonoff P – space is an LC – space. **Proof.** Obvious.

Proposition2.9 [2]: Every weakly locally Lindelöf L_2 - space is locally Lindelöf, and so Every weakly locally Lindelöf space which is L_1 *and* L_4 is locally

Lindelöf.

Theorem2.10 [2]:

Every locally Lindelöf space (X,T) is an L_1 – space if and only if it is a P – space.

Corollary2.11 [2]: Every Huasdorff, locally Lindelöf L_1 – space is an LC – space.

Corollary2.12 [2]: Every weakly locally Lindelöf LC – space (X, T) is a P – space.

Reyadh.D/ Adam.A

Corollary 2.13: For a Lindelöf space X the following are equivalent: (a) *X* is locally Lindelöf.

(b) *X* is a weakly locally Lindelöf.

Proof. This is obvious by definition 2.1.

Corollary 2.14: For an L_2 – *space* X the following are equivalent: (a) *X* is locally Lindelöf.

(b) X is a weakly locally Lindelöf.

Proof. (a) \Rightarrow (b): This is obvious by definition 2.1. (b) \Rightarrow (a): This is obvious by proposition 2.9.

Corollary 2.15: For a LC – space X the following are equivalent:

(a) X is locally Lindelöf.

(b) X is a weakly locally Lindelöf.

Proof. (a) \Rightarrow (b): This is obvious by definition 2.1. (b) \Rightarrow (a): This is obvious by theorem 2.5(i) and proposition 2.9.

Theorem 2.16: For a Hausdorff locally Lindelöf space X the following are equivalent:

- (a) *X* is an LC *space*.
- (b) *X* is an L_1 space.
- (c) *X* is a P *space*.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let X be an L_1 – space, since X is a Hausdorff locally Lindelof space,

then X is an LC – *space* by corollary 2.11.

(b) \Rightarrow (c) : This is obvious by theorem 2.10.

 $(c) \implies$ (b) : This is obvious by theorem 2.10.

Theorem2.17: For Hausdorff weakly locally Lindelöf space X the following are equivalent:

(a) *X* is an LC - *space*.

(b) X is a P – *space*.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by corollary 2.12. (b) \Rightarrow (a): This is obvious by theorem 2.7.

Theorem2.18: Every P Q – set space X is an LC – space.

Proof. If *L* is a Lindelöf subset in X ,which is a Q – set space, then L is an F_{σ} - *closed* set, but *X* is a *P* - *space*, so *L* is a closed set, hence *X* an LC *- space* .

Theorem2.19: For a weakly locally Lindelöf Q – set space X the following are equivalent:

- (a) *X* is an LC *space*.
- (b) X is a P *space*.

Proof. (a) \Rightarrow (b): This is obvious by corollary 2.12.

(b) \Rightarrow (a): This is obvious by theorem 2.18.

Theorem2.20: For a locally Lindelöf $Q - set$ space X the following are equivalent:

- (a) *X* is an LC *space*.
- (b) X is a P *space*.
- (c) *X* is an L_1 space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i)and theorem 2.10.

- (b) \Rightarrow (a): This is obvious by theorem 2.18.
- (b) \Rightarrow (c): This is obvious by theorem 2.10.
- (c) \Rightarrow (b): This is obvious by theorem 2.10.

Corollary2.21: For a weakly locally Lindelöf L_2 – space X the following are equivalent:

- (a) *X* is an L_1 *space*.
- (b) *X* is a P *space*.

Proof. This is obvious by proposition 2.9 and theorem 2.10.

Theorem 2.22: For a locally Lindelöf L_3 – space X the following are equivalent:

- (a) *X* is an LC *space*.
- (b) X is an L_1 space.
- (c) X is a P *space*.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

- (b) \Rightarrow (a): This is obvious by theorem 2.5(ii).
- (b) \Rightarrow (c): This is obvious by theorem 2.10.
- (c) \Rightarrow (b): This is obvious by theorem 2.10.

Corollary2.23:

- (i) Every weakly locally Lindelöf LC space is locally Lindelof.
- (ii) Every LC *space* having a dense Lindelöf Subset is locally Lindelof.

Proof. Obvious.

.

Corollary2.24: For a regular locally Lindelöf L_1 – space X the following are equivalent:

(a) *X* is an LC – *space*.

(b) X is T_1 .

Proof. (a) \Rightarrow (b): Obvious.

(b) \Rightarrow (a): Let *X* be a *T*₁ – *space*, since *X* is a regular, then *X* is a Hausdorff

Since *X* is a locally Lindelöf L_1 – space, then *X* is an LC – space by corollary 2.11.

Definition2.25[5]: A topological space (X,T) is a R_1 – space if x and y have disjoint neighborhoods whenever $cl\{x\} \neq cl\{y\}$. Clearly a space is Hausdorff if and only if its T_1 and R_1 .

Corollary 2.26: For R_1 locally Lindelöf L_1 – space X the following are equivalent: (a) *X* is an LC – *space*.

Proof. (a) \Rightarrow (b): Obvious.

(b) \Rightarrow (a): Let *X* be a *T*₁ – *space*, since *X* is a *R*₁, then *X* is a Hausdorff by definition2.25.

Since *X* is a locally Lindelöf L_1 – *space*, then *X* is an *LC* – *space* by corollary 2.11.

Theorem2.27:

For a Tychonoff weakly locally Lindelöf space *X* the following are equivalent:

(a) *X* is an LC - *space*.

(b) X is a P – space.

⁽b) X is T_1 .

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by corollary 2.12. (b) \Rightarrow (a): This is obvious by corollary 2.8.

Theorem2.28: For P – space X the following are equivalent:

- (a) *X* is an $LC-space$.
- (b) *X* is an L_3 space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let *L* be a Lindelöf subset of *X*, then *L* is F_{σ} -closed set (since *X* is an L_3 – *space*), so *L* is closed set(since *X* is a *P* – *space*), hence *X* is an *LC* – *space* .

Theorem2.29: For a weakly locally Lindelöf L_3 – space X the following are

equivalent:

- (a) *X* is an LC *space*.
- (b) X is a P *space*.
- **Proof.** (a) \Rightarrow (b): This is obvious by corollary 2.12. (b) \Rightarrow (a): This is obvious by theorem 2.28.

Corollary2.30: Every weakly locally Lindelöf P L_3 – $space$ is locally Lindelöf. **Proof.** Obvious.

Theorem2.31: For a Hausdorff locally Lindelöf space *X* the following are equivalent: (a) *X* is an LC - *space*.

(b) *X* is a *P* – *space* and an L_2 – *space*.

Proof. (a) \Rightarrow (b): Let *X* be an *LC* – *space*, then *X* is an *L*₂ – *space* and an L_1 – *space*

Since X is a locally Lindelöf, then X is a P – space by theorem 2.10. (b) \Rightarrow (a):Let *L* be a Lindelöf subset of (X,T) and let $x \notin L$. Since (X,T) is Hausdorff, for each $y \in L$ there exist an open set V_y containing y with $x \notin cUV_y$.

Reyadh.D/ Adam.A

Clearly $\{V_y : y \in L\}$ is a cover of L and so there exists a countable set $C \subseteq L$ such that $L \subseteq \bigcup_{y \in C} V_y \subseteq \bigcup_{y \in C}$ *y y C* $L \subseteq \bigcup V_y \subseteq \bigcup clV$ $\in C$ $y \in$ $\subseteq \bigcup V_y \subseteq \bigcup clV_y$. For each $y \in C$, $L \cap clV_y$ is Lindelöf and so $\mathit{cl}(L \cap \mathit{clV}_y)$ is Lindelöf since (X,T) is an L_2 – space. Furthermore, if $W = \bigcup_{y \in C} cl(L \cap clV_y)$ $W = \bigcup cl(L \cap clV_{y})$ \in $=\int c l(L \cap c l V_{v})$ then W is a Lindelöf F_{σ} – closed set and, since

X,*T*

is

is a P – *space*, *W* is a closed Lindelöf set not containing *x*. Thus $x \notin \text{clL}$. This shows that *L*

is closed in (X, T) .

Theorem2.32: Every $Q - set$ $L_1 - space$ is an $L_2 - space$.

Proof. Let L be a Lindelöf subset of X, then L is an F_{σ} – closed set (since X is a

Q – set space),so L is closed set(since X is an L_1 – space),then $L = cL$ and cL

a Lindelöf. Hence X is an L_2 – space.

Theorem2.33: For a locally Lindelöf $Q - set$ space X the following are equivalent:

- (a) *X* is an L_1 *space*.
- (b) *X* is a P *space* and an L_2 *space*.

Proof. (a) \Rightarrow (b): Let *X* be an L_1 – *space*, since *X* is a *Q* – *set* space, then *X* is

an L_2 – *space* by theorem 2.32. Since X is a locally Lindelöf L_1 – *space*, then *X* is a

 P – *space* by theorem 2.10.

(b) \Rightarrow (a): This is obvious by theorem 2.5(vii).

Definition2.34 [2]: A topological space (X, T) is called aweak P – space if any countable union of regular closed sets is closed. One can show easily that (X, T) is aweak *P* – *space* if and only if for every countable family $\{U_n : n \in \omega\}$ of open sets,

$$
cl\left(\bigcup_{n\in\omega}U_n\right)=\bigcup_{n\in\omega}clU_n.
$$

Corollary2.35: Every P – space (X,T) is a weak P – space.

Proof. Let F be a countable union of regular closed sets in P – space (X,T) , then F is an

is an F_{σ} -closed set, so F is a closed set(since X is a P - space), hence X is a weak

 P – *space* .

Reyadh.D/ Adam.A

Corollary2.36:

(i) Every locally Lindelöf $LC - space(X,T)$ is weak $P - space$. (ii) Every weakly locally Lindelöf $LC - space(X,T)$ is weak $P - space$. (iii) Every Lindelöf $LC - space(X,T)$ is weak $P - space$. Proof. Obvious.

Corollary2.36: For a Hausdorff locally Lindelöf space *X* the following are equivalent: (a) *X* is an LC – *space*.

- (b) *X* is a P *space* and an L_2 *space*.
- (c) *X* is an L_1 space.

Proof. This is obvious by theorem 2.16 and theorem 2.33.

Theorem2.37: Every locally Lindelöf weak P – space (X,T) is L_4 – space.

Proof. Let *L* be a Lindelöf subset of (X,T) . Each point of *L* has an open neighborhood U_x such that clU_x is Lindelöf. Pick accountable subset C of L such that $L \subseteq \bigcup U_x$. Since *x C* ϵ (X,T) is aweak *P* – *space* we have $clL \subseteq \bigcup_{x \in C}$ $clL \subseteq \bigcup clU_{x} = W$ ë \subseteq | $|clU_x = W$. Since *W* is Lindelöf we conclude that *clL* is Lindelöf and closed ,so *clL* is Lindelöf F_{σ} – *closed* set ,hence (X,T) is an L_4 – space.

3. Co- Lindelöf Topologies:

Theorem3.1 [2]: For a *space* (X, T) the following are equivalent:

- (a) (X,T) is an L_1 *space*.
- (b) $(X, l(T))$ is a P *space*.

Corollary3.2: If (X,T) is Lindelöf space then $l(T) = T$. **Proof**: Obvious.

Corollary3.3: If (X,T) is an LC – space then $(X, l(T))$ is a P – space. **Proof:** This is obvious by theorem 2.5(i) and theorem 3.1.

Reyadh.D/ Adam.A

Theorem3.4: For a L_3 – space (X,T) the following are equivalent:

- (a) (X,T) is an $LC-space$.
- (b) $(X, l(T))$ is a P space.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P*-space, then (X, T) is an *L*₁-space by theorem 3.1.

Since (X,T) is an L_3 – *space*, then (X,T) is an LC – *space* by theorem 2.5(ii).

Theorem 3.5 [1]: Every Q – set space is an L_3 – space.

Corollary3.6: Every $Q - set$ $L_1 - space$ is an $LC - space$.

Proof. Let *X* be Q – set space, then *X* is an L_3 – space by theorem3.5,since *X* is an L_1 – *space*, then *X* is an LC – *space* by theorem2.5(ii).

Theorem3.7: For a Q – set space (X, T) the following are equivalent:

(a) (X,T) is an $LC-space$.

(b) $(X, l(T))$ is a P – *space*.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P* – *space*, then (X, T) is an L_1 – *space* by theorem 3.1.

Since (X,T) is a Q – set space, then (X,T) is an LC – space by corollary 3.6.

Theorem3.8: For a locally Lindelöf space (X, T) the following are equivalent:

- (a) (X,T) is a P *space*.
- (b) $(X, l(T))$ is a P *space*.

Proof. (a) \Rightarrow (b): Let (X,T) be a *P*-*space*. Since (X,T) is a locally Lindelof space,then

 (X,T) is a L_1 – *space* by theorem 2.10,hence $(X, l(T))$ is a *P* – *space* by theorem 3.1.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P* – *space*, then (X, T) is an L_1 – *space* by theorem 3.1.

Since (X, T) is a locally Lindelöf space, then (X, T) is an P – space by theorem 2.10.

Definition 3.9 [1]: A topological space (X,T) is said to be anti – Lindelöf if each Lindelof subset of *X* is countable.

Reyadh.D/ Adam.A

Theorem3.10 [2]: Every T_1 anti- Lindelöf space is an L_3 – space. Hence every T_1 , anti-Lindelöf L_1 – *space* is an LC – *space*.

Theorem3.11: For a T_1 anti- Lindelöf space (X,T) the following are equivalent: (a) (X,T) is an $LC-space$.

(b) $(X, l(T))$ is a P – *space*.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P* – *space*, then (X, T) is an L_1 – *space* by theorem

3.1. Since (X,T) is T_1 anti-Lindelöf space, then (X,T) is an LC - space by theorem 3.10.

Theorem3.12 [2]: For a Hausdorff space X the following are equivalent:

(a) *X* is an $LC - space$.

(b) *X* is an L_1 – *space* and an L_2 – *space*.

Theorem3.13: For a Hausdorff L_2 – space (X,T) the following are equivalent: (a) (X,T) is an $LC-space$.

(b) $(X, l(T))$ is a P – *space*.

Proof. (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P* – *space*, then (X, T) is an L_1 – *space* by theorem 3.1.

Since (X,T) is a Hausdorff L_2 – space, then (X,T) is an LC – space by theorem 3.12.

Theorem3.14 [4]: Acountable union of Lindelöf subset is Lindelöf.

Theorem3.15: Every Lindelöf L_1 – space is a P – space.

Proof. For each $n \in \omega$, let A_n be closed in Lindelöf L_1 – space X and $A = \bigcup A_n$ $\in \omega$ *n*

, then A_n is a Lindelöf subset in X and thus A is a Lindelöf subset in X by theorem 3.14. Since *X* is an L_1 – *space*, then *A* is closed in *X*, hence *X* is a *P* – *space*.

Theorem3.16: For a Hausdorff Lindelöf space *X* the following are equivalent:

- (a) X is an LC *space*.
- (b) X is an L_1 space.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by theorem 2.5(i).

(b) \Rightarrow (a): Let X be an L_1 – *space*, since X is a Lindelöf space, then X is a P – *space* by theorem 3.15. Since X is a Hausdorff space, then X is an LC – *space* by theorem 2.7.

Theorem3.17: For a Hausdorff Lindelöf space (X, T) the following are equivalent:

(a) (X,T) is an $LC-space$.

(b) $(X, l(T))$ is a P – *space*.

Proof: (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P*-space, then (X, T) is an *L*₁-space by theorem 3.1.

Since (X,T) is a Hausdorff Lindelöf space, then (X,T) is an LC - space by theorem3.16.

Theorem3.18: For a Hausdorff locally Lindelöf space (X,T) the following are equivalent:

(a) (X,T) is an $LC-space$.

(b)
$$
(X, l(T))
$$
 is a P – space.

Proof: (a) \Rightarrow (b): This is obvious by corollary 3.3.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P* – *space*, then (X, T) is an L_1 – *space* theorem 3.1.

Since (X, T) is a Hausdorff locally Lindelöf space, then (X, T) is an LC – space by

corollary 2.11.

Corollary3.19: If (X,T) is an L_1 – space then $(X, l(T))$ is an L_1 – space.

Proof. Let (X,T) be an L_1 – *space*, then $(X, l(T))$ is a *P* – *space* by theorem3.1.Hence

 $(X, l(T))$ is an L_1 – *space* by theorem 2.5(vii).

Definition3.20[7]: A topological space (X,T) is cid – space if every countable subset of *X* is closed and discrete.

Remark3.21[7]: *LC space* is *cid space* .

Theorem3.22: For anti – Lindelöf space X the following are equivalent:

(a) X is an $LC-space$.

(b) X is cid *- space*.

Reyadh.D/ Adam.A

Proof. (a) \Rightarrow (b): This is obvious by remark 3.21. (b) \Rightarrow (a): Let *L* be a Lindelöf subset of *X*, then *L* is countable (since *X*

is anti – Lindelöf), so *L* is a closed set(since *X* is $cid - space$), hence *X* is an *LC space*.

Corollary3.23: If (X,T) is a anti-Lindelöf *cid – space* then $(X, l(T))$ is a *P – space*. **Proof**: Let (X,T) be a anti- Lindelöf *cid – space*, then (X,T) is an LC – *space* by

theorem 3.22. Hence $(X, l(T))$ is a P – space by corollary 3.3.

Theorem3.24 [2]: Every $T_1 L_1$ – space is cid.

Theorem3.25: For a T_1 anti-Lindelöf space (X,T) the following are equivalent: (a) (X,T) is $cid-space$.

(b) $(X, l(T))$ is a P – *space*.

Proof. (a) \Rightarrow (b): Let (X,T) be cid - space . Since (X,T) is a anti-Lindelof space, Then (X, T) is an L_1 – *space* by theorem 3.22and theorem 2.5(i), hence $(X, l(T))$

is

a P – *space* by theorem 3.1.

(b) \Rightarrow (a): Let $(X, l(T))$ be a *P*-space, then (X, T) is an *L*₁ – space by theorem3.1.

Since (X,T) is T_1 space, then (X,T) is cid – *space* by theorem 3.24.

Theorem3.26: If $(X, l(T))$ is a Lindelöf LC – space then (X, T) is an L_1 – space.

Proof. For each $n \in \omega$, let A_n be closed and Lindelöf in (X,T) and let $A = \bigcup A_n$. $\in \omega$ *n*

Since $(X, l(T))$ is a Lindelöf *LC* – *space*, then each A_n is closed and Lindelöf in $(X, l(T))$ and so *A* is

also closed and Lindelöf in $(X, l(T))$ by theorem 3.14. Hence A is closed in (X, T) and so (X,T) is an L_1 – *space*.

4. Locally LC- spaces:

Definition4.1 [6]: A topological space (X,T) is called a Locally $LC-space$ if each point of X has a neighborhood which is an LC – subspace.

Clearly every LC – space is locally LC – space. In general the converse needs not be true $|5|$, however every regular locally $LC - space$ is $LC - space$.

Definition4.2[6]: A topological space (X,T) is called an LC -space if each point of X has a closed neighborhood that is an LC – subspace.

Theorem4.3[3]: Every locally LC – space is T_1 .

Reyadh.D/ Adam.A

Theorem4.4: For a regular P – space X the following are equivalent: (a) *X* is an LC – *space*.

- (b) *X* is a locally $LC space$.
- (c) *X* is an T_1 space.

Proof. (a) \Rightarrow (b): This is obvious by definition4.1.

(b) \Rightarrow (a): This is obvious by definition4.1.

(b) \Rightarrow (c): This is obvious by theorem 4.3.

(c) \Rightarrow (b):Let *X* be a *T*₁ – *space*, since *X* is a regular, then *X* is a Hausdorff. Since *X* is a P – *space*, then *X* is an LC – *space* by theorem 2.7, hence *X* is a locally LC – space by definition4.1.

Corollary4.5: For a Finite topological *space X* the following are equivalent:

- (a) *X* is an LC *space*.
- (b) *X* is a locally $LC space$.

Proof. Obvious .

2.7,

Theorem4.6: For a R_1 P – space X the following are equivalent:

- (a) *X* is an $LC space$.
- (b) *X* is a locally $LC space$.
- (c) *X* is T_1 space.
- (d) *X* is a Hausdorff space .

Proof. (a) \Rightarrow (b): This is obvious by definition4.1.

(b) \Rightarrow (a): This is obvious by theorem 4.3, definition2.25and definition4.1.

(b) \Rightarrow (c): This is obvious by theorem 4.3.

(c) \Rightarrow (b): Let *X* be a *T*₁ - *space*, since *X* is a *R*₁, then *X* is a Hausdorff by definition 2.25. Since *X* is a P – *space*, then *X* is an LC – *space* by theorem

hence *X* is a locally LC – *space* by definition4.1. $(c) \implies (d)$: This is obvious by definition 2.25. $(d) \implies$ (c): Obvious.

Reyadh.D/ Adam.A

Theorem4.7: For a regular L_1 L_2 – space X the following are equivalent:

(a) *X* is a locally $LC - space$.

(b) *X* is T_1 – *space*.

X

is

Proof. (a) \Rightarrow (b): This is obvious by theorem 4.3.

(b) \Rightarrow (a): Let *X* be a *T*₁ - *space*, since *X* is a regular *L*₁ *L*₂ - *space*, then

is an LC -space by theorem 3.12, hence X is a locally LC -space by definition4.1.

Theorem 4.8: For a regular locally Lindelöf L_1 – space X the following are equivalent:

(a) *X* is a locally $LC - space$.

(b) X is T_1 – space.

Proof. (a) \Rightarrow (b): This is obvious by theorem 4.3.

(b) \implies (a) : Let *X* be a *T*₁ - *space*, since *X* is a regular locally Lindelöf L_1 – space,

then *X* is an LC – *space* by corollary 2.11, hence *X* is a locally LC – *space* by definition4.1.

Theorem4.9 [3]: Every locally compact Hausdorff space is T_3 .

Theorem4.10: For a locally compact R_1 – space X the following are equivalent:

- (a) *X* is an $LC space$.
- (b) *X* is a locally $LC space$.

Proof. (a) \Rightarrow (b): This is obvious by definition4.1.

(b) \Rightarrow (a) : Let *X* be a locally *LC* – *space*, then *X* is a T_1 – *space* by theorem 4.3.

Since X is a R_1 – space, then X is a Hausdorff by definition 2.25. Since X

a locally compact, so X is a regular by theorem 4.9, hence X is an LC – space by definition 4.1.

Proposition4.11 [3]: For a *space X* the following are equivalent:

(a) *X* is a locally $LC - space$.

(b) Every point of X has an open neighborhood, which is an LC – subspace of X.

Reyadh.D/ Adam.A

Theorem4.12: Every 2^{nd} countable (C_{11}) , a locally $LC-space$ is discrete.

Proof. Let (X,T) be 2^{nd} countable and a locally LC – *space*. We may assume that every point $x \in X$ has an open neighborhood U that is both hereditarily Lindelöf and an *LC* – *space* (since *X* is a 2^{nd} countable and by Proposition 4.11).But this means that *U* is an open discrete subspace of (X, T) . Hence (X, T) is discrete.

Theorem4.13: If (X,T) a regular space has an open cover by locally *LC subspaces*,

then *X* is an LC – *space*.

Proof. Let $X = \bigcup G_i$ be an open cover of X where each G_i is a locally $LC - space$, and *i I* ϵ let $x \in X$. Choose $j \in I$ such that $x \in G_j$. If U_j is an open and closed neighborhood(since *X* is a regular) of x in G_j such that U_j is an LC – *space* of G_j , then U_j is also open and closed in (X, T) . By definition 4.2, (X, T) is an LC – space.

Theorem4.14: If (X,T) a regular space has an open cover by LC – subspaces, then X is an LC – *space*.

Proof. Let $X = \bigcup_{i \in I}$ $X = \bigcup G_i$ ë $\bigcup G_i$ be an open cover of X where each G_i is LC – space, and let $x \in X$.Choose $j \in I$ such that $x \in G_j$. If U_j is a closed neighborhood(since X is a regular) of x in G_j such that U_j is an LC – *space* of G_j , then U_j is also closed in (X,T) . By definition 4.2, (X, T) is an LC – *space*.

We have the following diagrams:

Reyadh.D/ Adam.A

Reyadh.D/ Adam.A

Refereces

[1]Bankston P., The total negation of a topological property , Illinois J. Math. 23 (1979),

241-255.

[2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LCspaces,Acta

Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 345-353.

- [3] Dontchev J., Ganster M. and Kanibir A., On locally LC- spaces, Math.GN. Vol. arXiv,7(1998), pp. 1-5.
- [4] Engelking R. ,General Topology. Heldermann Verlag, Berlin, revised and completed edition,1989.
- [5] Dontchev J., Ganster M., On the product of LC *spaces*, Q & A in General Topology15 (1997), 71–74 .
- [6] Ganster M.,Kanibir A.,Reilly I., Two Comments Concerning Certain Topological Spaces ,Indian J., Pure Appl. Math.29(9)965-967,September1998..
- [7] Ganster M. and Jankovic D., On spaces whose Lindelöf subsets are closed, Q & A in General Topology 7 (1989), 141–148

[8] Gauld D. B., Mrsevic M., Reilly I. and Vamanamurthy M. K., Co-Lindelof topologies

and I-continuous functions, Glasnik Mat. 19(39) (1984),297-308.

[9] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6 (1988), 67- 72.

[10] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelof sets are closed, Q & A in

General Topology 4 (1986), 3-13.

[11] Levy R., A non-P L-closed space, $Q & A$ in General Topology 4 (1986), 145-146. [12] Misra A. K., A topological view of P - spaces , Topology & Appl.2(1972), 349-362.

[13] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459–474.

[14]Ori R. G., A note on L-closed spaces, Q & A in General Topology 4 (1986/87), 141– 143.