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A B S T R A C T 

In this paper, a hybrid PSO (NLPSO*) is adapted to improve the obtained local optimal 

solution for the Permutation Flow Shop Scheduling Problem (PFSP) with minimizing the 

makespan. In this method, an improved NEH heuristic called 𝑁-NEH+ is used to generate a 

good initial population. Then the PSO is triggered, followed by Iterated Local Search (ILS) to 

increase the coverage of exploration and exploitation search in the solution space. Both of the 

𝑁-NEH+ and ILS  are simple and efficient algorithms.  A computational study is performed to 

show the efficiency of the proposed technique. Several of well-known PFSP instances of small, 

medium, and large sizes were used in this study. The experimental study shows that the 

NLPSO* algorithm is significantly efficient in reaching better local optimal solutions. 

MSC.41A25; 41A35; 41A3 
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1. Introduction 

      Scheduling problem is belonging to bigger class of the Combinatorial Optimization Problems (COP). It is one of 

the most important and common operations research problems in real life, such as manufacturing, production, and 

other applications. The scheduling problem is a decision-making process used on an ordinary foundation in many 

manufacturing and services industries. In manufacturing processes, the job is the item to be manufactured, and 

resources are machines. The general goal of scheduling is to decrease production time and costs [1]. 

The PFSP is one of the well-known types of scheduling problems. It is very important in daily life applications and 

the theory of scheduling [1]. The PFSP consists of number of 𝑛 jobs (𝑖 = 1,… , 𝑛) flowing in the same order on 𝑚  

machines (𝑗 = 1,… ,𝑚). Other assumptions in PFSP are that it assumes each machine handles each job in an equal 

order, and no machine can handle more than one job simultaneously. Different objective functions have been used 
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with the PFSP. The most common criterion is makespan or so-called (𝐶𝑚𝑎𝑥). Other different objective functions 

defined for the PFSP include a minimum of maximum completion time [1], total weighted [2], etc. In this paper, the 

PFSP is considered to minimize the makespan. The PFSP is an NP-Hard problem [3], that means it has massive 

number of feasible solutions. Different methods are proposed and developed in the literature of PFSP. These 

methods have been classified into various categories: exact, heuristics, metaheuristics, artificial intelligence, etc. 

Exact methods have been applied for PFSP to find the global optimal solution. The branch and bound method is one 

of the well-known exact methods used for small instances of the PFSP [4]. Since the PFSP is an NP-Hard problem, the 

size of the problem is important in exact methods. For this, when the size of the problem increases, exact methods 

consume huge amount of time. This reason pushed researchers to find alternative methods to handle this type of the 

NP-Hard problem. 

In 1954 [5], Johnson introduced the first heuristic method for the PFSP. The author solves the problem to minimize 

the makespan of jobs. He considers the case of only two machines to schedule 𝑛 jobs. [6] presented a new algorithm 

for solving PFSP with minimizing the makespan called CDS, considered as an extension of Johnson's rule. In 1983, 

Nawaz, Enscore, and Ham introduced the first efficient constructive heuristic called NEH,  that still standing today as 

one of the best heuristics that applied for the PFSP [7]. Several researchers have developed the NEH heuristic for the 

PFSP, such as [8] proposed two methods to improve the original NEH, based on two independent stages in the 

method. The results showed that the successive use of the two improvement methods resulted in an average 

improvement compared to the effective results of the original NEH heuristic. In [9], the authors improved NEH using 

a new index value that combines standard deviation and means. In addition, they used a new local search method to 

improve the method, and the results showed superiority over other experimental methods used to obtain the best 

solutions. [10] introduced an efficient 𝑁-NEH+ method, which extends the classical version of the NEH method. The 

authors used the 𝑁-list of 𝑁 jobs to be candidates for partial sequencing. In this work, an initial population of the 

NLPSO* method is generated using 𝑁-NEH+. 

Metaheuristics are advanced optimization methods used to treat large and complex COPs. For example, [11] used a 

fireworks algorithm to solve the job shop scheduling problem. Many metaheuristics have been proposed to solve the 

PFSP with makespan minimization. For example, Simulated Annealing [12], Genetic Algorithm [13], Tabu Search 

[14], Ant Colony Optimization [15], PSO [16,17], Locust Swarm Optimization [18] and so on.  For more details about 

the methods to solve the PFSP with minimizing the makespan, see [19]. The PSO belongs to the population-based 

nature inspired and swarm intelligence types of meta-heuristics. This algorithm is inspired by the movement of 

some organisms such as birds, fish, and insects. The PSO has been used successfully in solving different COPs, 

including scheduling problems. This algorithm was introduced by Kennedy and Eberhart in 1995 [20]. Tasgetiren et 

al. [17] used the PSO to solve PFSP with the makespan criterion. The authors used the smallest value position rule 

(SPV) to convert the position vector into a sequence of particles. Then the variable local search of neighbor search 

method (VNS) is applied to improve the solution quality. In [21], the authors introduced a PSO-based hybrid 

metaheuristic for PFSP by integrating simulated annealing and VNS with PSO to improve the exploitation ability. 

Also, they used the path relinking strategy to improve exploration ability. In [22], the authors combined PSO with 

NEH to increase the efficiency of the solution. Also, they used the VNS to overcome early convergence of PSO. 
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In this paper, a hybrid NLPSO* is adapted and used for solving PFSP with minimizing the makespan. The NLPSO* 

algorithm combines PSO and improved 𝑁-NEH+ heuristics with ILS, where the 𝑁-NEH+ and ILS are fast and simple 

algorithms. The improved 𝑁-NEH+ heuristic is used to generate good quality initial population. Also, ILS is 

implemented to improve the exploitation and exploration in the solution space. The remainder of this work includes 

the following: The definition of the PFSP is given in section 2. The PSO, using the 𝑁-NEH+ to generate an initial 

population, and ILS algorithms are discussed in Section 3. Section 4 includes the parameters used and the 

experimental results. The last section, 5, discusses the conclusions and future works. 

2. Definition of the Problem  

In the PFSP, the sequence of processing 𝑛-jobs on 𝑚-machines is kept unchanged. In other words [1], there are 𝑛 

jobs 𝐽1,  𝐽2, … . ,  𝐽𝑛 must be scheduled on 𝑚 machines 𝑀1,  𝑀2, … ,  𝑀𝑚 in the same order. The goal is to find the optimal 

sequence among 𝑛! sequence. Let 𝑝𝑖𝑗  is a non-negative integer indicating the time required to process job 𝑖 by 

machine 𝑗, and it is called processing time, where 𝑖 = 1,2, . . , 𝑛 and 𝑗 = 1,2, … ,𝑚. There are some assumptions to be 

considered in the PFSP: 

 All operations must start at time zero. 

 No process should be interrupted during its execution. 

 Each job must be treated on one machine, as well as each machine must treat one job at a time.  

 One machine cannot be set to process more than one job simultaneously.  

 Processing of all jobs must be done in the same order. 

In this work, the sequence that minimizes the maximum completion time is determined using the objective function 

of makespan. The makespan is the minimum of 𝐶𝑚𝑎𝑥 , which indicates for time to complete the processing of the last 

job 𝑛  on the last machine 𝑚  and can be calculated as shown below: 

 𝐶11 = 𝑝11. 

 𝐶𝑖1 = 𝑝(𝑖)1 + 𝐶(𝑖−1)1      𝑖 = 2, … , 𝑛.  

 𝐶1𝑗 = 𝑝1(𝑗) + 𝐶1(𝑗−1)                   𝑗 = 2, … ,𝑚.  

 𝐶𝑖𝑗 = 𝑝𝑖𝑗 +𝑚𝑎𝑥{𝐶(𝑖−1)𝑗 , 𝐶𝑖(𝑗−1)}              𝑖 = 2,… , 𝑛  ,   𝑗 = 2, . . , 𝑚. 

 𝐶𝑚𝑎𝑥 = 𝐶𝑛𝑚. 

3. The proposed methods 

In this section, three methods of PSO, NEH with 𝑁-NEH+ and ILS, and their hybridization are discussed in detail.  

3.1 The PSO algorithm 

PSO is a stochastic search technique used to find local optimal solutions for COPs. This algorithm is inspired by the 

collective behavior of some organisms like birds, fish, and insects for searching for food. PSO is considered one of 
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the important metaheuristic algorithms, which has many applications in various areas of life, such as 

communications, design, power systems, control, and many more. In PSO, each of individuals inside the swarm is 

called a particle. This particle is a candidate solution. Each of these particles has its velocity and position. To get the 

optimal solution, each 𝑖𝑡ℎ particle adjusts its orientation in the search space according to the best position obtained 

so far (pbest) and the best position obtained by any particle in the whole swarm (gbest). After finding the pbest and 

the gbest, the particle updates both the velocity and the position in every dimension 𝑡 (1 ⩽ 𝑡 ⩽ 𝑇) by: 

𝑣𝑖,𝑡(𝑘 + 1) = 𝜔𝑣𝑖,𝑡(𝑘) + 𝑐1𝑟1[𝑝𝑖,𝑡(𝑘) − 𝑥𝑖,𝑡(𝑘)] + 𝑐2𝑟2[𝑝𝑔,𝑡(𝑘) − 𝑥𝑖,𝑡(𝑘)] (1) 

𝑥𝑖,𝑡(𝑘 + 1) = 𝑥𝑖,𝑡(𝑘)+𝑣𝑖,𝑡(𝑘 +1) (2) 

Where 𝑟1 and 𝑟2 are random samples generated within [0,1]. 𝑘 is the iteration count. 𝜔 determines the amount of the 

particle's previous velocity conserved and is called inertia weight. Acceleration coefficients are a term for both 

𝑐1and 𝑐2 and they are always positive. 𝑣𝑖,𝑡(𝑘+1) and 𝑣𝑖,𝑡(𝑘) are the next and current of velocity 𝑖𝑡ℎ  particle 

respectively. The particle 𝑖  at iteration  𝑘  is denoted by 𝑋𝑖(𝑘),  this particle can be written as a 

[𝑥𝑖,1(𝑘), 𝑥𝑖,2(𝑘), … , 𝑥𝑖,𝑇(𝑘)], where each element in this vector indicates that the particle 𝑖 is located at iteration 𝑘 

with respect to dimension 𝑡. The velocity 𝑉 of each 𝑖𝑡ℎ particle at iteration 𝑘 can also be written as a vector 

[𝑣𝑖,1(𝑘), 𝑣𝑖,2(𝑘), … , 𝑣𝑖,𝑇(𝑘)]. The personal best (pbest) position can be written as a vector 𝑃𝑖= [𝑝𝑖,1, 𝑝𝑖,2, … , 𝑝𝑖,𝑇], and 

the global pest (gbest) position can also be written as a vector 𝐺(𝑘) = [𝑔1(𝑘), 𝑔2(𝑘), … , 𝑔𝑇(𝑘)] [17]. 

The PFSP with minimizing the makespan was solved using PSO for the first time by Tasgetiren et al. [17], where they 

used the heuristic SPV rule to rearrange particles in descending sequence. The steps can be as follow: 

1. After initializing the parameters, the algorithm starts. 

2. At 𝑘 = 0. 

3. Generate both the initial velocity and the initial position randomly, the position of the particle as 

𝑋𝑖(0) = [𝑥𝑖,1(0), 𝑥𝑖,2(0), … , 𝑥𝑖,𝑇(0)] and its velocity as 𝑉𝑖(0)=[𝑣𝑖,1(0), 𝑣𝑖,2(0), … , 𝑣𝑖,𝑇(0)], 𝑖 = 1,2, . . , 𝜎. 

4. Use the SPV rule to find the sequence Γ𝑖(0)={Γ𝑖,1(0), Γ𝑖,2(0), … , Γ𝑖,𝑇(0)}.  

5. Set 𝑃𝑖(0) =  𝑋𝑖(0), and calculate the fitness function (makespan) for each particle, then determine which has 

the lowest fitness function let be, 𝑋𝜑(0), 𝜑 ∈  𝑖 = 1,2, . . , 𝜎.   

6. Compute the gbest 𝐺(0), where 𝐺(0) = 𝑋𝜑(0).  

7. For 𝑘 = 𝑘 + 1.  

8. Update 𝜔 as 𝜔 (𝑘 + 1) = 𝛼.𝜔 (𝑘), where 𝛼 is the diminishing factor. 

9. Update the velocity using equation 1, then update the position using equation 2. 

10. Find the sequence Γ𝑖(𝑘 + 1)= {Γ𝑖,1(𝑘 + 1), Γ𝑖,2(𝑘 + 1), … , Γ𝑖,𝑇(𝑘 + 1)} by applying the SPV rule. 
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11. Find the fitness function (makespan) for each 𝑋𝑖 . 

12. If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑋𝑖(𝑘 + 1) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑃𝑖(𝑘), then update the pbest as 𝑃𝑖(𝑘 + 1) = 𝑋𝑖(𝑘 + 1) and determine which 

particle has the lowest fitness function, let be, 𝑋𝜑(𝑘 + 1). 

13. If  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑋𝜑(𝑘 + 1) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺(𝑘), then update the gbest as  𝐺(𝑘 + 1) = 𝑋𝜑(𝑘 + 1). 

14. The algorithm stops if the specified maximum number of iterations or CPU is exceeded. Otherwise, repeat 

the same steps above, starting with step 7. 

3.2 The NEH and NEH+ heuristics 

The NEH algorithm [7] is considered one of the most famous constructive heuristic methods for finding the best 

sequence for a PFSP with minimizing the makespan. The main idea of the NEH heuristic is that the jobs with largest 

total process time should be given higher priority to be processed. NEH is the most efficient measure of flow shop 

scheduling problem, which builds a sequence of jobs by inserting recursively unscheduled jobs into the subsequent 

partial sequences. NEH has been used to solve many problems, and it has also been used as an initial solution in 

some methods. In this work, a good initial population to the proposed NLPSO* algorithm is generated using a 

modified NEH heuristic called 𝑁-NEH+. Subsequently, the SPV rule is used to construct a job sequence for this 

population [17]. The NEH and NEH+ algorithms can be described in Figures 1 and 2.  

  

 1 Input: 𝑛 jobs, 𝑚 machines, and the processing times of each job on each 

machine. 

2 Compute the total processing times for each job on all machine. 

3 Sort the 𝑛 jobs in descending order according to the total processing times and 

generate initial sequence Γ0 . 

4 Generate a partial sequence containing the first two jobs of  Γ0 . 

5 Take the first job from the partial sequence and insert it into all possible 

positions of that sequence, and create two partial sequences. 

6 Calculate the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛  for each of the two partial sequences. 

7 Keep the sequence with minimizing the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 as a new partial sequence. 

8 Set 𝑖 = 3. 

9 Take the job in the 𝑖𝑡ℎ  position of Γ0 and enter it in all possible positions in 

the previous partial sequence.  

10 Calculate the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 for all the resulting sequences. 

11 Keep the sequence with minimizing the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 as a new partial sequence. 

12  If 𝑛 =  𝑖, stop, otherwise set 𝑖 = 𝑖 + 1 and go to step 9. 

13 Output: Best solution. 

                      FIGURE 1. Procedure of the NEH Heuristic 
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3.3 Iterated Local Search 

ILS is an essential and successful algorithm [23,25], which is fundamentally used for improve large-scale 

optimization problems and give local optimal solution. Also, it may have the ability to make significant changes at 

any stage. [25] proposed the first ILS algorithm for the PFSP. ILS is applied to the given problem through four 

procedures; generate an initial solution, perturbation, local search, and acceptance criterion. In this work, the ILS 

presented in [25] is used. The ILS procedure can be summarized in Figure 3, where a local search procedure based 

on the insertion neighborhood was used. A number of swap-moves or at least one interchange move were applied in 

the perturbation procedure. Finally, a local search for Large-Step Markov Chain [24] with fixed temperature was 

used as an acceptance criterion. It accepts the worst new solution with a probability 𝑒
(𝐶𝑚𝑎𝑥(𝛤

′  )−𝐶𝑚𝑎𝑥(𝛤))

𝑇 , if a new 

solution is less than or equal to the old, it is always accepted, where 𝑇 is a temperature parameter. The purpose of 

the perturbation is to escape from the local optima or a specific search space by optimizing the candidate solutions 

more than the modifications made in the local search stage. The acceptance criterion is of great importance in 

determining which solutions will continue. Figure 3 shows the ILS procedure, where 𝛤′  represents the new 

permutation of jobs, 𝛤∗  represents the optimal permutation. 

 1 Input: 𝑛 jobs, 𝑚 machines, and 𝑝𝑖𝑗 . 

2 Compute the total processing times for each job on all machine. 

3 Sort the 𝑛 jobs in descending order according to the total 

processing times and generate initial list Γ0. 

4 Put 𝑖 = 1 and create partial sequence 𝑅 = 1. 

5 Initialize an 𝑁-list of candidate jobs Γ𝑁 = {𝑖 + 1,… , 𝑖 + 𝑁} and 

delete the relevant jobs from Γ0. 

6 Evaluate each of the jobs in 𝑁-list, and then insert the best 

obtained job in the partial sequence 𝑅, and remove it from Γ𝑁. 

7 If (Γ0 ≠ 𝜙), take the first job from Γ0 and append it to  𝑁-list and 

delete this job from Γ0. 

8 Repeat steps 6 and 7 until all jobs are scheduled. 

9 Output: Best solution. 

          FIGURE 2. Procedure of the 𝑁-NEH+ Heuristic 
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4. Experimental results 

In this study, the well-known benchmark instances of the PFSP, including Carlier [26] and Taillard [27], are tested. 

The implementations of the proposed algorithms have been done using MapleSoft 2020. The computer specification 

is 8GB RAM and an Intel(R) Core (TM) i7-8565U/1.99 GHz processor. Table 1 shows the parameters that used in 

this study.  

TABLE 1. The parameters used for the proposed algorithms  

Expression Given parameter 
𝑐1, 𝑐2 2, 2 
𝜔0 0.975 
𝛼 0.9 
𝜌 2𝑛 

The number of iterations 500 
Replications 10 

 

The implementation is repeated ten times for each instance to obtain more reliable results. Suppose the best-

obtained solution through any algorithm is 𝐶𝑏𝑒𝑠𝑡  and assume the lower bound of makespan is 𝐶𝑙𝑏 . This paper 

considers three types of relative deviations: WPD, RPD, and APD. WPD is the worst relative percentage deviation to 

𝐶𝑏𝑒𝑠𝑡 , RPD is the best relative percentage deviation to 𝐶𝑏𝑒𝑠𝑡 , and APD is the average percentage deviation to 𝐶𝑏𝑒𝑠𝑡 . 

WPD, RPD and APD are defined in the following equations:  

 Input: Γ0 = {Γ1 ,… , Γ𝑛} the initial sequence 

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ←   𝑔𝑟𝑒𝑎𝑡 𝑣𝑎𝑙𝑢𝑒 

Γ∗ ← Γ0 ,   Γ ← Γ0 

while {the stopping criterion not satisfied} 

do 

Choose Γ′  from the neighborhood of 𝑁𝑘(Γ) 

      if 𝐶𝑚𝑎𝑥(Γ′) < 𝐶𝑚𝑎𝑥(Γ), then Γ ← Γ′   

             if 𝐶𝑚𝑎𝑥(Γ) < 𝐶𝑚𝑎𝑥(Γ∗) 

                    then Γ∗ ← Γ 

            end if 

             else 

               if 𝑟𝑎𝑛𝑑𝑜𝑚 ≤ 𝑒
− 

𝐶𝑚𝑎𝑥 (Γ′ )−𝐶𝑚𝑎𝑥 (Γ)

𝑇
 
 

                      then Γ ← Γ′   

              end if 

      end if 

end while 

Output: Γ∗  and makespan 

FIGURE 3. Procedure of the ILS 
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𝑊𝑃𝐷 =
𝑂𝑝𝑡𝑆𝑜𝑙 −𝑊𝑜𝑟𝑠𝑡𝑆𝑜𝑙

𝑂𝑝𝑡𝑆𝑜𝑙
 

(3) 

𝑅𝑃𝐷 =
𝑂𝑝𝑡𝑆𝑜𝑙 − 𝐵𝑒𝑠𝑡𝑆𝑜𝑙

𝑂𝑝𝑡𝑆𝑜𝑙
 

(4) 

𝐴𝑃𝐷 =
𝑂𝑝𝑡𝑆𝑜𝑙 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑜𝑙

𝑂𝑝𝑡𝑆𝑜𝑙
 

(5) 

This section compares the proposed hybrid NLPSO* algorithm against some well-known and recent algorithms for 

the PFSP with minimizing the makespan. The comparison includes the following algorithms:  

1. NPSO*. 

2. NPSO. 

3. ILPSO. 

4. PSO [17]. 

5. VNSPSO [17].  

6. EDA-CSO [28]. 

7. BA [28]. 

NPSO* is the hybridization of NEH+ and PSO. Similarly, the NPSO includes NEH and PSO. Also, ILPSO 

represents the ILS and PSO. While the VNSPSO refers to the application of PSO and VNS [17]. Moreover, 

the EDA-CSO is the improved cat swarm algorithm [28]. Finally, BA is the Bat algorithm [28]. In Tables 2, 

3, and 4, the average of 11 instances of each size of Taillard's benchmark problems is given with ten 

replications. Table 2 shows the comparison of ILPSO and VNSPSO; the results showed that the ILPSO produced 

better solutions compared to VNSPSO, precisely in medium and large instances (50 × 20, 100 × 10, 100 ×

5, 100 × 20, 200 × 10, and 200 × 20). In Table 3, the NPSO* is compared against the NPSO; the results illustrated 

that the performance of NPSO* is better than NPSO in eight instances out of 11. Table 4 and Figure 4 show that the 

NLPSO* algorithm gives better results than the PSO algorithm. This confirms the strength and effectiveness of the 

proposed NLPSO* algorithm in finding local optimal solutions, especially for medium and large-scale PFSP 

problems. 

                             TABLE 2. RPD of VNSPSO and ILPSO for Taillard’s instances  

 ILPSO VNSPSO 

20x5   0.62 0.49 
20x10   0.98 0.46 
20x20   0.67 0.34 
50x5   0.48 0.22 
50x10   0.71 0.64 
50x20   0.09 0.48 
100x5 0.06 0.17 
100x10 0.17 0.33 
100x20 0.26 0.39 
200x10 0.08 0.22 
200x20 0.07 0.36 
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                                                 TABLE 3. RPD of NPSO and NPSO* for Taillard’s instances 

 NPSO* NPSO 
20x5 0 0.12 

20x10 0.26 0.28 
20x20 0.04 0.17 
50x5 0.07 0.19 

50x10 0.97 0.6 
50x20 1.3 0.29 
100x5 0.02 0.11 

100x10 0.19 0.41 
100x20 0.09 0.17 
200x10 0.01 0.14 
200x20 0.03 0.36 

 

TABLE 4. RPD of PSO and NLPSO* for Taillard’s instances  

 PSO NLPSO* 
20x5 1.25 0 

20x10 1.19 0 
20x20 1.15 0 
50x5 0.70 0.02 

50x10 1.16 0.94 
50x20 1.35 0.99 
100x5 0.34 0 

100x10 1.04 0.89 
100x20 0.99 0.04 
200x10 0.71 0.41 
200x20 0.81 0.53 

 
 

 

 

 

 

 

 

 

 

 
 
 
For Carlier’s instances, the performance of NLPSO*, PSO, EDA-CSO, and BA are tested, as given in Table 5. The results 

showed the proposed NLPSO* algorithm's superiority over the other algorithms. Figures 5 and 6 include the APD 

and WPD for the compared algorithms. 
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TABLE 5. Performance of NLPSO*, PSO, EDA-CSO and BA for Carlier’s instances 

 NLPSO* PSO EDA-CSO BA 

 𝑛 ×𝑚 BRE ARE WRE BRE ARE WRE BRE ARE WRE BRE ARE WRE 

Car1 
11
× 5 0 0 

0.07 
0 0.52 2.72 0 0.01 0.20 0 0.32 1.68 

Car2 
13
× 4 0 1.09 

4.72 
0 5.22 10.8 0 1.37 5.00 0 3.68 6.29 

Car3 
12
× 5 0 1.35 

2.98 
0 3.77 9.04 0 1.85 3.17 0 2.36 3.87 

Car4 
14
× 4 0 0.22 

4.64 
0 3.86 6.55 0 0.37 4.98 0 2.64 5.25 

Car5 
10
× 7 0 0.24 

1.42 
0 1.24 2.12 0 0.18 1.09 0 1.01 1.84 

Car6 8 × 9 0 0.65 1.96 0 2.06 5.7 0 0.52 2.12 0 1.44 3.39 

Car7 7 × 7 0 0.23 2.57 0 1.61 4.51 0 0.15 2.03 0 0.91 2.58 

Car8 8 × 8 0 0.09 1.01 0 3.85 8.88 0 0.29 1.33 0 1.08 2.51 
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FIGURE 6. WPD of NLPSO*, PSO, EDA-CSO and BA for Carlier's instances  
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5. Conclusion 

In this work, the solution of the PFSP with minimizing the makespan using a hybrid NLPSO* is presented and 

discussed. In this algorithm, the 𝑁-NEH+ is applied to generate better initial population, since the algorithm that 

starts from good quality initial solution leads to better results. Then the PSO algorithm is used and the obtained 

solutions are improved by ILS. The experimental study is conducted with well-known benchmark problems of PFSP 

instances, including Taillard and Carlier instances. The experimental results prove the outperforming of the NLPSO* 

algorithm on other algorithms, including the recent EDA-CSO algorithm. For future work, the NLPSO* algorithm can 

used to solve other COPs such as vehicle routing problem, knapsack problem, etc.  Also, proposing other heuristics 

or local search method to improve the efficiency of various metaheuristics could be consider as future study. 
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