
Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 13(4) 2021 , pp Math . 16–27 16

∗Corresponding author: : Azhar Abdulhussein.

Email addresses: : aizhar.jasim.sci@uobasrah.edu.iq.

Communicated by: Dr. Rana Jumaa Surayh aljanabi.

Enhanced PSO Based on Population Initialization and
Exploration for the Permutation Flow Shop Scheduling Problem

Azhar Y. Abdulhussein, Mohanad AL-Behadili*

Department of Mathematics, College of Science, University of Basrah, Iraq.

Email: aizhar.jasim.sci@uobasrah.edu.iq, *Email: mohanad.saad@uobasrah.edu.iq

A R T I C L E I N F O

Article history:

Received: 25 /10/2021

Rrevised form: 15 /11/2021

Accepted : 21 /12/2021

Available online: 02 /01/2022

Keywords:

 Permutation Flow Shop Scheduling
Problem;
Particle Swarm Optimization;
N-NEH+ Heuristic;
Iterated Local Search.

A B S T R A C T

In this paper, a hybrid PSO (NLPSO*) is adapted to improve the obtained local optimal

solution for the Permutation Flow Shop Scheduling Problem (PFSP) with minimizing the

makespan. In this method, an improved NEH heuristic called 𝑁-NEH+ is used to generate a

good initial population. Then the PSO is triggered, followed by Iterated Local Search (ILS) to

increase the coverage of exploration and exploitation search in the solution space. Both of the

𝑁-NEH+ and ILS are simple and efficient algorithms. A computational study is performed to

show the efficiency of the proposed technique. Several of well-known PFSP instances of small,

medium, and large sizes were used in this study. The experimental study shows that the

NLPSO* algorithm is significantly efficient in reaching better local optimal solutions.

MSC.41A25; 41A35; 41A3

https://doi.org/10.29304/jqcm.2021.13.4.867

1. Introduction

 Scheduling problem is belonging to bigger class of the Combinatorial Optimization Problems (COP). It is one of

the most important and common operations research problems in real life, such as manufacturing, production, and

other applications. The scheduling problem is a decision-making process used on an ordinary foundation in many

manufacturing and services industries. In manufacturing processes, the job is the item to be manufactured, and

resources are machines. The general goal of scheduling is to decrease production time and costs [1].

The PFSP is one of the well-known types of scheduling problems. It is very important in daily life applications and

the theory of scheduling [1]. The PFSP consists of number of 𝑛 jobs (𝑖 = 1,… , 𝑛) flowing in the same order on 𝑚

machines (𝑗 = 1,… ,𝑚). Other assumptions in PFSP are that it assumes each machine handles each job in an equal

order, and no machine can handle more than one job simultaneously. Different objective functions have been used

mailto:aizhar.jasim.sci@uobasrah.edu.iq
https://doi.org/10.29304/jqcm.2021.13.4.867

Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 17

with the PFSP. The most common criterion is makespan or so-called (𝐶𝑚𝑎𝑥). Other different objective functions

defined for the PFSP include a minimum of maximum completion time [1], total weighted [2], etc. In this paper, the

PFSP is considered to minimize the makespan. The PFSP is an NP-Hard problem [3], that means it has massive

number of feasible solutions. Different methods are proposed and developed in the literature of PFSP. These

methods have been classified into various categories: exact, heuristics, metaheuristics, artificial intelligence, etc.

Exact methods have been applied for PFSP to find the global optimal solution. The branch and bound method is one

of the well-known exact methods used for small instances of the PFSP [4]. Since the PFSP is an NP-Hard problem, the

size of the problem is important in exact methods. For this, when the size of the problem increases, exact methods

consume huge amount of time. This reason pushed researchers to find alternative methods to handle this type of the

NP-Hard problem.

In 1954 [5], Johnson introduced the first heuristic method for the PFSP. The author solves the problem to minimize

the makespan of jobs. He considers the case of only two machines to schedule 𝑛 jobs. [6] presented a new algorithm

for solving PFSP with minimizing the makespan called CDS, considered as an extension of Johnson's rule. In 1983,

Nawaz, Enscore, and Ham introduced the first efficient constructive heuristic called NEH, that still standing today as

one of the best heuristics that applied for the PFSP [7]. Several researchers have developed the NEH heuristic for the

PFSP, such as [8] proposed two methods to improve the original NEH, based on two independent stages in the

method. The results showed that the successive use of the two improvement methods resulted in an average

improvement compared to the effective results of the original NEH heuristic. In [9], the authors improved NEH using

a new index value that combines standard deviation and means. In addition, they used a new local search method to

improve the method, and the results showed superiority over other experimental methods used to obtain the best

solutions. [10] introduced an efficient 𝑁-NEH+ method, which extends the classical version of the NEH method. The

authors used the 𝑁-list of 𝑁 jobs to be candidates for partial sequencing. In this work, an initial population of the

NLPSO* method is generated using 𝑁-NEH+.

Metaheuristics are advanced optimization methods used to treat large and complex COPs. For example, [11] used a

fireworks algorithm to solve the job shop scheduling problem. Many metaheuristics have been proposed to solve the

PFSP with makespan minimization. For example, Simulated Annealing [12], Genetic Algorithm [13], Tabu Search

[14], Ant Colony Optimization [15], PSO [16,17], Locust Swarm Optimization [18] and so on. For more details about

the methods to solve the PFSP with minimizing the makespan, see [19]. The PSO belongs to the population-based

nature inspired and swarm intelligence types of meta-heuristics. This algorithm is inspired by the movement of

some organisms such as birds, fish, and insects. The PSO has been used successfully in solving different COPs,

including scheduling problems. This algorithm was introduced by Kennedy and Eberhart in 1995 [20]. Tasgetiren et

al. [17] used the PSO to solve PFSP with the makespan criterion. The authors used the smallest value position rule

(SPV) to convert the position vector into a sequence of particles. Then the variable local search of neighbor search

method (VNS) is applied to improve the solution quality. In [21], the authors introduced a PSO-based hybrid

metaheuristic for PFSP by integrating simulated annealing and VNS with PSO to improve the exploitation ability.

Also, they used the path relinking strategy to improve exploration ability. In [22], the authors combined PSO with

NEH to increase the efficiency of the solution. Also, they used the VNS to overcome early convergence of PSO.

 Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 18

In this paper, a hybrid NLPSO* is adapted and used for solving PFSP with minimizing the makespan. The NLPSO*

algorithm combines PSO and improved 𝑁-NEH+ heuristics with ILS, where the 𝑁-NEH+ and ILS are fast and simple

algorithms. The improved 𝑁-NEH+ heuristic is used to generate good quality initial population. Also, ILS is

implemented to improve the exploitation and exploration in the solution space. The remainder of this work includes

the following: The definition of the PFSP is given in section 2. The PSO, using the 𝑁-NEH+ to generate an initial

population, and ILS algorithms are discussed in Section 3. Section 4 includes the parameters used and the

experimental results. The last section, 5, discusses the conclusions and future works.

2. Definition of the Problem

In the PFSP, the sequence of processing 𝑛-jobs on 𝑚-machines is kept unchanged. In other words [1], there are 𝑛

jobs 𝐽1, 𝐽2, … . , 𝐽𝑛 must be scheduled on 𝑚 machines 𝑀1, 𝑀2, … , 𝑀𝑚 in the same order. The goal is to find the optimal

sequence among 𝑛! sequence. Let 𝑝𝑖𝑗 is a non-negative integer indicating the time required to process job 𝑖 by

machine 𝑗, and it is called processing time, where 𝑖 = 1,2, . . , 𝑛 and 𝑗 = 1,2, … ,𝑚. There are some assumptions to be

considered in the PFSP:

 All operations must start at time zero.

 No process should be interrupted during its execution.

 Each job must be treated on one machine, as well as each machine must treat one job at a time.

 One machine cannot be set to process more than one job simultaneously.

 Processing of all jobs must be done in the same order.

In this work, the sequence that minimizes the maximum completion time is determined using the objective function

of makespan. The makespan is the minimum of 𝐶𝑚𝑎𝑥 , which indicates for time to complete the processing of the last

job 𝑛 on the last machine 𝑚 and can be calculated as shown below:

 𝐶11 = 𝑝11.

 𝐶𝑖1 = 𝑝(𝑖)1 + 𝐶(𝑖−1)1 𝑖 = 2, … , 𝑛.

 𝐶1𝑗 = 𝑝1(𝑗) + 𝐶1(𝑗−1) 𝑗 = 2, … ,𝑚.

 𝐶𝑖𝑗 = 𝑝𝑖𝑗 +𝑚𝑎𝑥{𝐶(𝑖−1)𝑗 , 𝐶𝑖(𝑗−1)} 𝑖 = 2,… , 𝑛 , 𝑗 = 2, . . , 𝑚.

 𝐶𝑚𝑎𝑥 = 𝐶𝑛𝑚.

3. The proposed methods

In this section, three methods of PSO, NEH with 𝑁-NEH+ and ILS, and their hybridization are discussed in detail.

3.1 The PSO algorithm

PSO is a stochastic search technique used to find local optimal solutions for COPs. This algorithm is inspired by the

collective behavior of some organisms like birds, fish, and insects for searching for food. PSO is considered one of

Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 19

the important metaheuristic algorithms, which has many applications in various areas of life, such as

communications, design, power systems, control, and many more. In PSO, each of individuals inside the swarm is

called a particle. This particle is a candidate solution. Each of these particles has its velocity and position. To get the

optimal solution, each 𝑖𝑡ℎ particle adjusts its orientation in the search space according to the best position obtained

so far (pbest) and the best position obtained by any particle in the whole swarm (gbest). After finding the pbest and

the gbest, the particle updates both the velocity and the position in every dimension 𝑡 (1 ⩽ 𝑡 ⩽ 𝑇) by:

𝑣𝑖,𝑡(𝑘 + 1) = 𝜔𝑣𝑖,𝑡(𝑘) + 𝑐1𝑟1[𝑝𝑖,𝑡(𝑘) − 𝑥𝑖,𝑡(𝑘)] + 𝑐2𝑟2[𝑝𝑔,𝑡(𝑘) − 𝑥𝑖,𝑡(𝑘)] (1)

𝑥𝑖,𝑡(𝑘 + 1) = 𝑥𝑖,𝑡(𝑘)+𝑣𝑖,𝑡(𝑘 +1) (2)

Where 𝑟1 and 𝑟2 are random samples generated within [0,1]. 𝑘 is the iteration count. 𝜔 determines the amount of the

particle's previous velocity conserved and is called inertia weight. Acceleration coefficients are a term for both

𝑐1and 𝑐2 and they are always positive. 𝑣𝑖,𝑡(𝑘+1) and 𝑣𝑖,𝑡(𝑘) are the next and current of velocity 𝑖𝑡ℎ particle

respectively. The particle 𝑖 at iteration 𝑘 is denoted by 𝑋𝑖(𝑘), this particle can be written as a

[𝑥𝑖,1(𝑘), 𝑥𝑖,2(𝑘), … , 𝑥𝑖,𝑇(𝑘)], where each element in this vector indicates that the particle 𝑖 is located at iteration 𝑘

with respect to dimension 𝑡. The velocity 𝑉 of each 𝑖𝑡ℎ particle at iteration 𝑘 can also be written as a vector

[𝑣𝑖,1(𝑘), 𝑣𝑖,2(𝑘), … , 𝑣𝑖,𝑇(𝑘)]. The personal best (pbest) position can be written as a vector 𝑃𝑖= [𝑝𝑖,1, 𝑝𝑖,2, … , 𝑝𝑖,𝑇], and

the global pest (gbest) position can also be written as a vector 𝐺(𝑘) = [𝑔1(𝑘), 𝑔2(𝑘), … , 𝑔𝑇(𝑘)] [17].

The PFSP with minimizing the makespan was solved using PSO for the first time by Tasgetiren et al. [17], where they

used the heuristic SPV rule to rearrange particles in descending sequence. The steps can be as follow:

1. After initializing the parameters, the algorithm starts.

2. At 𝑘 = 0.

3. Generate both the initial velocity and the initial position randomly, the position of the particle as

𝑋𝑖(0) = [𝑥𝑖,1(0), 𝑥𝑖,2(0), … , 𝑥𝑖,𝑇(0)] and its velocity as 𝑉𝑖(0)=[𝑣𝑖,1(0), 𝑣𝑖,2(0), … , 𝑣𝑖,𝑇(0)], 𝑖 = 1,2, . . , 𝜎.

4. Use the SPV rule to find the sequence Γ𝑖(0)={Γ𝑖,1(0), Γ𝑖,2(0), … , Γ𝑖,𝑇(0)}.

5. Set 𝑃𝑖(0) = 𝑋𝑖(0), and calculate the fitness function (makespan) for each particle, then determine which has

the lowest fitness function let be, 𝑋𝜑(0), 𝜑 ∈ 𝑖 = 1,2, . . , 𝜎.

6. Compute the gbest 𝐺(0), where 𝐺(0) = 𝑋𝜑(0).

7. For 𝑘 = 𝑘 + 1.

8. Update 𝜔 as 𝜔 (𝑘 + 1) = 𝛼.𝜔 (𝑘), where 𝛼 is the diminishing factor.

9. Update the velocity using equation 1, then update the position using equation 2.

10. Find the sequence Γ𝑖(𝑘 + 1)= {Γ𝑖,1(𝑘 + 1), Γ𝑖,2(𝑘 + 1), … , Γ𝑖,𝑇(𝑘 + 1)} by applying the SPV rule.

 Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 20

11. Find the fitness function (makespan) for each 𝑋𝑖 .

12. If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑋𝑖(𝑘 + 1) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑃𝑖(𝑘), then update the pbest as 𝑃𝑖(𝑘 + 1) = 𝑋𝑖(𝑘 + 1) and determine which

particle has the lowest fitness function, let be, 𝑋𝜑(𝑘 + 1).

13. If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑋𝜑(𝑘 + 1) < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐺(𝑘), then update the gbest as 𝐺(𝑘 + 1) = 𝑋𝜑(𝑘 + 1).

14. The algorithm stops if the specified maximum number of iterations or CPU is exceeded. Otherwise, repeat

the same steps above, starting with step 7.

3.2 The NEH and NEH+ heuristics

The NEH algorithm [7] is considered one of the most famous constructive heuristic methods for finding the best

sequence for a PFSP with minimizing the makespan. The main idea of the NEH heuristic is that the jobs with largest

total process time should be given higher priority to be processed. NEH is the most efficient measure of flow shop

scheduling problem, which builds a sequence of jobs by inserting recursively unscheduled jobs into the subsequent

partial sequences. NEH has been used to solve many problems, and it has also been used as an initial solution in

some methods. In this work, a good initial population to the proposed NLPSO* algorithm is generated using a

modified NEH heuristic called 𝑁-NEH+. Subsequently, the SPV rule is used to construct a job sequence for this

population [17]. The NEH and NEH+ algorithms can be described in Figures 1 and 2.

 1 Input: 𝑛 jobs, 𝑚 machines, and the processing times of each job on each

machine.

2 Compute the total processing times for each job on all machine.

3 Sort the 𝑛 jobs in descending order according to the total processing times and

generate initial sequence Γ0 .

4 Generate a partial sequence containing the first two jobs of Γ0 .

5 Take the first job from the partial sequence and insert it into all possible

positions of that sequence, and create two partial sequences.

6 Calculate the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 for each of the two partial sequences.

7 Keep the sequence with minimizing the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 as a new partial sequence.

8 Set 𝑖 = 3.

9 Take the job in the 𝑖𝑡ℎ position of Γ0 and enter it in all possible positions in

the previous partial sequence.

10 Calculate the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 for all the resulting sequences.

11 Keep the sequence with minimizing the 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 as a new partial sequence.

12 If 𝑛 = 𝑖, stop, otherwise set 𝑖 = 𝑖 + 1 and go to step 9.

13 Output: Best solution.

 FIGURE 1. Procedure of the NEH Heuristic

Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 21

3.3 Iterated Local Search

ILS is an essential and successful algorithm [23,25], which is fundamentally used for improve large-scale

optimization problems and give local optimal solution. Also, it may have the ability to make significant changes at

any stage. [25] proposed the first ILS algorithm for the PFSP. ILS is applied to the given problem through four

procedures; generate an initial solution, perturbation, local search, and acceptance criterion. In this work, the ILS

presented in [25] is used. The ILS procedure can be summarized in Figure 3, where a local search procedure based

on the insertion neighborhood was used. A number of swap-moves or at least one interchange move were applied in

the perturbation procedure. Finally, a local search for Large-Step Markov Chain [24] with fixed temperature was

used as an acceptance criterion. It accepts the worst new solution with a probability 𝑒
(𝐶𝑚𝑎𝑥(𝛤

′)−𝐶𝑚𝑎𝑥(𝛤))

𝑇 , if a new

solution is less than or equal to the old, it is always accepted, where 𝑇 is a temperature parameter. The purpose of

the perturbation is to escape from the local optima or a specific search space by optimizing the candidate solutions

more than the modifications made in the local search stage. The acceptance criterion is of great importance in

determining which solutions will continue. Figure 3 shows the ILS procedure, where 𝛤′ represents the new

permutation of jobs, 𝛤∗ represents the optimal permutation.

 1 Input: 𝑛 jobs, 𝑚 machines, and 𝑝𝑖𝑗 .

2 Compute the total processing times for each job on all machine.

3 Sort the 𝑛 jobs in descending order according to the total

processing times and generate initial list Γ0.

4 Put 𝑖 = 1 and create partial sequence 𝑅 = 1.

5 Initialize an 𝑁-list of candidate jobs Γ𝑁 = {𝑖 + 1,… , 𝑖 + 𝑁} and

delete the relevant jobs from Γ0.

6 Evaluate each of the jobs in 𝑁-list, and then insert the best

obtained job in the partial sequence 𝑅, and remove it from Γ𝑁.

7 If (Γ0 ≠ 𝜙), take the first job from Γ0 and append it to 𝑁-list and

delete this job from Γ0.

8 Repeat steps 6 and 7 until all jobs are scheduled.

9 Output: Best solution.

 FIGURE 2. Procedure of the 𝑁-NEH+ Heuristic

 Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 22

4. Experimental results

In this study, the well-known benchmark instances of the PFSP, including Carlier [26] and Taillard [27], are tested.

The implementations of the proposed algorithms have been done using MapleSoft 2020. The computer specification

is 8GB RAM and an Intel(R) Core (TM) i7-8565U/1.99 GHz processor. Table 1 shows the parameters that used in

this study.

TABLE 1. The parameters used for the proposed algorithms

Expression Given parameter
𝑐1, 𝑐2 2, 2
𝜔0 0.975
𝛼 0.9
𝜌 2𝑛

The number of iterations 500
Replications 10

The implementation is repeated ten times for each instance to obtain more reliable results. Suppose the best-

obtained solution through any algorithm is 𝐶𝑏𝑒𝑠𝑡 and assume the lower bound of makespan is 𝐶𝑙𝑏 . This paper

considers three types of relative deviations: WPD, RPD, and APD. WPD is the worst relative percentage deviation to

𝐶𝑏𝑒𝑠𝑡 , RPD is the best relative percentage deviation to 𝐶𝑏𝑒𝑠𝑡 , and APD is the average percentage deviation to 𝐶𝑏𝑒𝑠𝑡 .

WPD, RPD and APD are defined in the following equations:

 Input: Γ0 = {Γ1 ,… , Γ𝑛} the initial sequence

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 ← 𝑔𝑟𝑒𝑎𝑡 𝑣𝑎𝑙𝑢𝑒

Γ∗ ← Γ0 , Γ ← Γ0

while {the stopping criterion not satisfied}

do

Choose Γ′ from the neighborhood of 𝑁𝑘(Γ)

 if 𝐶𝑚𝑎𝑥(Γ′) < 𝐶𝑚𝑎𝑥(Γ), then Γ ← Γ′

 if 𝐶𝑚𝑎𝑥(Γ) < 𝐶𝑚𝑎𝑥(Γ∗)

 then Γ∗ ← Γ

 end if

 else

 if 𝑟𝑎𝑛𝑑𝑜𝑚 ≤ 𝑒
−

𝐶𝑚𝑎𝑥 (Γ′)−𝐶𝑚𝑎𝑥 (Γ)

𝑇

 then Γ ← Γ′

 end if

 end if

end while

Output: Γ∗ and makespan

FIGURE 3. Procedure of the ILS

Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 23

𝑊𝑃𝐷 =
𝑂𝑝𝑡𝑆𝑜𝑙 −𝑊𝑜𝑟𝑠𝑡𝑆𝑜𝑙

𝑂𝑝𝑡𝑆𝑜𝑙

(3)

𝑅𝑃𝐷 =
𝑂𝑝𝑡𝑆𝑜𝑙 − 𝐵𝑒𝑠𝑡𝑆𝑜𝑙

𝑂𝑝𝑡𝑆𝑜𝑙

(4)

𝐴𝑃𝐷 =
𝑂𝑝𝑡𝑆𝑜𝑙 − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑆𝑜𝑙

𝑂𝑝𝑡𝑆𝑜𝑙

(5)

This section compares the proposed hybrid NLPSO* algorithm against some well-known and recent algorithms for

the PFSP with minimizing the makespan. The comparison includes the following algorithms:

1. NPSO*.

2. NPSO.

3. ILPSO.

4. PSO [17].

5. VNSPSO [17].

6. EDA-CSO [28].

7. BA [28].

NPSO* is the hybridization of NEH+ and PSO. Similarly, the NPSO includes NEH and PSO. Also, ILPSO

represents the ILS and PSO. While the VNSPSO refers to the application of PSO and VNS [17]. Moreover,

the EDA-CSO is the improved cat swarm algorithm [28]. Finally, BA is the Bat algorithm [28]. In Tables 2,

3, and 4, the average of 11 instances of each size of Taillard's benchmark problems is given with ten

replications. Table 2 shows the comparison of ILPSO and VNSPSO; the results showed that the ILPSO produced

better solutions compared to VNSPSO, precisely in medium and large instances (50 × 20, 100 × 10, 100 ×

5, 100 × 20, 200 × 10, and 200 × 20). In Table 3, the NPSO* is compared against the NPSO; the results illustrated

that the performance of NPSO* is better than NPSO in eight instances out of 11. Table 4 and Figure 4 show that the

NLPSO* algorithm gives better results than the PSO algorithm. This confirms the strength and effectiveness of the

proposed NLPSO* algorithm in finding local optimal solutions, especially for medium and large-scale PFSP

problems.

 TABLE 2. RPD of VNSPSO and ILPSO for Taillard’s instances

 ILPSO VNSPSO

20x5 0.62 0.49
20x10 0.98 0.46
20x20 0.67 0.34
50x5 0.48 0.22
50x10 0.71 0.64
50x20 0.09 0.48
100x5 0.06 0.17
100x10 0.17 0.33
100x20 0.26 0.39
200x10 0.08 0.22
200x20 0.07 0.36

 Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 24

 TABLE 3. RPD of NPSO and NPSO* for Taillard’s instances

 NPSO* NPSO
20x5 0 0.12

20x10 0.26 0.28
20x20 0.04 0.17
50x5 0.07 0.19

50x10 0.97 0.6
50x20 1.3 0.29
100x5 0.02 0.11

100x10 0.19 0.41
100x20 0.09 0.17
200x10 0.01 0.14
200x20 0.03 0.36

TABLE 4. RPD of PSO and NLPSO* for Taillard’s instances

 PSO NLPSO*
20x5 1.25 0

20x10 1.19 0
20x20 1.15 0
50x5 0.70 0.02

50x10 1.16 0.94
50x20 1.35 0.99
100x5 0.34 0

100x10 1.04 0.89
100x20 0.99 0.04
200x10 0.71 0.41
200x20 0.81 0.53

For Carlier’s instances, the performance of NLPSO*, PSO, EDA-CSO, and BA are tested, as given in Table 5. The results

showed the proposed NLPSO* algorithm's superiority over the other algorithms. Figures 5 and 6 include the APD

and WPD for the compared algorithms.

0

0.5

1

1.5
20x5

20x10

20x20

50x5

50x10

50x20100x5

100x10

100x20

200x10

200x20

NLPSO*

PSO

FIGURE 4. RPD of NLPSO* and PSO for Taillard’s instances

0

1

2

3

4

5

6

Car1 Car2 Car3 Car4 Car5 Car6 Car7 Car8

A
P

D

Problem

NLPSO*

PSO

EDA-CSO

BA

FIGURE 5. APD OF NLPSO*, PSO, EDA-CSO, AND BA FOR CARLIER'S

INSTANCES

0

1

2

3

4

5

6

Car1 Car2 Car3 Car4 Car5 Car6 Car7 Car8

A
P

D

Problem

NLPSO*

PSO

EDA-CSO

BA

FIGURE 5. APD OF NLPSO*, PSO, EDA-CSO, AND BA FOR CARLIER'S

INSTANCES

0

2

4

6

8

10

12

Car1 Car2 Car3 Car4 Car5 Car6 Car7 Car8

W
P

D

Problem

NLPSO*

PSO

EDA-CSO

BA

FIGURE 6. WPD OF NLPSO*, PSO, EDA-CSO, AND BA FOR CARLIER'S

INSTANCES

0

2

4

6

8

10

12

Car1 Car2 Car3 Car4 Car5 Car6 Car7 Car8

W
P

D

Problem

NLPSO*

PSO

EDA-CSO

BA

FIGURE 6. WPD OF NLPSO*, PSO, EDA-CSO, AND BA FOR CARLIER'S

INSTANCES

Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 25

TABLE 5. Performance of NLPSO*, PSO, EDA-CSO and BA for Carlier’s instances

 NLPSO* PSO EDA-CSO BA

 𝑛 ×𝑚 BRE ARE WRE BRE ARE WRE BRE ARE WRE BRE ARE WRE

Car1
11
× 5 0 0

0.07
0 0.52 2.72 0 0.01 0.20 0 0.32 1.68

Car2
13
× 4 0 1.09

4.72
0 5.22 10.8 0 1.37 5.00 0 3.68 6.29

Car3
12
× 5 0 1.35

2.98
0 3.77 9.04 0 1.85 3.17 0 2.36 3.87

Car4
14
× 4 0 0.22

4.64
0 3.86 6.55 0 0.37 4.98 0 2.64 5.25

Car5
10
× 7 0 0.24

1.42
0 1.24 2.12 0 0.18 1.09 0 1.01 1.84

Car6 8 × 9 0 0.65 1.96 0 2.06 5.7 0 0.52 2.12 0 1.44 3.39

Car7 7 × 7 0 0.23 2.57 0 1.61 4.51 0 0.15 2.03 0 0.91 2.58

Car8 8 × 8 0 0.09 1.01 0 3.85 8.88 0 0.29 1.33 0 1.08 2.51

0

1

2

3

4

5

6

Car1 Car2 Car3 Car4 Car5 Car6 Car7 Car8

A
P

D

Problem

NLPSO*

PSO

EDA-CSO

BA

FIGURE 5. APD of NLPSO*, PSO, EDA-CSO and BA for Carlier's instances

FIGURE 6. WPD of NLPSO*, PSO, EDA-CSO and BA for Carlier's instances

0

2

4

6

8

10

12

Car1 Car2 Car3 Car4 Car5 Car6 Car7 Car8

W
P

D

Problem

NLPSO*

PSO

EDA-CSO

BA

 Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 26

5. Conclusion

In this work, the solution of the PFSP with minimizing the makespan using a hybrid NLPSO* is presented and

discussed. In this algorithm, the 𝑁-NEH+ is applied to generate better initial population, since the algorithm that

starts from good quality initial solution leads to better results. Then the PSO algorithm is used and the obtained

solutions are improved by ILS. The experimental study is conducted with well-known benchmark problems of PFSP

instances, including Taillard and Carlier instances. The experimental results prove the outperforming of the NLPSO*

algorithm on other algorithms, including the recent EDA-CSO algorithm. For future work, the NLPSO* algorithm can

used to solve other COPs such as vehicle routing problem, knapsack problem, etc. Also, proposing other heuristics

or local search method to improve the efficiency of various metaheuristics could be consider as future study.

References

[1] M. L. Pinedo, “Scheduling,” Cham: Springer International Publishing, 2016. doi: 10.1007/978-3-319-26580-3.

[2] Al Zuwaini, M. K., Abdul Razaq TS, and S. K. Al Saidy. "Flow-Shop scheduling Problem to Minimize Total

Weighted Late Work." Journal of Al-Qadisiyah for computer science and mathematics 1.1 (2009): 147-160.

[3] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and jobshop scheduling,” Mathematics of

operations research, vol. 1, no. 2, pp. 117-129, 1976, doi: org/10.1287/moor.1.2.117.

[4] J. Carlier and I. Rebaï, “Two branch and bound algorithms for the permutation flow shop problem,” European

Journal of Operational Research, vol. 90, no. 2, pp. 238–251, 1996, doi: 10.1016/0377-2217(95)00352-5.

[5] S. M. Johnson, “Optimal two‐and three‐stage production schedules with setup times included,” Naval research

logistics quarterly, vol. 1, no. 1, pp. 61-68, 1954, doi: org/10.1002/nav.3800010110.

[6] H. G. Campbell, R. A. Dudek, and M. L. Smith, “A Heuristic Algorithm for the n Job, m Machine Sequencing

Problem,” Management Science, vol. 16, no. 10, p. B-630-B-637, Jun. 1970, doi: 10.1287/mnsc.16.10.B630.

[7] M. Nawaz, E E. Enscore, I. Ham, “A heuristic algorithm for the m-machine, n-job flow-shop sequencing

problem,” OMEGA, The International Journal of Management Science, vol. 11, no. 1, pp. 91–95, 1983, doi: 10.1016/0305-

0483(83)90088-9.

[8] C. Sauvey and N. Sauer, “Two NEH heuristic improvements for flowshop scheduling problem with makespan

criterion,” Algorithms, vol. 13, no. 5, pp. 1-14, 2020, doi: 10.3390/A13050112.

[9] G. A. D. P. K and Komarudin, “Development of NEH for Permutation Flowshop Scheduling Problem,” in

Proceedings of the 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering 2020, Jun. 2020, pp.

278-283, doi: 10.1145/3400934.3400985.

[10] R. Puka, J. Duda, A. Stawowy, and I. Skalna, “N-NEH+ algorithm for solving permutation flow shop problems,”

Computers and Operations Research, vol. 132, Aug. 2021, doi: 10.1016/j.cor.2021.105296.

[11] Hasoon, Jamal N., and Rehab Hassan. "Solving Job Scheduling Problem Using Fireworks Algorithm." Journal of

Al-Qadisiyah for computer science and mathematics 11.2 (2019): 1-8.

[12] I. Osman and C. Potts, “Simulated annealing for permutation flow-shop scheduling,” Omega, vol. 17, no. 6, pp.

551-557 pages, Jan. 1989, doi: 10.1016/0305-0483(89)90059-5.

[13] C. R. Reeves, “A genetic algorithm for flowshop sequencing,” Computers & Operations Research, vol. 22, no. 1,

pp. 5-13 pages, Jan. 1995, doi: 10.1016/0305-0548(93)E0014-K.

Azhar Abdulhussein & Mohanad AL-Behadili, JCM - Vol.13(4) 2021 , pp Math. 16–27 27

[14] Widmer, Marino, and Alain Hertz. “A New Heuristic Method for the Flow Shop Sequencing Problem.” European

Journal of Operational Research, 1989. 41(2): 186–193, doi: 10.1016/0377-2217(89)90383-4.

[15] T. Stützle et al., “An Ant Approach to the Flow Shop Problem,” In Proceedings of the 6th European Congress on

Intelligent Techniques & Soft Computing (EUFIT'98, no. February 1970, pp. 1560–1564, 1997.

[16] M. Al-Behadili, D. Ouelhadj, and D. Jones, “Multi-objective particle swarm optimisation for robust dynamic

scheduling in a permutation flow shop,”vol. 557. 2017. doi: 10.1007/978-3-319-53480-0_49.

[17] M. F. Tasgetiren, M. Sevkli, Y.-C. Liang, and G. Gencyilmaz, “Particle Swarm Optimization Algorithm for

Permutation Flowshop Sequencing Problem,” 2004, pp. 382–389. doi: 10.1007/978-3-540-28646-2_38.

[18] M. al Behadili, H. Zaki, and K. al Yasiri, “Locust swarm optimisation for the permutation flow shop scheduling

problem,” International Journal of Mathematics in Operational Research, vol. 18, no. 4, p. 545, 2021, doi:

10.1504/IJMOR.2021.114207.

[19] A. N. H. Zaied, M. M. Ismail, and S. S. Mohamed, “Permutation flow shop scheduling problem with makespan

criterion: literature review,” vol. 99, no. 4, pp. 830-848, 2021.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International

Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.

[21] L. Zhang and J. Wu, “A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems,” The

Scientific World Journal, vol. 2014, pp. 1-8, 2014, doi: 10.1155/2014/902950.

[22] T. R. Ramanan, M. Iqbal, and K. Umarali, “A particle swarm optimization approach for permutation flow shop

scheduling problem,” International Journal for Simulation and Multidisciplinary Design Optimization, vol. 5, p. A20,

2014, doi: 10.1051/smdo/2013006.

[23] T. Stützle and R. Ruiz, “Iterated Local Search,” in Handbook of Heuristics, vol. 1-2 volume, Cham: Springer

International Publishing, 2018, pp. 579-605 pages. doi: 10.1007/978-3-319-07124-4_8.

[24] O. Martin, S. W. Otto, and E. W. Felten, “Large-Step Markov Chains for the Traveling Salesman Problem,”

Citeseer, 1991.

[25] T. Stützle, “Applying iterated local search to the permutation flow shop problem,” Citeseer, 1998.

[26] B. Qian, L. Wang, R. Hu, and W. Wang, “A hybrid differential evolution method for permutation flow-shop

scheduling,” Int J Adv Manuf Technol, vol. 38, pp. 757–777, 2008, doi: 10.1007/s00170-007-1115-8.

[27] E. Taillard, “Benchmarks for basic scheduling problems,” European Journal of Operational Research, vol. 64, no.

2, pp. 278–285, 1993, doi: 10.1016/0377-2217(93)90182-M.

[28] X. Pei and Y. Tang, “Improved cat swarm optimization for permutation flow shop scheduling problem,” in

Journal of Physics: Conference Series, 2021, vol. 2010, no. 1 issue, p. 12018, doi: 10.1088/1742-6596/2010/1/012018.

