Page 72-84

Reyadh.D/ Adam.A

ON MKC-Spaces, MLC-Spaces and MH-Spaces

Reyadh Delfi Ali** ***Adam Abdulla Abker**

Recived :21\1\2015 Revised : 4\3\2015 Accepted :30\3\2015

Abstract:

The purpose of this paper is deal with the study of MKC-spaces(spaces whose minimal KC – spaces) and MLC – spaces (spaces whose minimal LC – spaces) also we studied the relationships between minimal KC -spaces, minimal LC -spaces and minimal Hausdroff spaces.

المستخلص الصغزي كما درسنا في هذه الىرقة الصغزي و فضاءات *LC* **تهذف هذه الىرقة لذراسة فضاءات** *KC* **الصغزي وفضاءات هاوسدورف الصغزي. الصغزي وفضاءات** *LC* **العالقات بين فضاءات** *KC*

KEYWORDS: *LC space***,** *P space* , Lindelöf, *KC space*.

Mathematics Subject Classification :54xx

1. Introduction:

Let P be a topological property, X be a nonempty and let $P(X)$ denote the set of all topologies on X having the property P . $P(X)$ is partially ordered by set inclusion. (X, T) is minimal *P* (*P* – minimal) if *T* is minimal in *P*(*X*). In [1] there is a good survey on minimal topologies and it stated there that every compact Hausdroff is minimal Hausdroff.

Radhi I.M. [13] introduced a new concept of minimal KC -spaces and a new concept of minimal LC – *spaces* and showed that compact KC – *space* is minimal $KC - space$ also showed that Lindelöf LC -space is minimal LC -space.

Reyadh.D/ *Adam.A*

In this paper we show that Hausdorff minimal KC *space* is minimal Hausdorff, R_1 minimal *KC* – *space* is minimal Hausdorff, regular minimal *KC* – *space* is minimal Hausdorff, If *X* and *Y* are compact Hausdorff spaces then $X \times Y$ is minimal $KC-space$ and minimal and minimal Hausdorff space, If *X* and *Y* are compact Hausdorff *LC* – *spaces*, then $X \times Y$ is minimal *LC* – *space* and minimal *KC* – *space*, If *X* and *Y* are Hausdorff Lindelof LC – *spaces*, then $X \times Y$ is minimal LC – *space* and if X and Y are Hausdorff Lindelöf P – spaces then $X \times Y$ is minimal LC – space if and only if X and Y are minimal LC – spaces .Our terminology is standard. The closure of a subset A of a space (X, T) is denoted by $c\mathcal{I}$ The set of all positive integer is denoted by ω .

2. Minimal KC-spaces:

Definition2.1 [15]: (X,T) is a KC – *space* if every compact subset of *X* is closed.

Definition2.2 [13]: Let (X,T) be a KC - space, we say that (X,T) is a minimal KC space if $T^* \subset T$ implies (X,T^*) is not a $KC-space$, (we will use MKC to denote minimal KC – space).

Definition2.3 [11]: Let (X,T) be a Hausdroff space, we say that (X,T) is a minimal Hausdroff space iff $T^* \subset T$ implies (X, T^*) is not a Hausdroff space, (we will use MH to denote minimal Hausdroff space).

Theorem2.4 [13]: Every compact KC - space is a MKC.

Corollary2.5: Every countably compact Lindelöf KC - space is a MKC. **Proof.** Obvious by theorem 2.4

Theorem2.6 [13]: Every locally compact *MKC* is a *MH* .

Theorem2.7[13]: Every locally compact KC – space X is a Hausdorff.

Reyadh.D/ *Adam.A*

Theorem2.8[13]:

- (i) Every Hausdorff space is a $KC-space$.
- (ii) Every $KC space$ is T_1 .

Theorem2.9[13]: For a compact KC – *space X* and $Y \subset X$ the following are equivalent:

- (a) Y is a closed in X .
- (b) Y is a compact in X .

Theorem2.10 [13]:

- (i) The property of being $KC space$ is a topological property.
- (ii) The property of being $KC space$ is a hereditary property.

Corollary2.11:

- (i) Every closed subspace of compact $KC space$ is a MKC .
- (ii) Every subspace of hereditarily compact KC space is a MKC.

Proof . This is obvious by theorem 2.10and theorem 2.4.

Corollary2.12: For a compact KC – *space X* and $Y \subset X$ the following are equivalent:

- (a) Y is a closed in X .
- (b) *Y* is a compact and MKC *space* in *X*.

Proof. (a) \Rightarrow (b): Let *Y* be a closed in *X*, then *Y* is a compact, so *Y* is a compact KC – *space* by theorem2.10(ii), hence *Y* is a MK – *space* by theorem2.4. (b) \Rightarrow (a) : Let *Y* be a compact *MK* – *space* in *X*, then *Y* is a compact KC – *space*, so *Y* is closed.

Theorem2.13: Every Hausdorff MKC - space is a MH.

Proof . Let (X, T) be a Hausdorff *MKC* – *space* , then *X* is a Hausdorff *KC* – *space* . Suppose X is not a $MH-space$, so there exists a topology T^* on $X, T^* \subset T$ and (X, T^*) is a Hausdorff space implies that (X, T^*) is a KC *- space* by theore 2.8(i) which is a contradiction, therefore (X, T) is a MH.

Reyadh.D/ *Adam.A*

Theorem2.14: Every compact *MH space* is a *MKC* .

Proof. Let X be a compact $MH-space$, then X is a compact Hausdorff, so X is a compact $KC - space$ by theorem2.8,hence X is a $MKC - space$ by theorem2.4.

Corollary2.15: For a compact Hausdorff space χ the following are equivalent:

- (a) X is a MKC space.
- (b) *X* is a $MH-space$.

Proof . This is obvious by theorem 2.13and theorem 2.14.

Definition2.16 [4]: (X,T) is a R_1 – *space* if *x* and *y* have disjoint neighborhoods whenever $cl\{x\} \neq cl\{y\}$. Clearly a space is Hausdorff if and only if its T_1 and R_1 .

Theorem2.17: Every R_1 MKC – space is a MH.

Proof. Let (X, T) be a R_1 *MKC* – *space*, then *X* is a R_1 *KC* – *space*, hence *X* is a Hausdorff by theorem2.8(ii) and definition 2.16.

Suppose X is not a $MH-space$, so there exists a topology T^* on X,

 $T^* \subset T$

and (X,T^*) is a Hausdorff space implies that (X,T^*) is a KC *space* by

theorem

2.8(i)which is a contradiction, therefore (X, T) is a MH.

Theorem2.18: Every regular *MKC space* is a *MH* .

Proof. Let (X, T) be a regular *MKC* – *space*, then *X* is a regular *KC* – *space*, hence *X* is

a Hausdorff by theorem2.8(ii).

Suppose X is not a $MH-space$, so there exists a topology T^* on $X, T^* \subset T$

and (X, T^*) is a Hausdorff space implies that (X, T^*) is a KC – space by theorem 2.8(i) which is a contradiction, therefore (X, T) is a MH.

Theorem2.19 [13]:

Suppose $X \times Y$ is a compact KC – *space*, then each of X, Y is a MKC – *space*.

Corollary2.20:

.

Suppose $X \times Y$ is a regular compact KC – *space*, then each of X, Y is a MH – *space*

Proof. Each of X and Y is a MKC – space by theorem 2.19.Since X and Y are regular spaces, hence each of X , Y is a MH - space by theorem 2.18.

Theorem2.21: If *X* and *Y* are compact Hausdorff spaces, then $X \times Y$ is

a *MKC* – *space* and a *MH* – *space*.

Reyadh.D/ Adam.A

Proof. Since *X* and *Y* are compact Hausdorff spaces, then $X \times Y$ is a compact Hausdorff space, so $X \times Y$ is a compact KC *- space* by theorem2.8 (i), hence $X \times Y$ is a *MKC* – *space* by theorem 2.4 and $X \times Y$ is a *MH* – *space* by theorem2.13.

3. Minimal LC-spaces:

Definition3.1: A topological space (X,T) is an LC – space if every Lindelöf subset of X is closed [6], [10]. Notice that LC – space is also known under the name L *– closed* [5], [7] and [12].

Definition3.2 [13]: Let (X,T) be a LC *Space* we say that X is a minimal *LC* – *space* (*MLC*) iff $T^* \subset T$ implies (X, T^*) is not *LC* – *space*.

Definition3.3 [3]: A set *F* in a topological space is called F_{σ} – closed if it is the union of at most countably many closed sets. A set G is called a G_{σ} – *open* if it is the intersection of at most countably many open sets.

Definition3.4[8]: A topological space (X, T) is called P – *space* if every G_{σ} – *open* set in *X* is open.

Theorem3.5 [13]: Every Lindelöf *LC space* is a *MLC*.

- **Theorem3.6 [6]:** For a Hausdorff Lindelöf space *X* the following are equivalent: (a) X is an LC - *space*.
	- (b) *X* is a P *space*.
- **Corollary3.7:** For a Hausdorff Lindelöf space *X* the following are equivalent: (a) X is a MLC – space.
	- (b) *X* is a P *space*.

Proof . This is obvious by theorem 3.5and theorem 3.6.

Reyadh.D/ Adam.A

Corollary3.8: For a Hausdorff compact space *X* the following are equivalent: (a) X is a MLC – space.

(b) X is a P – *space*.

Proof . This is obvious by theorem 3.5and theorem 3.6.

Theorem3.9 [8]: Every Huasdorff P – space is an LC – space.

Corollary3.10: Every Hausdorff Lindelöf *P space* is a *MLC*. **Proof .** This is obvious by theorem 3.9and theorem 3.5.

Theorem3.11[13]:

- (i) Every LC *space* is a KC *space*.
- (ii) Every LC *space* is a T_1 *space*.

Theorem3.12: For a compact P – space X the following are equivalent:

- (a) *X* is a $MH-space$.
- (b) X is a Hausdorff MLC space.

Proof. (a) \Rightarrow (b): Let *X* be a *MH* – *space*, then *X* is a Hausdorff, so *X* is

an LC – *space* by theorem 3.9, hence X is a MLC – *space* by theorem3.5.

(b) \implies (a): Let *X* be a Hausdorff MLC – *space*, then *X* is a Hausdorff

 LC – *space*, so *X* is a Hausdorff KC – *space* by theorem3.11 (i). Since *X*

is a compact, then X is a MKC – *space* by theorem 2.4, hence X is a MH – *space* by theorem 2.13.

Corollary3.13:

- (i) Every compact MLC space is a MKC.
- (ii) Every compact LC space is a MKC.
- (iii) Every countably compact Lindelöf LC space is a MKC.

Proof. This is obvious by theorem 3.11(i) and theorem 2.4.

Reyadh.D/ Adam.A

Theorem3.14 [13]:

- (i) The property of being LC space is a topological property.
- (ii) The property of being LC space is a hereditary property.

Corollary3.15:

- (i) Every closed subspace of compact LC space is a MLC and a MKC.
- (ii) Every closed subspace of Lindelöf LC space is a MLC.
- (iii) Every subspace of hereditarily Lindelöf LC space is a MLC.

Proof . This is obvious by theorem 3.14(ii), theorem 3.5, theorem3.11 (i) and theorem2.4. **Theorem3.16:** For a compact P – space X the following are equivalent:

- (a) X is a MKC space.
- (b) X is a MLC space.
	- **Proof.** (a) \Rightarrow (b): Let *X* be a *MKC space*, then *X* is a *KC space*, so *X* is a Hausdorff by theorem 2.7. Since *X* is a P – space, then *X* is an LC – *space* by theorem 3.9, hence *X* is a MLC – *space* by theorem 3.5. (b) \Rightarrow (a) : Let *X* be *MLC* – *space*, then *X* is an *LC* – *space*, so *X* is $KC - space$ by theorem3.11(i), hence X is a $MKC - space$ by theorem 2.4.

Definition⁷. 17 [2]: (X,T) is called

- (1) an L_1 *space* if every Lindelöf F_σ *closed* is closed,
- (2) an L_2 *space* if *clL* is Lindelöf whenever $L \subseteq X$ is Lindelöf,
- (3) an L_3 *space* s if every Lindelöf subset L is an F_σ *closed*,
- (4) an L_4 *space* if whenever $L \subseteq X$ is Lindelöf, then there is a Lindelöf F_{σ} – *closed F* with $L \subseteq F \subseteq cL$.

Theorem3.18 [2]:

- (i) (X,T) is an LC – *space*, then (X,T) is an L_i – *space*, i=1, 2, 3, 4.
- (ii) (X,T) is an L_1 – *space* and an L_3 – *space*, then (X,T) is an LC – *space*.
- (iii) Every Q set space is an L_3 space.

Reyadh.D/ Adam.A

Definition3.19 [2]: (X,T) is called a Q – set space if each subset of X is an F_{σ} – closed sets.

Corollary3.20: Every $Q - set$ $L_1 - space$ is an $LC - space$.

Proof. Let *X* be Q – set space, then *X* is an L_3 – space by theorem 3.18(iii), since *X*

is an L_1 – *space*, then *X* is an LC – *space* by theorem3.18(ii).

Theorem3.21: Every P Q – set space X is an LC – space.

Proof. If L is a Lindelöf subset in X , which is a Q – set space, then L is an F_{σ} -closed set, but *X* is a *P*-space, so *L* is a closed set, hence *X* is an LC *- space* .

Theorem3.22[3]: Countable union of Lindelöf subset is Lindelöf. **Theorem3.23:** Every Lindelöf L_1 – space is a P – space.

Proof. For each $n \in \omega$, let A_n be closed in Lindelöf L_1 – space X and $A = \bigcup A_n$, $\in \omega$ *n*

then A_n is a Lindelöf subset in X and thus A is a Lindelöf subset in X by theorem 3.22. Since *X* is an L_1 – *space*, then *A* is closed in *X*, hence *X* is a *P* – *space*.

Theorem3.24: Every PL_3 – space is an LC – space...

Proof. Let L be a Lindelöf subset of X, then L is F_{σ} – closed set (since

X is an L_3 – *space*), so *L* is closed set(since *X* is a *P* – space), hence *X* is an *LC* – *space* .

Corollary3.25:

- (i) Every Lindelöf $L_1 L_3$ *space* is a *MLC*.
- (ii) Every Hausdorff Lindelof L_1 space is a MLC.
- (iii) Every Lindelof $Q set$ $L_1 space$ is a *MLC*.
- (iv) Every LC *space* having dense Lindelöf subset is a MLC.
- (v) Every 2^{nd} countable (C_{11}) $LC-space$ is a MLC.
- (vi) Every Lindelöf P Q set space is a MLC.

(vii) Every Lindelöf PL_3 – space is a MLC.

(viii) Every compact LC – *space* is a MLC.

Reyadh.D/ Adam.A

Proof . Obvious

Corollary3.26:.

- (i) Every compact Hausdorff space is a *MKC* .
- (ii) Every compact R_1T_1 *space* is a *MKC*.
- (iii) Every compact Tychonoff P space is a MKC.
- (iv) Every compact P Q set space is a MKC.
- (v) Every compact $Q set$ $L_1 space$ is a MKC.
- (vi) Every compact $L_1 L_3$ *space* is a *MKC*.
- (vii) Every compact $L_1 L_3$ *space* is a *MKC*.

(viii) Every compact PL_3 – space is a MKC.

Proof . Obvious

Theorem 3.27 [4]: If X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC *- space*.

Theorem 3.28: If *X* and *Y* are compact Hausdorff LC – spaces, then $X \times Y$ is a *MLC* – *space* and a a MKC – space.

Proof. Since X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space by theorem3.27, so $X \times Y$ is a compact LC – space, hence $X \times Y$ is a MLC – space by corollary3.25(viii) and $X \times Y$ is a *MKC* – *space* by corollary3.13(ii).

Theorem 3.29 [6]: If *X* and *Y* are LC – *spaces* and either *X* or *Y* is regular, then $X \times Y$ is an LC – *space*.

Reyadh.D/ Adam.A

Theorem 3.30: If X and Y are compact LC – spaces and either X or Y is regular, then $X \times Y$ is a MLC – *space* and a MKC – *space*.

Proof. Since X and Y are LC – spaces and either X or Y is regular, then $X \times Y$ is an *LC* – *space* by theorem 3.29, so $X \times Y$ is a compact *LC* – *space*, hence $X \times Y$ is a *MLC space* by corollary3.25(viii) and $X \times Y$ is a MKC – space by corollary3.13(ii).

Corollary 3.31[4]: If X and Y are R_1 LC – spaces, then $X \times Y$ is an LC – space.

Theorem 3.32: If *X* and *Y* are compact R_1 *LC* – *spaces*, then $X \times Y$ is

a *MLC space* and a *MKC space* .

Proof . *X* and *Y* are R_1 *LC* – *spaces*, then $X \times Y$ is an *LC* – *space* by corollary 3.31, so $X \times Y$ is a compact LC – space, hence $X \times Y$ is a MLC – space by corollary3.25(viii) and $X \times Y$ is a *MKC* – *space* by corollary3.13(ii).

Theorem3.33[14](Nobles Theorem):

If *X* and *Y* are Lindelöf P – *space*, then $X \times Y$ is a Lindelöf.

Theorem3.34[6]: Every Lindelof LC – space is a P – space.

Theorem3.35:

If *X* and *Y* are Hausdorff Lindelöf LC – spaces, then $X \times Y$ is a MLC – space.

Proof. Since X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space by theorem 3.27. Since *X* and *Y* are Lindelöf LC – *spaces*, then *X* and *Y* are P – *space* by theorem3.34, so $X \times Y$ is a Lindelöf by theorem3.33, hence $X \times Y$ is a MLC – space by theorem3. 5.

Theorem3.36:

If *X* and *Y* are Lindelöf R_1 *LC* – *spaces*, then $X \times Y$ is a *MLC* – *space*.

Proof. *X* and *Y* are R_1 *LC* – *spaces*, then $X \times Y$ is an *LC* – *space* by corollary 3.31. Since X and Y are Lindelöf LC - spaces, then X and Y are P - space by theorem3.34, so $X \times Y$ is a Lindelöf by theorem3.33, hence $X \times Y$ is a MLC – *space* by theorem 3. 5.

Theorem3.37:

If *X* and *Y* are Lindelöf LC – *spaces* and either *X* or *Y* is regular, then $X \times Y$ is a MLC – space.

Reyadh.D/ Adam.A

Proof. Since X and Y are LC – spaces and either X or Y is regular, then $X \times Y$ is an LC – *space* by theorem 3.29, Since *X* and *Y* are Lindelöf LC – *spaces*, then *X* and *Y* are P – *space* by theorem3.34, so $X \times Y$ is a Lindelöf by theorem3.33, hence $X \times Y$ is a MLC – *space* by theorem 3.5.

Theorem3.38: If *X* and *Y* are Hausdorff Lindelöf *P spaces*,

then $X \times Y$ is a MLC – *space* if and only if X and Y are MLC – *spaces*.

Proof. Let $X \times Y$ be a MLC – space, then $X \times Y$ is an LC – space, so X and Y are LC – *spaces* by theorem 3.14(i) and (ii), hence X and *Y* are *MLC spaces* by theorem3.5.

Conversely, Let *X* and *Y* are *MLC* – *spaces*, then *X* and *Y* are *LC* – *spaces*, so *X* \times *Y* is an LC – *space* by theorem 3.27. Since X and Y are Lindelöf P – *spaces*, then $X \times Y$ is a Lindelöf by theorem 3.33, hence $X \times Y$ is a MLC – *space* by theorem 3.5.

Theorem3.39 [9]: Let *X* and *Y* be topological spaces. If *A* is closed in *X* and *B* is closed in *Y*, then $A \times B$ is closed in $X \times Y$.

Theorem3.40 [9]: *X* is Hausdorff spaces if and only if the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.

Theorem3.41: Let *X* and *Y* be Hausdorff Lindelöf LC – spaces.

If *A* is closed in *X* and *B* is closed in *Y*, then $A \times B$ is a *MLC*.

Proof. Since X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space by theorem 3.27. Since *X* and *Y* are Lindelöf LC – *spaces*, then *X* and *Y* are P – *space* by theorem3.34, so $X \times Y$ is a Lindelöf by theorem3.33, hence $A \times B$ is a MLC by theorem3. 39 and theorem3. 15(ii).

Theorem 3.42: If *X* is a Hausdorff Lindelöf LC *- space*, then the diagonal $\Delta = \{(x, x) : x \in X\}$ is a *MLC*.

Proof. Since X is a Hausdorff LC – spaces, then $X \times X$ is an LC – space by theorem 3.27. Since X is a Lindelöf LC *- spaces*, then X is a *P space* by theorem3.34, so $X \times X$ is a Lindelöf by theorem3.33, hence the diagonal $\Delta = \{(x, x) : x \in X\}$ is a *MLC* by theorem 3. 40 and theorem 3. 15(ii).

Reyadh.D/ *Adam.A*

References

[1]Cameron,D. E., Maximal and Minimal Topologies , Trans. Amer. Math.Soc.Vol 160, Oct.1971.

[2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LCspaces,Acta

Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 345-353.

[3] Engelking R. ,General Topology. Heldermann Verlag, Berlin, revised and completed edition,1989.

[4] Dontchev J., Ganster M., On the product of LC *- spaces*, Q & A in General Topology15 (1997), 71–74 .

[5] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6 (1988), 67- 72.

[6] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelof sets are closed, Q & A in General Topology 4 (1986), 3-13.

[7] Levy R., A non-P L-closed space, Q & A in General Topology 4 (1986), 145-146.

[8] Misra A. K., A topological view of P - spaces , Topology & Appl.2(1972), 349-362.

[9] Muhammad I.B.., Order Properties of Product Spaces and Quotient Spaces of Ordered

 Topological Linear Spaces, A Dissertation submitted to the Department of Mathematic/

 University of Engineering and Technology, Lahore-Pakistan for Degree of Doctorate

of Philosophy in the subject of Mathematics,2006.

[10] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459–474.

[11] Munkres, J., Topology, 2^{nd} *ed* Pearson Education (2001).

[12]Ori R. G., A note on L-closed spaces, Q & A in General Topology 4 (1986/87), 141– 143.

Reyadh.D/ *Adam.A*

[13] Radhi I. M., Minimal KC *- spaces* and Minimal LC *- spaces*, Tishreen University

 Journal for studies and scientific Research-Basic science series Vol.(28) No(1) 2006.

[14] Vaughan J. E.., Products of Topological Spaces,General Topology and its Applictions , Vol.(28),Issu3, April 1978,Page207-217.

[15] Wilansky A., Between T_1 and T_2 , Amer. Math. Monthly 74 (1967), 261-266.

 *Department of Mathematics, Faculty of Science Omdurman Islamic University, Sudan Reyadh_delphi@yahoo.co.uk ** Department of Mathematics, Faculty of Education Wadi Al Nile University, Sudan