Page 72-84

Reyadh.D/ Adam.A

ON MKC-Spaces, MLC-Spaces and MH-Spaces

*Reyadh Delfi Ali **Adam Abdulla Abker

 Recived :21\1\2015
 Revised :4\3\2015
 Accepted :30\3\2015

Abstract:

The purpose of this paper is deal with the study of MKC-spaces(spaces whose minimal KC-spaces) and MLC-spaces (spaces whose minimal LC-spaces) also we studied the relationships between minimal KC-spaces, minimal LC-spaces and minimal Hausdroff spaces.

المستخلص تهدف هذه الورقة لدراسة فضاءات – KC الصغرى و فضاءات – LC الصغرى كما درسنا في هذه الورقة العلاقات بين فضاءات – KC الصغرى وفضاءات – LC الصغرى وفضاءات هاوزدورف الصغرى.

KEYWORDS: LC - space, P - space, Lindelöf, KC - space.

Mathematics Subject Classification :54xx

1. Introduction:

Let P be a topological property, X be a nonempty and let P(X) denote the set of all topologies on X having the property P. P(X) is partially ordered by set inclusion. (X,T) is minimal P (P-minimal) if T is minimal in P(X). In [1] there is a good survey on minimal topologies and it stated there that every compact Hausdroff is minimal Hausdroff.

Radhi I.M. [13] introduced a new concept of minimal KC-spaces and a new concept of minimal LC-spaces and showed that compact KC-space is minimal KC-space also showed that Lindelöf LC-space is minimal LC-space.

Reyadh.D/ Adam.A

In this paper we show that Hausdorff minimal KC - space is minimal Hausdorff, R_1 minimal KC - space is minimal Hausdorff, regular minimal KC - space is minimal Hausdorff, If X and Y are compact Hausdorff spaces then $X \times Y$ is minimal KC - space and minimal Hausdorff space, If X and Y are compact Hausdorff LC - space and minimal LC - space and minimal KC - space, If X and Y are compact Hausdorff Lindelof LC - spaces, then $X \times Y$ is minimal LC - space and if X and Y are Hausdorff Lindelof LC - spaces, then $X \times Y$ is minimal LC - space and if X and Y are minimal LC - spaces then $X \times Y$ is minimal LC - space if and only if X and Y are minimal LC - spaces. Our terminology is standard. The closure of a subset A of a space (X,T) is denoted by ClA. The set of all positive integer is denoted by \mathcal{O} .

2. Minimal KC-spaces:

Definition 2.1 [15]: A topological space (X,T) is a KC – *space* if every compact subset of X is closed.

Definition2.2 [13]: Let (X,T) be a KC-space, we say that (X,T) is a minimal KC-space iff $T^* \subset T$ implies (X,T^*) is not a KC-space, (we will use MKC to denote minimal KC-space).

Definition2.3 [11]: Let (X,T) be a Hausdroff space, we say that (X,T) is a minimal Hausdroff space iff $T^* \subset T$ implies (X,T^*) is not a Hausdroff space, (we will use *MH* to denote minimal Hausdroff space).

Theorem2.4 [13]: Every compact *KC* – space is a *MKC*.

<u>Corollary2.5</u>: Every countably compact Lindelöf KC – space is a MKC. **Proof.** Obvious by theorem 2.4

Theorem2.6 [13]: Every locally compact *MKC* is a *MH*.

Theorem2.7[13]: Every locally compact *KC* – *space X* is a Hausdorff.

Reyadh.D/ Adam.A

<u>Theorem2.8[13]:</u>

- (i) Every Hausdorff space is a KC space.
- (ii) Every KC space is T_1 .

<u>Theorem2.9[13]</u>: For a compact KC – space X and $Y \subset X$ the following are equivalent:

- (a) Y is a closed in X.
- (b) Y is a compact in X.

Theorem2.10 [13]:

- (i) The property of being KC *space* is a topological property.
- (ii) The property of being KC space is a hereditary property.

Corollary2.11:

- (i) Every closed subspace of compact KC space is a MKC.
- (ii) Every subspace of hereditarily compact KC space is a MKC.

Proof. This is obvious by theorem 2.10and theorem 2.4.

<u>Corollary2.12</u>: For a compact KC – space X and $Y \subset X$ the following are equivalent:

- (a) Y is a closed in X.
- (b) Y is a compact and MKC space in X.

Proof. (a) ⇒ (b): Let Y be a closed in X, then Y is a compact, so Y is a compact KC – space by theorem2.10(ii), hence Y is a MK – space by theorem2.4.
(b) ⇒ (a): Let Y be a compact MK – space in X, then Y is a compact KC – space, so Y is closed.

Theorem2.13: Every Hausdorff *MKC – space* is a *MH*.

Proof. Let (X,T) be a Hausdorff MKC - space, then X is a Hausdorff KC - space. Suppose X is not a MH - space, so there exists a topology T^* on $X, T^* \subset T$ and (X,T^*) is a Hausdorff space implies that (X,T^*) is a KC - space by theore 2.8(i) which is a contradiction, therefore (X,T) is a MH.

Reyadh.D/ Adam.A

Theorem2.14: Every compact *MH* – *space* is a *MKC*.

Proof. Let X be a compact MH - space, then X is a compact Hausdorff, so X is a compact KC - space by theorem 2.8, hence X is a MKC - space by theorem 2.4.

<u>Corollary2.15</u>: For a compact Hausdorff space X the following are equivalent:

- (a) X is a MKC-space.
- (b) X is a MH-space.

Proof. This is obvious by theorem 2.13and theorem 2.14.

Definition2.16 [4]: A topological space (X,T) is a R_1 – space if x and y have disjoint neighborhoods whenever $cl\{x\} \neq cl\{y\}$. Clearly a space is Hausdorff if and only if its T_1 and R_1 .

Theorem2.17: Every R_1 MKC – space is a MH.

Proof. Let (X,T) be a R_1 *MKC* – *space*, then X is a R_1 *KC* – *space*, hence X is a Hausdorff by theorem 2.8(ii) and definition 2.16.

Suppose X is not a MH – space, so there exists a topology T^* on X.

 $T^* \subset T$

and (X,T^*) is a Hausdorff space implies that (X,T^*) is a KC – space by n

theorem

2.8(i)which is a contradiction, therefore (X,T) is a *MH*.

Theorem2.18: Every regular *MKC – space* is a *MH*.

Proof. Let (X,T) be a regular MKC - space, then X is a regular KC - space, hence X is

a Hausdorff by theorem2.8(ii).

Suppose X is not a MH – *space*, so there exists a topology T^* on $X, T^* \subset T$

and (X,T^*) is a Hausdorff space implies that (X,T^*) is a *KC* – *space* by theorem 2.8(i) which is a contradiction, therefore (X,T) is a *MH*.

Theorem2.19 [13]:

Suppose $X \times Y$ is a compact KC – space, then each of X, Y is a MKC – space.

Corollary2.20:

Suppose $X \times Y$ is a regular compact KC – *space*, then each of X, Y is a MH – *space*

Proof. Each of X and Y is a MKC - space by theorem 2.19.Since X and Y are regular spaces, hence each of X, Y is a MH - space by theorem 2.18.

<u>Theorem2.21</u>: If X and Y are compact Hausdorff spaces, then $X \times Y$ is

a MKC - space and a MH - space.

Reyadh.D/ Adam.A

Proof. Since X and Y are compact Hausdorff spaces, then $X \times Y$ is a compact Hausdorff space, so $X \times Y$ is a compact KC – space by theorem2.8 (i), hence $X \times Y$ is a MKC – space by theorem2.4 and $X \times Y$ is a MH – space by theorem2.13.

3. Minimal LC-spaces:

Definition3.1: A topological space (X,T) is an LC – space if every Lindelöf subset of X is closed [6], [10]. Notice that LC – space is also known under the name L – closed [5], [7] and [12].

Definition3.2 [13]: Let (X,T) be a LC-space we say that X is a minimal LC-space (MLC) iff $T^* \subset T$ implies (X,T^*) is not LC-space.

Definition3.3 [3]: A set *F* in a topological space is called F_{σ} – *closed* if it is the union of at most countably many closed sets. A set *G* is called a G_{σ} – *open* if it is the intersection of at most countably many open sets.

Definition3.4[8]: A topological space (X,T) is called P-space if every G_{σ} - open set in X is open.

Theorem3.5 [13]: Every Lindelöf *LC* – *space* is a *MLC*.

- **<u>Theorem3.6 [6]</u>**: For a Hausdorff Lindelöf space X the following are equivalent: (a) X is an LC-space.
 - (b) X is a P-space.

<u>Corollary3.7</u>: For a Hausdorff Lindelöf space X the following are equivalent: (a) X is a MLC-space.

(b) X is a P-space.

Proof. This is obvious by theorem 3.5and theorem 3.6.

Reyadh.D/ Adam.A

<u>Corollary3.8</u>: For a Hausdorff compact space X the following are equivalent: (a) X is a MLC-space.

(b) X is a P-space.

Proof. This is obvious by theorem 3.5and theorem 3.6.

<u>Theorem3.9 [8]:</u> Every Huasdorff P - space is an LC - space.

<u>Corollary3.10</u>: Every Hausdorff Lindelöf P-space is a *MLC*. **Proof**. This is obvious by theorem 3.9and theorem 3.5.

Theorem3.11[13]:

- (i) Every LC space is a KC space.
- (ii) Every LC space is a T_1 space.

<u>Theorem3.12</u>: For a compact P - space X the following are equivalent:

- (a) X is a MH-space.
- (b) X is a Hausdorff MLC-space.

Proof. (a) \Rightarrow (b): Let X be a MH – space, then X is a Hausdorff, so X is

an LC – space by theorem 3.9, hence X is a MLC – space by theorem 3.5.

(b) \implies (a): Let X be a Hausdorff MLC-space, then X is a Hausdorff

LC-space, so X is a Hausdorff KC-space by theorem 3.11 (i). Since X

is a compact, then X is a MKC - space by theorem 2.4, hence X is a MH - space by theorem 2.13.

Corollary3.13:

- (i) Every compact MLC space is a MKC.
- (ii) Every compact LC space is a MKC.
- (iii) Every countably compact Lindelöf LC space is a *MKC*.

Proof. This is obvious by theorem 3.11(i) and theorem 2.4.

Reyadh.D/ Adam.A

Theorem3.14 [13]:

- (i) The property of being LC *space* is a topological property.
- (ii) The property of being LC *space* is a hereditary property.

Corollary3.15:

- (i) Every closed subspace of compact LC space is a MLC and a MKC.
- (ii) Every closed subspace of Lindelöf LC space is a MLC.
- (iii) Every subspace of hereditarily Lindelöf LC space is a MLC.

Proof. This is obvious by theorem 3.14(ii), theorem 3.5, theorem 3.11 (i) and theorem 2.4. **Theorem 3.16:** For a compact P - space X the following are equivalent:

- (a) X is a MKC-space.
- (b) X is a MLC-space.
 - Proof. (a) ⇒ (b): Let X be a MKC space, then X is a KC space, so X is a Hausdorff by theorem2.7.Since X is a P space, then X is an LC space by theorem3.9, hence X is a MLC space by theorem 3.5.
 (b) ⇒ (a): Let X be MLC space, then X is an LC space, so X is KC space by theorem3.11(i), hence X is a MKC space by theorem 2.4.

Definition^{π}. ¹⁷ [2]: A topological space (X,T) is called

- (1) an L_1 space if every Lindelöf F_{σ} closed is closed,
- (2) an L_2 *space* if *clL* is Lindelöf whenever $L \subseteq X$ is Lindelöf,
- (3) an L_3 space s if every Lindelöf subset L is an F_{σ} closed,
- (4) an $L_4 space$ if whenever $L \subseteq X$ is Lindelöf, then there is a Lindelöf F_{σ} closed F with $L \subseteq F \subseteq clL$.

Theorem3.18 [2]:

- (i) If (X,T) is an LC space, then (X,T) is an L_i space, i=1, 2, 3, 4.
- (ii) If (X,T) is an L_1 space and an L_3 space, then (X,T) is an LC space.
- (iii) Every Q-set space is an $L_3-space$.

Reyadh.D/ Adam.A

Definition3.19 [2]: A topological space (X,T) is called a Q-set space if each subset of X is an F_{σ} - closed sets.

<u>Corollary3.20</u>: Every $Q - set L_1 - space$ is an LC - space.

Proof. Let X be Q-set space, then X is an $L_3-space$ by theorem 3.18(iii), since X

is an L_1 – space, then X is an LC – space by theorem 3.18(ii).

<u>Theorem3.21</u>: Every $P \quad Q-set$ space X is an LC-space.

Proof. If *L* is a Lindelöf subset in *X*, which is a Q-set space, then *L* is an $F_{\sigma}-closed$ set, but *X* is a P-space, so *L* is a closed set, hence *X* is an LC-space.

Theorem3.22[3]: Countable union of Lindelöf subset is Lindelöf.

<u>Theorem3.23</u>: Every Lindelöf L_1 – space is a P – space.

Proof. For each $n \in \omega$, let A_n be closed in Lindelöf L_1 – space X and $A = \bigcup_{n \in \omega} A_n$,

then A_n is a Lindelöf subset in X and thus A is a Lindelöf subset in X by theorem 3.22. Since X is an L_1 – space, then A is closed in X, hence X is a P – space.

<u>Theorem3.24</u>: Every PL_3 – space is an LC – space ...

Proof. Let L be a Lindelöf subset of X, then L is F_{σ} - closed set (since

X is an $L_3 - space$), so L is closed set(since X is a P - space), hence X is an LC - space.

Corollary3.25:

- (i) Every Lindelöf L_1L_3 space is a MLC.
- (ii) Every Hausdorff Lindelof L_1 space is a MLC.
- (iii) Every Lindelof Q-set L_1 -space is a MLC.
- (iv) Every LC space having dense Lindelöf subset is a MLC.
- (v) Every 2^{nd} countable (C_{11}) LC space is a MLC.
- (vi) Every Lindelöf P Q-set space is a MLC.

(vii) Every Lindelöf PL_3 – space is a MLC.

(viii) Every compact LC – space is a MLC.

Reyadh.D/ Adam.A

Proof. Obvious

Corollary3.26:

- (i) Every compact Hausdorff space is a *MKC*.
- (ii) Every compact R_1T_1 *space* is a *MKC*.
- (iii) Every compact Tychonoff P space is a MKC.
- (iv) Every compact $P \quad Q-set$ space is a *MKC*.
- (v) Every compact $Q set L_1 space$ is a *MKC*.
- (vi) Every compact $L_1L_3 space$ is a *MKC*.
- (vii) Every compact L_1L_3 space is a MKC.

(viii) Every compact PL_3 – space is a MKC.

Proof. Obvious

Theorem3.27 [4]: If X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space.

Theorem3.28: If X and Y are compact Hausdorff LC – spaces, then $X \times Y$ is a MLC – space and a MKC – space.

Proof. Since X and Y are Hausdorff LC - spaces, then $X \times Y$ is an LC - space by theorem 3.27, so $X \times Y$ is a compact LC - space, hence $X \times Y$ is a MLC - space by corollary 3.25(viii) and $X \times Y$ is a MKC - space by corollary 3.13(ii).

Theorem3.29 [6]: If X and Y are LC - spaces and either X or Y is regular, then $X \times Y$ is an LC - space.

Reyadh.D/ Adam.A

Theorem3.30: If X and Y are compact LC - spaces and either X or Y is regular, then $X \times Y$ is a MLC - space and aMKC - space.

Proof. Since X and Y are LC – spaces and either X or Y is regular, then $X \times Y$ is an LC – space by theorem 3.29, so $X \times Y$ is a compact LC – space, hence $X \times Y$ is a MLC – space by corollary 3.25(viii) and $X \times Y$ is a MKC – space by corollary 3.13(ii).

<u>Corollary3.31[4]</u>: If X and Y are R_1 *LC* – *spaces*, then $X \times Y$ is an *LC* – *space*.

<u>Theorem3.32</u>: If X and Y are compact R_1 *LC* – *spaces*, then X × Y is

a MLC-space and a MKC-space.

Proof. Since X and Y are R_1 *LC* – *spaces*, then $X \times Y$ is an *LC* – *space* by corollary3.31, so $X \times Y$ is a compact *LC* – *space*, hence $X \times Y$ is a *MLC* – *space* by corollary3.25(viii) and $X \times Y$ is a *MKC* – *space* by corollary3.13(ii).

Theorem3.33[14](Nobles Theorem):

If X and Y are Lindelöf P-space, then $X \times Y$ is a Lindelöf.

Theorem3.34[6]: Every Lindelof *LC* – *space* is a *P* – *space*.

Theorem3.35:

If X and Y are Hausdorff Lindelöf LC – spaces, then $X \times Y$ is a MLC – space.

Proof. Since X and Y are Hausdorff LC - spaces, then $X \times Y$ is an LC - space by theorem 3.27. Since X and Y are Lindelöf LC - spaces, then X and Y are P - space by theorem 3.34, so $X \times Y$ is a Lindelöf by theorem 3.33, hence $X \times Y$ is a MLC - space by theorem 3.5.

Theorem3.36:

If X and Y are Lindelöf R_1 LC – spaces, then $X \times Y$ is a MLC – space.

Proof. Since X and Y are R_1 *LC*-spaces, then $X \times Y$ is an *LC*-space by corollary3.31.Since X and Y are Lindelöf *LC*-spaces, then X and Y are *P*-space by theorem3.34, so $X \times Y$ is a Lindelöf by theorem3.33, hence $X \times Y$ is a *MLC*-space by theorem3.5.

Theorem3.37:

If X and Y are Lindelöf LC - spaces and either X or Y is regular, then $X \times Y$ is a MLC - space.

Reyadh.D/ Adam.A

Proof. Since X and Y are LC – *spaces* and either X or Y is regular, then $X \times Y$ is an LC – *space* by theorem 3.29, Since X and Y are Lindelöf LC – *spaces*, then X and Y are P – *space* by theorem 3.34, so $X \times Y$ is a Lindelöf by theorem 3.33, hence $X \times Y$ is a MLC – *space* by theorem 3.5.

Theorem 3.38: If X and Y are Hausdorff Lindelöf P – spaces,

then $X \times Y$ is a *MLC* – *space* if and only if X and Y are *MLC* – *spaces*.

Proof. Let $X \times Y$ be a MLC – space, then $X \times Y$ is an LC – space, so X and Y are LC – spaces by theorem 3.14(i) and (ii), hence X and Y are MLC – spaces by theorem 3.5.

Conversely, Let X and Y are MLC - spaces, then X and Y are LC - spaces, so $X \times Y$ is an LC - space by theorem 3.27. Since X and Y are Lindelöf P - spaces, then $X \times Y$ is a Lindelöf by theorem 3.33, hence $X \times Y$ is a MLC - space by theorem 3.5.

Theorem3.39 [9]: Let X and Y be topological spaces. If A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Theorem3.40 [9]: *X* is Hausdorff spaces if and only if the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.

Theorem3.41: Let X and Y be Hausdorff Lindelöf LC – spaces.

If A is closed in X and B is closed in Y, then $A \times B$ is a MLC.

Proof. Since X and Y are Hausdorff LC – spaces, then $X \times Y$ is an LC – space by theorem 3.27. Since X and Y are Lindelöf LC – spaces, then X and Y are P – space by theorem 3.34, so $X \times Y$ is a Lindelöf by theorem 3.33, hence $A \times B$ is a MLC by theorem 3. 39 and theorem 3. 15(ii).

Theorem3.42: If X is a Hausdorff Lindelöf LC – *space*, then the diagonal $\Delta = \{(x, x) : x \in X\}$ is a *MLC*.

Proof. Since X is a Hausdorff LC-spaces, then $X \times X$ is an LC-space by theorem 3.27. Since X is a Lindelöf LC-spaces, then X is a P-space by theorem 3.34, so $X \times X$ is a Lindelöf by theorem 3.33, hence the diagonal $\Delta = \{(x, x) : x \in X\}$ is a *MLC* by theorem 3.40 and theorem 3.15(ii).

Reyadh.D/ Adam.A

References

[1]Cameron, D. E., Maximal and Minimal Topologies, Trans. Amer. Math.Soc.Vol 160, Oct.1971.

[2] Dontchev J., Ganster M. and Kanibir A., On Some Generalization of LC-spaces, Acta

Math. Univ. Comenianae Vol. LXVIII, 2(1999), pp. 345-353.

[3] Engelking R., General Topology. Heldermann Verlag, Berlin, revised and completed edition, 1989.

[4] Dontchev J., Ganster M., On the product of LC – spaces, Q & A in General Topology15 (1997), 71–74.

[5] Hdeib H. Z., A note on L-closed spaces, Q & A in General Topology 6 (1988), 67-72.

[6] Hdeib H. Z. and Pareek C. M., On spaces in which Lindelof sets are closed, Q & A in General Topology 4 (1986), 3-13.

[7] Levy R., A non-P L-closed space, Q & A in General Topology 4 (1986), 145-146.

[8] Misra A. K., A topological view of P-spaces, Topology & Appl.2(1972),349-362.

[9] Muhammad I.B., Order Properties of Product Spaces and Quotient Spaces of Ordered

Topological Linear Spaces, A Dissertation submitted to the Department of Mathematic/

University of Engineering and Technology, Lahore-Pakistan for Degree of Doctorate

of Philosophy in the subject of Mathematics, 2006.

[10] Mukherji T. K. and Sarkar M., On a class of almost discrete spaces, Mat. Vesnik 3(16)(31)(1979), 459–474.

[11] Munkres, J., Topology, 2nd ed Pearson Education (2001).

[12]Ori R. G., A note on L-closed spaces, Q & A in General Topology 4 (1986/87), 141–143.

Reyadh.D/ Adam.A

[13] Radhi I. M., Minimal KC - spaces and Minimal LC - spaces, Tishreen University

Journal for studies and scientific Research-Basic science series Vol.(28) No(1) 2006.

[14] Vaughan J. E., Products of Topological Spaces, General Topology and its Applictions , Vol.(28), Issu3, April 1978, Page 207-217.

[15] Wilansky A., Between T_1 and T_2 , Amer. Math. Monthly 74 (1967), 261-266.

*Department of Mathematics, Faculty of Science Omdurman Islamic University, Sudan Reyadh_delphi@yahoo.co.uk ** Department of Mathematics, Faculty of Education Wadi Al Nile University, Sudan