

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-OADISIVAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On Nb-Separation Axioms

Anas Mohammed Saeed Naief a, Haider Jebur Ali^b

Department of mathematics,college of science, Al-Mustansirya University. anas_sat2008@yahoo.com & hjebur1972@gmail.com

A R T I C L E I N FO

A B S T R A C T

Article history: Received: 27 /02/2022 Rrevised form: 15 /03/2022 Accepted : 22 /03/2022 Available online: 24 /03/2022

Keywords:

N-open sets, b-open sets, Nb-open sets

The main purpose of this paper is to express a new class of separation axioms based on open sets, known as Nb open, as well as to analyze and verify several essential ideas linked with this class.

MSC.41A25; 41A35; 41A3

https://doi.org/10.29304/jqcm.2022.14.1.886

1- Introduction

In a topological space, Andrijevi'c [2] created a new class of generalized open sets known as b-open sets, and T. A. Al-Hawary, A. Al-Omari also[9] worked on same field. All semi-open sets and pre-open sets are included in the class of b-open sets. The b-open set class yields the same topology as the preopen set class, A subset S of a space X is called b-open if S⊆ $\overline{S}^{\circ} \cup \overline{S}^{\circ}$ [2], A subset S of a space X is b-closed if X-S is b-open. Thus S is b-closed if and only if \overline{S} \cap \overline{S} \subset S[2], The union of any family of b-open sets is a b-open set and The intersection of an open and a b-open set is a b-open set[2], and A.AL-Omari and M.S.Md. Noorani [1] establish the idea of N – open sets, which are defined as follows: "A subset A of a space X is said to be an N – open if for every x ∈A, there exist an open set $U_x \subseteq X$ containing x such that $U_x - X$ is a finite set, The complement of an N-open set is said to be N-closed, For every open set is an N-open set[1], Let X be a topological space, then X with the set of all N-open subsets of X is a topological space[1], Let X be a topological space, then the intersection of an open set with an N-open set is an N-open set and the union of N-open sets is also N-open[1]. They prove that the family of all N – open subset of a space X, denoted by \mathcal{T}_N Forms a topology on X finer than T. Moreover, we find a mutual work about ω b-open sets merging ω -open and bopen by [8] and they concluded this new concept, so we merged b-open and N-open sets to propose a new concept called Nb-open that combines all previous attributes in a new definition depending on these concepts and satisfies the basic properties of topological space like interior and closure and so on".

[∗]Corresponding author : Anas Mohammed Saeed Naief.

Email addresses: *anas_sat2008@yahoo.com*.

2-preliminaries

Now we represent a new definition by merging the definitions of b-open and N-open:

Definition(2.1):"A subset A of a space X is said to be an Nb-open set if for each x∈A there exists a b-open set U in X with $x∈ U$ and U-A= finite."

Proposition(2.2):

1- Every N-open set is also an Nb-open set, although the converse is not always true.

2- Every b-open set is also an Nb-open set, although the converse may not always be accurate in practice.

Example(2.3): Consider the indiscrete space (R,τ_{ind}), the set {1} is Nb-open since {1} is b-open containing 1 and {1}-{1}=∅ which is finite but {1} is not N-open since R the only open set which contain 1 but R-{1}=infinite.

3- Main Results

Definition(3.1):A space X is said to be Nb- T_0 space if for each distinct points x and y in X we have Nb – open set contains one but not the other.

Example(3.2):"Let X={1,2,3} and $\tau = {\phi, X, {1}, {2}, {1, 2}}$, then X is Nb – T_° space"

Remark(3.3):Every T_0 space is $Nb - T_0$ space but the converse may be not true.

 $\bf{Example(3.4)}$:"LetX={a,b,c}, $\tau=\{\emptyset,X,\{a\}\}$ ". clearly X is not $T_^\circ$ space but {b}and {c}are Nb-open sets, therefore X is Nb- T_{\circ} .

Theorem(3.5):(X, τ) is $NbT - space$ if $f(x)$ ^{Nb} \neq $\overline{\{y\}}^{Nb}$ for each $x, y \in X$, $x \neq y$.

 $\textbf{Proof:}(\Rightarrow) \text{Suppose that } X \text{ is } N b T_{\circ} - \text{ space, to prove } \overline{\{x\}}^{N b} \neq \overline{\{y\}}^{N b} \text{ for each }$

 $x, y \in X$, $x \neq y$, since X is NbT_° – space and $x \neq y$ then there exists $U \in \tau$

such that $(x \in U \text{ and } y \notin U)$ or $(x \notin U \text{ and } y \in U)$

suppose that $(x \in U \text{ and } y \notin U)$ which implies $(x \in U \text{ and } y \in X - U)$

 $X-U$ closed set since U is open which implies $\{y\} \subseteq X-U$

and
$$
\overline{\{y\}}^{Nb} \subseteq \overline{X-U}^{Nb} = X-U
$$
 (since $X-U$ closed and $\overline{X-U}^{Nb} = X-U$)

then $\overline{\{y\}}^{Nb} \subseteq X - U \wedge x \in U \Rightarrow \{x\} \nsubseteq X - U \Rightarrow \overline{\{x\}}^{Nb} \nsubseteq X - U, \therefore \overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb}$

Similarly, if we take
$$
(x \notin U \land y \in U)
$$

(conversely) suppos that $\overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb}$ $\forall x \neq y \in X$, to prove X is NbT_° – space

Suppose that X is not Nb T_\circ -space *then* (there exist x,y∈X such that for each U∈τ such that x∈U ⇒y∈U)

let
$$
z \in X
$$
 such that $z \in \overline{\{x\}}^{Nb}$ (*)

then for each $U \in \tau$ such that $z \in U \wedge U \cap \{x\} \neq \emptyset$ (by true: $z \in \overline{A} \Leftrightarrow$ for each $U \in \tau$ such that $z \in U \wedge U \cap A \neq \emptyset$ \emptyset , but $U \cap \{x\} \neq \emptyset \Rightarrow x \in U$

(since the only element in ${x \mid is x}$)

hence every set contains z must contains x. So, we have the following two

statements:

Every Nb-open set contains z must contains x and every Nb – open set contains x must contains y . so every Nbopen set contains z must contains $y. \Rightarrow$

f or each $U \in \tau$ such that $z \in U \wedge U \cap \{y\} \neq \emptyset$, $z \in \overline{\{y\}}^{Nb}$ … … … . . $(**)$ "

then for each
$$
z \in \overline{\{x\}}^{Nb} \Rightarrow z \in \overline{\{y\}}^{Nb} \Rightarrow \overline{\{x\}}^{Nb} \subseteq \overline{\{y\}}^{Nb}
$$

Similarly, we prove $\overline{\{y\}}^{Nb}\subseteq \overline{\{x\}}^{Nb}$

Hence $\overline{\{x\}}^{Nb} = \overline{\{y\}}^{Nb} C!\left(\text{since } \overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb}\right)$, hence X is NbT_o – space.

"Definition"(3.6):[3]"A space X is called b T_1 -space if for each $x\neq y$ in X, there exist two b-open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$ ".

Definition(3.7):[1]A space X is called NT₁-space if and only if for each $x \neq y$ in X there exist N-open sets U and V such that $x \in U$, $v \notin U$, and $v \in V$, $x \notin V$.

By the same context, we can define the definition of NbT_1 – space

Definition(3.8):"A space X is called NbT₁-space if for each $x \neq y$ in X, there exist Nb-open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$ ".

Proposition(3.9):"Every T₁-space is NbT₁-space".

Proof: "let (X, τ) be T_1 space and $x, y \in X \ni x \neq y$. Then there exist two open sets U and V such that $x \in U, y \notin Y$ U and $y \in V$, $x \notin V$, since every open set is b-open thus, U and V are two b-open sets such that $x \in U$, $y \notin U$ and $y \in V$ $V, x \notin V$ therefore (X, τ) be NbT₁-space".

The case of N T_1 is similar.

Remark(3.10): In general, the opposite of the preceding claim is not valid.

Example(3.11):"Let X={1,2,3,4}, $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$ "

"Proposition"(3.12):[3]"Let X be a topological space and Y⊆ X. If G is a b-open set in X and Y is an open set in X, then $G ∩ Y$ is b-open set in Y ."

Proof: Let $x \in A \cap Y$ which implies $x \in A$ and $x \in Y$, since A is Nb – open in X, then there

Exists b-open set U in X containing x and U-A is finite, $U \cap Y$ is $b - open$ in Y then

U \cap $Y - (A \cap Y) \subset U - A =$ finite. then we have $A \cap Y$ is Nb-open in Y.

Theorem(3.14): suppose M is an open subset of X, Then M is NbT_1 -subspace if X is NbT_1 -space.

"Proof": "Let x,y \in *M* such that $x \neq y$ since X is NbT₁-space, then there exist two Nb-open sets U, V in X such that x ∈ U but $y \notin U$ and $y \in V$ but $x \notin V$ Let $A = U \cap M$, $B = V \cap M$. Thus A, B are Nb-open set in M and $x \in A$.but $y \notin A$ and $y \in B$ but $x \notin B$, therefore, M is NbT_1 -space".

Definition(3.15):A function $f: "X \rightarrow Y$ is said to be Nb-continuous if $f^{-1}(U)$ is Nb-open in X whenever U is an open set in Y".

Remark(3.16): Every continuous function is also Nb-continuous, although the reverse may not be accurate in some cases.

Example(3.17): Let $X = \{1,2,3\}$, $\tau_x = \text{indiscrete topology}$

 $Y = X$, $\tau_{y} = discrete\ topology$

Then I_X : $(X, \tau_{ind}) \rightarrow (X, \tau_D)$ is an Nb – continuous but not continuous.

Definition(3.18): a function $f: X \to Y$ is $Nb - open$ if f(U) is Nb-open in Y, whenever U is open set in X.

Remark(3.19):Every open function is an Nb-open function.

Theorem(3.20):Let $f: X \to Y$ be a one-to-one Nb-continuous function. If Y is T₁-space then X is NbT₁-space.

"**Proof**:let ¹ $x_1, x_2 \in X$ such that $x_1 \neq x_2$ ", since $f: X \to Y$ is one-to-onefunction and $x_1 \neq x_2$ then $f(x_1) \neq$ $f(x_2)$ and $f(x_1)$, $f(x_2) \in Y$ since Y is T_1 space then $\exists U, V$ open sets in Y, $f(x_1) \in U$ but $f(x_2) \notin U$, and $f(x_2) \in U$ Vbut $f(x_1) \notin V$, since f is Nb-continuous function then $f^{-1}(U)$, $f^{-1}(v)$ are Nb – open sets in X, since $f(x_1) \in$ U, thus $x_1 \in f^{-1}$ (U), and also since $f(x_2) \notin U$ thus $x_2 \notin f^{-1}$ (U), and also since $f(x_2) \in V$, then $x \in f^{-1}$ ¹(V), and since $f(x_1) \notin V$ then $x_1 \notin f^{-1}(V)$, therefore *X* is NbT₁ − space.

"Definition"(3.21):[3]"A space X is called bT₂-space (b-Hausdorff space)" if for each $x \neq y$ in X, there exist disjoint b – open sets U, V such that $x \in U, y \in V$.

Definition(3.22):[5]A space X is called N-Hausdorff if any two distinct X points have disjoint N-open neighborhoods.

By the same context, we can define the definition of Nb T_2 – space

Definition(3.23):Aspace X is called NbT2-space (Nb-Hausdorff) if for each $x \neq y$ in X there exist disjoint Nb $$ open sets U, V such that $x \in U$, $y \in V$ containing $x \& y$ respectively.

Remark(3.24):Any T_2 space is also an NbT₂-space, but the reverse may not be accurate.

Example(3.25):Let $X = \{1,2,3\}$, $\tau = \{X, \tau_{ind}\}$ is NbT_2 – space but not T_2 – space.

Proposition(3.26): let $f: X \to Y$ be a bijective function

1- if f is Nb-open and X is T_2 -space, then Y is NbT₂-space.

2- if f is Nbcontinuous and Y is T_2 space, then X is Nb T_2 -space.

"Proof": let $f: X \to Y$ be a bijective function then,

1- suppose f is Nb – open and X is T_2 – space, let $y_1 \neq y_2 \in Y$, since f is bijective, then there exist x_1, x_2 in X, such that $f(x_1) = y_1$ and $f(x_2) = y_2$ and $x_1 \neq x_2$, since X is T₂-space then there exists two disjoint open sets U and V in X such that $x_1 \in U$ and $x_2 \in V$, since f is Nb-open then f(U)and f(V)are Nb-open sets in Y hence $f(x_1) =$ $y_1 \in f(U)$ and $f(x_2) = y_2 \in f(V)$, since f is bijective so $f(U)$ and $f(V)$ are disjoint in Y, $f(U) \cap f(V)$

 $=f(U \cap V) = f(\emptyset) = \emptyset$, thus Y is NbT_2 – space.

2- similar to prove of (1).

Proposition(3.27):Every NbT₂-space is NbT₁-space.

Proof: let (X, τ) be an NbT_2 – space, let x and y be two distinct in X, since X is NbT₂-space

then there exist disjoint Nb-open sets U and V such that $x \in U$ and $y \in V$, since U and V are disjoint then $x \in V$ *U* but $y \notin U$, and $y \in V$ and $x \notin V$, so X is

NbT₁-space".

Theorem(3.28):Let M be an open subspace of X, then M is NbT_2 subspace if X is NbT_2 -space".

Proof: let $x, y \in M$, $x \neq y$ then $x, y \in X$ so there exist B_1 , B_2 such that $B_1 \cap B_2 = \emptyset$ such that $x \in B_1$, $y \in B_2$ where B_1, B_2 are Nb-open sets in X

Let E₁=B₁∩M, E₂=B₂∩M are Nb-open subsets in M, and $x \in E_1$, $y \in E_2$, then $E_1 \cap E_2 = (B_1 \cap M) \cap (B_2 \cap M) = (B_1 \cap B_2) \cap M = \emptyset \cap M = \emptyset$, hence M is NbT₂-space.

Definition(3.29): let $f: X \to Y$ be a function of a topological space(X, τ) into a topological

space (Y, τ^*) then f is called an Nb-irresolute function if $f^{-1}(A)$ is an Nb – open set in X, for every Nb – open set A in Y.

Proposition(3.30): let $f: X \to Y$ be one $-$ to $-$ one Nb-irresolute function and Y is NbT₂-space then X is NbT₂ $$ space.

Proof: suppose $f: X \to Y$ is $1 - 1$ and f is $Nb -$ irresolute and Y is $NbT₂ - space$,

let $x_1, x_2 \in X$ with $x_1 \neq x_2$ since f is $1 - 1$ then

 $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1, y_2 \in Y$,

since Y is NbT₂ – space then there exist disjoint Nb-open sets U and V such that $y_1 = f(x_1) \in U$ and $y_2 = f(x_2) \in$ *V* then $x_1 = f^{-1}(y_1) \in f^{-1}(U), x_2 = f^{-1}(y_2) \in f^{-1}(V)$, and since f is Nb-irresolute $f^{-1}(U)$ and $f^{-1}(V)$ are Nb – open sets in X, hence

 $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$, then X is NbT₂ – space.

"Definition"(3.31):[3]A space $\mathcal X$ is said to be b-regular space if for each $x \in \mathcal{X}$ and A closed subset of X such that $x \notin A$ then there exist disjoint b-open sets U and V such that $x \in$ U and $A \subseteq V$.

Definition(3.32):[6]A space X is said to be N-regular space iff for each p∈X and C closed subset in X such that p∉C, there exist disjoint N-open sets U,V in X such that p∈Uand C⊆V.

By the same context, we can define the definition of Nb $Regular - space$

Definition(3.33): A space X is said to be Nb – regular space if for each x in X and

A closed set such that $x \notin A$ there exist disjoint Nb-open sets U,V such that $x \in U, A \subseteq V$.

Remark(3.34): There is no such thing as an Nb-regular space in general, and there is no such thing as a regular Nb-space.

Example(3.35):X={Ø, X, {1}, {2}, {1,2}}, $1 \in X$ and {3} is $Nb - closed$ in X , $1 \notin \{3\}$

but $\{1\}$ and $\{3\}$ are Nb-open sets which contain it selfs, since X is not regular , $\{3\} \subseteq_{closed} X$ and $1 \notin \{3\}$ but there no exist two disjoint open sets Contain 1 and {3}.

Definition(3.36):A function $f: X \to Y$ is said to be $Nb - closed$, if f(A) is an Nb-closed set

in Y for every closed subset A of X.

Theorem(3.37): let X and Y be homeomorphism topology, if X is regular space then

 Y is $Nb - regular space$.

Proof: let X and Y be homeomorphic topological space and let X be regular space, to prove Y is Nb-regular space, let y∈Y and A closed set in Y such that y∉A , since f is onto

then there exists $x \in X$ such that $f(x)=y$, since f is continuous function and $f^{-1}(A)$ closed in Y, and $x \notin f^{-1}(A)$ $1(A)$ and X is regular space then there exist open sets U and V, U \cap V = Ø

such that $x \in U, f^{-1}(A) \subseteq V$, then $f(U)$ and $f(V)$ are open sets in Y, " hence $y = f(x) \in f(U)$, $A = f(f^{-1}(A)) \subseteq$ $f(V)$ but every open isNb – open therefore Y is Nb-regular space.

Proposition(3.38): A topological space X is Nb-regular space iff for every x∈X and each

open U in X such that x∈U there exists an Nb – open set L such that $x \in L \subseteq \overline{L}^{Nb} \subseteq U$.

Proof: let X be Nb – regular space and $x \in X$, U be open set in X such that

 $x \in U$ then U^c is closed set in X and $x \notin U^c$ thus there exist disjoint Nb – open sets

L,V hence $x \in L$, $V^c \subseteq U$ therefore $x \in L \subseteq \overline{L}^{\text{Nb}} \subseteq V^c \subseteq U$,

conversely[;] let $x \in X$ and M be a closed set in X such that $x \notin M$ then M^c is an open

set in X and $x\in M^c(L\cap V=\emptyset\to L\subseteq V^c\to \overline{L}^{Nb}\subseteq \overline{V^c}^{Nb}=V^c(V^c~is~Nb-closed))$ thus there exists an Nb-open set L such that $x \in L \subseteq \overline{L}$ $\forall b \subseteq M$ c hence $x \in L$, $M \subseteq (\overline{L} \land b)$ c but L and $(\overline{L} \land b)$ c are disjoint Nb – open sets therefore X is Nb – regular.

Definition(3.39):[3]A topological space X is called b-normal space, if for every disjoint closed set c1,c2 there exist disjoint b-open sets V1, V2 such that $c1 \subseteq V1$, $c2 \subseteq V2$.

Definition(3.40):[6]A space X is said to be N-normal space if and only if for every disjoint

closed sets C₁, C₂ there exist disjoint N-open sets V₁, V₂ such that $C_1 \subseteq V_1$

and $C_2 \subseteq V_{2}$ ".

By the same context, we can define the definition of Nb Normal − space

Definition(3.41):"A space X is said to be Nb-normal space if for every disjoint closed sets c_1,c_2 there exist disjoint Nb-open sets V₁, V₂ such that $c_1 \subseteq V_1$, $c_2 \subseteq V_2$.

Remark(3.42):Nb-normal spaces can be found in every common space. However, this is not always the case.

Example(3.43): $let X = \{1,2,3\}$ and $\tau = \{\emptyset, X, \{2,3\}, \{1,2\}, \{2\}\}$ is Nb-normal but not normal.

"Proposition"(3.44): A topological space X is Nb-normal space, iff for every closed set D⊆ X and each open set U in X, such that D⊆ U there exists an Nb-open set V such that $D\subseteq V\subseteq \overline V^{Nb}\subseteq U.$

Proof: Let X be Nb-normal space and let D be closed set and U open set in X such that $D \subseteq U$ then D and U^c are disjoint closed sets in X since X is Nb-normal space thus, there exist disjoint Nb-open sets V, L hence D⊆V, U^c ⊆ L therefore $D \subseteq V \subseteq \overline{V}^{Nb} \subseteq \overline{L^C}^{Nb} = L^C \subseteq U$, Conversely":

Let D₁, D₂ be disjoint closed sets in X, then D_2^c is open set in X and $D_1 \subseteq D_2^c$ there exists an Nb-open set V such that $D_1 \subseteq V \subseteq \overline{V}^{Nb} \subseteq D_2^c$ hence

$$
D_1 \subseteq V, D_2 \subseteq (\overline{V}^{Nb})^c
$$
 and $V, (\overline{V}^{Nb})^c$ are disjoint Nb – open sets therefore X

Is Nb-normal space.

Definition(3.45): A space X is said to be Nb-compact if for every Nb-open cover has a finite subcover. So every Nb-compact space is compact although the converse may not always be accurate in practice.

Example(3.46): The indiscrete space is compact space but not Nb-compact, since if $C=\{\{x\}:x\in\mathbb{R}\}\$ is Nb-open cover to R which has no finite subcover where {x} is Nb-open set.

Proposition(3.47): Every Nb-compact subset of T_2 -space is closed.

Proof: Let A be Nb-compact subset of a T₂-space X. To prove that A is closed that is; X-A is open, let $p \in X - A$, so for every point q in A is distinct with p. But X is T₂-space, then there exist two disjoint open sets M(p) and N(q) containing p and q respectively. The collection $\{N(q): q \in A\}$ is an open cover to A, so the cover is Nb-open to A(every open set is Nb-open) which is Nb-compact, so there exists a finite subcover to A, $A\subset\bigcup_{i=1}^nN(q_i)=N$ and suppose $M=\bigcap_{i=1}^nM(p_i)$, but the finite intersection of open sets is open. So M is open set containing p and contained in X-A. therefore it is open so A is closed.

Proposition(3.48): Every Nb-closed subset of Nb-compact space is Nb-compact.

Proof: Suppose A be an Nb-closed subset of Nb-compact space X and let $c = \{U_{\alpha} : \alpha \in \Lambda\}$

be an Nb-open cover to A that is ; $A \subset \cup \{U_{\alpha}: \alpha \in \Lambda\}$ *but* $X - A$ *is Nb* $-$ *open.* So

 $X\subset\bigcup_{\alpha\in\Lambda}U_\alpha\cup(X-A)$ but X is Nb-compact, which lead us to $X\subset(\bigcup_{i=1}^nU_{\alpha_i})\cup(X-A)$

which means that $A \subset \bigcup_{i=1}^n U_{\alpha i}$. then we have A is Nb – compact.

References:

[1] AL-Omari, A. and M.S.Md.Noorani, 2009" New characterizations of compact spaces,"

proceedings of 5th Asian Mathematical Conference, Malaysia.

[2] D. Andrijevic, "On b-open sets" , Mat. Vesnik, 48 (1996),59-64.

[3] Gaber, S. K. "On b-Dimension Theory," M. S. c. Thesis University of AL-Qadissiya, College of Mathematics and Computer Science, (2010).

[4] Hamza S.H. and F.M.Majhool, 2011 "On − *",M.Sc., thesis university of ALQadisiya.*

[5] Hashmiya Ibrahim Nasser, 2012 "On Some Topological Spaces by using N-open set" M.Sc. thesis university of AL-Qadisiya, college of mathematics and computer science.

[6] Ali E. R. and Hussain R. A. "On Dimension Theory by using N-open Sets" University of AL-Qadissiya College of Mathematics and Computer Science, (2015).

[8] Hussein R. A. and Nasser Z. A., "On the b-Separation Axioms", International Jornal of Science and Research,(2015), pp. 1989-1993.

[9] T. A. Al-Hawary, A. Al-Omari, Quasi b-open sets in bitopological spaces, Abhath AL-Yarmouk Journal, 21 (2012) 1-14.