

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On Nb-Separation Axioms

Anas Mohammed Saeed Naief^a, Haider Jebur Ali^b

Department of mathematics, college of science, Al-Mustansirya University. anas_sat2008@yahoo.com & hjebur1972@gmail.com

ARTICLEINFO

Received: 27 /02/2022

Rrevised form: 15 /03/2022 Accepted : 22 /03/2022 Available online: 24 /03/2022

Article history:

Keywords:

sets

ABSTRACT

The main purpose of this paper is to express a new class of separation axioms based on open sets, known as Nb open, as well as to analyze and verify several essential ideas linked with this class.

MSC.41A25; 41A35; 41A3

https://doi.org/10.29304/jqcm.2022.14.1.886

1- Introduction

N-open sets, b-open sets, Nb-open

In a topological space, Andrijevi'c [2] created a new class of generalized open sets known as b-open sets, and T. A. Al-Hawary, A. Al-Omari also[9] worked on same field. All semi-open sets and pre-open sets are included in the class of b-open sets. The b-open set class yields the same topology as the preopen set class, A subset S of a space X is called b-open if $S \subseteq \overline{S}^{\circ} \cup \overline{S}^{\circ}$ [2], A subset S of a space X is b-closed if X-S is b-open. Thus S is b-closed if and only if $\overline{S}^{\circ} \cap \overline{S}^{\circ} \subset S$ [2], The union of any family of b-open sets is a b-open set and The intersection of an open and a b-open set is a b-open set[2], and A.AL-Omari and M.S.Md. Noorani [1] establish the idea of N – open sets, which are defined as follows: "A subset A of a space X is said to be an N – open if for every x $\in A$, there exist an open set $U_x \subseteq X$ containing x such that $U_x - X$ is a finite set, The complement of an N-open set is said to be N-closed, For every open set is an N-open set[1], Let X be a topological space, then X with the set of all N-open set is an N-open set and the union of N-open sets is also N-open[1]. They prove that the family of all N – open subset of a space X, denoted by \mathcal{T}_N Forms a topology on X finer than \mathcal{T} . Moreover, we find a mutual work about ω b-open sets merging ω -open and b-open by [8] and they concluded this new concept, so we merged b-open and N-open sets to propose a new concept called Nb-open that combines all previous attributes in a new definition depending on these concepts and satisfies the basic properties of topological space like interior and closure and so on".

^{*}Corresponding author : Anas Mohammed Saeed Naief.

Email addresses: anas_sat2008@yahoo.com.

2-preliminaries

Now we represent a new definition by merging the definitions of b-open and N-open:

Definition(2.1): "A subset A of a space X is said to be an Nb-open set if for each $x \in A$ there exists a b-open set U in X with $x \in U$ and U-A= finite."

Proposition(2.2):

1- Every N-open set is also an Nb-open set, although the converse is not always true.

2- Every b-open set is also an Nb-open set, although the converse may not always be accurate in practice.

Example(2.3): Consider the indiscrete space (R, τ_{ind}), the set {1} is Nb-open since {1} is b-open containing 1 and {1}-{1}=Ø which is finite but {1} is not N-open since R the only open set which contain 1 but R-{1}=infinite.

3- Main Results

Definition(3.1): A space X is said to be Nb- T_0 space if for each distinct points x and y in X we have Nb - open set contains one but not the other.

Example(3.2): "Let X={1,2,3} and $\tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}, then X is Nb - T_{\circ} space"$

Remark(3.3): Every T_{\circ} space is $Nb - T_{\circ}$ space but the converse may be not true.

Example(3.4): "LetX={a,b,c}, $\tau = \{\emptyset, X, \{a\}\}$ ". clearly X is not T_\circ space but {b}and {c}are Nb-open sets, therefore X is Nb- T_\circ .

Theorem(3.5): (X, τ) is NbT_{\circ} – space if $f(\overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb}$ for each $x, y \in X$, $x \neq y$.

Proof:(\Rightarrow)Suppose that X is NbT_° - space, to prove $\overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb}$ for each

 $x, y \in X$, $x \neq y$, since X is NbT₀ – space and $x \neq y$ then there exists $U \in \tau$

such that $(x \in U \text{ and } y \notin U) \text{ or } (x \notin U \text{ and } y \in U)$

suppose that $(x \in U \text{ and } y \notin U)$ which implies $(x \in U \text{ and } y \in X - U)$

X - U closed set since U is open which implies $\{y\} \subseteq X - U$

and
$$\overline{\{y\}}^{Nb} \subseteq \overline{X - U}^{Nb} = X - U$$
 (since $X - U$ closed and $\overline{X - U}^{Nb} = X - U$)

 $then \overline{\{y\}}^{Nb} \subseteq X - U \land x \in U \Rightarrow \{x\} \nsubseteq X - U \Rightarrow \overline{\{x\}}^{Nb} \nsubseteq X - U, \therefore \overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb}$

Similarly, if we take $(x \notin U \land y \in U)$

(conversely) suppos that $\overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb} \forall x \neq y \in X$, to prove X is NbT_{\circ} – space

Suppose that X is not NbT_o-space *then* (there exist x,y \in X such that for each U \in τ such that x \in U \Rightarrow y \in U)

let
$$z \in X$$
 such that $z \in \overline{\{x\}}^{Nb} \dots \dots \dots (*)$

then for each $U \in \tau$ such that $z \in U \land U \cap \{x\} \neq \emptyset$ (by true: $z \in \overline{A} \Leftrightarrow$ for each $U \in \tau$ such that $z \in U \land U \cap A \neq \emptyset$, but $U \cap \{x\} \neq \emptyset \Rightarrow x \in U$

(since the only element in $\{x\}$ is x)

hence every set contains z must contains x. So, we have the following two

statements:

Every Nb-open set contains *z* must contains *x* and every Nb – open set contains *x* must contains *y*. so every Nb-open set contains *z* must contains *y*. \Rightarrow

for each $U \in \tau$ such that $z \in U \land U \cap \{y\} \neq \emptyset, z \in \overline{\{y\}}^{Nb} \dots \dots \dots (**)^{"}$

then for each
$$z \in \overline{\{x\}}^{Nb} \Rightarrow z \in \overline{\{y\}}^{Nb} \Rightarrow \overline{\{x\}}^{Nb} \subseteq \overline{\{y\}}^{Nb}$$
"

Similarly, we prove $\overline{\{y\}}^{Nb} \subseteq \overline{\{x\}}^{Nb}$

Hence $\overline{\{x\}}^{Nb} = \overline{\{y\}}^{Nb} C! \left(\text{since } \overline{\{x\}}^{Nb} \neq \overline{\{y\}}^{Nb} \right)$, hence X is $NbT_{\circ} - \text{space}$.

"Definition"(3.6):[3]"A space X is called bT_1 -space if for each $x \neq y$ in X, there exist two b-open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$ ".

Definition(3.7):[1]A space X is called NT_1 -space if and only if for each $x \neq y$ in X there exist N-open sets U and V such that $x \in U, y \notin U$, and $y \in V, x \notin V$.

By the same context, we can define the definition of $NbT_1 - space$

Definition(3.8): "A space X is called Nb T_1 -space if for each $x \neq y$ in X, there exist Nb-open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$ ".

Proposition(3.9):"Every T₁-space is NbT₁-space".

Proof: "let (X, τ) be T_1 space and $x, y \in X \ni x \neq y$. Then there exist two open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$, since every open set is b-open thus, U and V are two b-open sets such that $x \in U, y \notin U$ and $y \in V, x \notin V$ therefore (X, τ) be NbT₁-space".

The case of NT_1 is similar.

Remark(3.10): In general, the opposite of the preceding claim is not valid.

Example(3.11): "Let X={1,2,3,4}, $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$ "

"Proposition" (3.12): [3] "Let X be a topological space and $Y \subseteq X$. If G is a b-open set in X and Y is an open set in X, then $G \cap Y$ is b-open set in Y."

Proof: Let $x \in A \cap Y$ which implies $x \in A$ and $x \in Y$, since A is Nb – open in X, then there

Exists b-open set U in X containing x and U-A is finite, $U \cap Y$ is b - open in Y then

 $U \cap Y - (A \cap Y) \subset U - A = finite$. then we have $A \cap Y$ is Nb-open in Y.

Theorem(3.14): suppose M is an open subset of X, Then M is NbT₁-subspace if X is NbT₁-space.

"Proof": "Let $x, y \in M$ such that $x \neq y$ since X is NbT_1 -space, then there exist two Nb-open sets U, V in X such that $x \in U$ but $.y \notin U$ and $y \in V$ but $x \notin V$ Let $A = U \cap M$, $B = V \cap M$. Thus A, B are Nb-open set in M and $x \in A$.but $y \notin A$ and $y \in B$ but $x \notin B$, therefore, M is NbT_1 -space".

Definition(3.15): A function $f: "X \to Y$ is said to be Nb-continuous if $f^{-1}(U)$ is Nb-open in X whenever U is an open set in Y".

Remark(3.16): Every continuous function is also Nb-continuous, although the reverse may not be accurate in some cases.

Example(3.17): Let $X = \{1,2,3\}, \tau_x = indiscrete topology$

Y = X , $\tau_y = discrete \ topology$

Then $I_X: (X, \tau_{ind}) \rightarrow (X, \tau_D)$ is an Nb – continuous but not continuous.

Definition(3.18): a function $f: X \to Y$ is Nb - open if f(U) is Nb-open in Y, whenever U is open set in X.

Remark(3.19):Every open function is an Nb-open function.

Theorem(3.20):Let $f: X \to Y$ be a one-to-one Nb-continuous function. If Y is T₁-space then X is NbT₁-space.

"Proof:let $x_1, x_2 \in X$ such that $x_1 \neq x_2$ ", since $f: X \to Y$ is one-to-onefunction and $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$ and $f(x_1), f(x_2) \in Y$ since Y is T_1 space then $\exists U, V$ open sets in $Y, f(x_1) \in U$ but $f(x_2) \notin U$, and $f(x_2) \in V$ but $f(x_1) \notin V$, since f is Nb-continuous function then $f^{-1}(U), f^{-1}(v)$ are Nb – open sets in X, since $f(x_1) \in U$, thus $x_1 \in f^{-1}(U)$, and also since $f(x_2) \notin U$ thus $x_2 \notin f^{-1}(U)$, and also since $f(x_2) \in V$, then $x \in f^{-1}(V)$, and since $f(x_1) \notin V$ then $x_1 \notin f^{-1}(V)$, therefore X is NbT_1 – space.

"Definition"(3.21):[3]"A space X is called bT_2 -space (b-Hausdorff space)" if for each $x \neq y$ in X, there exist disjoint b – open sets U, V such that $x \in U, y \in V$.

Definition(3.22):[5]A space X is called N-Hausdorff if any two distinct X points have disjoint N-open neighborhoods.

By the same context, we can define the definition of NbT_2 – *space*

Definition(3.23):Aspace X is called NbT2-space (Nb-Hausdorff) if for each $x \neq y$ in X there exist disjoint Nb – open sets U, V such that $x \in U$, $y \in V$ containing x & y respectively.

Remark(3.24): Any T₂ space is also an NbT₂-space, but the reverse may not be accurate.

Example(3.25):Let $X = \{1, 2, 3\}, \tau = \{X, \tau_{ind}\}$ is $NbT_2 - space$ but not $T_2 - space$.

Proposition(3.26): *let* $f: X \rightarrow Y$ *be a bijective function*

1- if f is Nb-open and X is T₂-space, then Y is NbT₂-space.

2- if f is Nbcontinuous and Y is T₂space, then X is NbT₂-space.

"**Proof**":let $f: X \rightarrow Y$ be a bijective function then,

1-suppose f is Nb – open and X is T_2 – space, let $y_1 \neq y_2 \in Y$, since f is bijective, then there exist x_1, x_2 in X, such that $f(x_1) = y_1$ and $f(x_2) = y_2$ and $x_1 \neq x_2$, since X is T_2 -space then there exists two disjoint open sets U and V in X such that $x_1 \in U$ and $x_2 \in V$, since f is Nb-open then f(U) and f(V) are Nb-open sets in Y hence $f(x_1) = y_1 \in f(U)$ and $f(x_2) = y_2 \in f(V)$, since f is bijective so f(U) and f(V) are disjoint in Y, $f(U) \cap f(V)$

 $=f(U \cap V) = f(\emptyset) = \emptyset$, thus Y is $NbT_2 - space$.

2- similar to prove of (1).

Proposition(3.27):Every NbT₂-space is NbT₁-space.

Proof: *let* (X, τ) *be an* NbT_2 – *space*, let x and y be two distinct in X, since X is NbT₂-space

then there exist disjoint Nb-open sets U and V such that $x \in U$ and $y \in V$, since U and V are disjoint then $x \in U$ but $y \notin U$, and $y \in V$ and $x \notin V$, so X is

NbT₁-space".

Theorem(3.28):Let M be an open subspace of X, then M is NbT₂subspace if X is NbT₂-space".

Proof: *let* $x, y \in M$, $x \neq y$ *then* $x, y \in X$ *so* there exist B_1 , B_2 such that $B_1 \cap B_2 = \emptyset$ such that $x \in B_1$, $y \in B_2$ where B_1, B_2 are Nb-open sets in X

let $E_1=B_1\cap M$, $E_2=B_2\cap M$ are Nb-open subsets in M, and $x\in E_1$, $y\in E_2$, then $E_1\cap E_2=(B_1\cap M)\cap (B_2\cap M)=(B_1\cap B_2)\cap M=\emptyset\cap M=\emptyset$, hence M is NbT₂-space.

Definition(3.29): *let* $f: X \to Y$ be a function of a topological space(X, τ) *into a topological*

space (Y, τ^*) then f is called an Nb-irresolute function if $f^{-1}(A)$ is an Nb – open set in X, for every Nb – open set A in Y.

Proposition(3.30): *let* $f: X \to Y$ *be one* -to -one Nb-irresolute function and Y is NbT₂-space then X is NbT₂ - space.

Proof: suppose $f: X \to Y$ is 1 - 1 and f is Nb - irresolute and Y is $NbT_2 - space$,

let $x_1, x_2 \in X$ with $x_1 \neq x_2$ since f is 1 - 1 then

 $y_1 = f(x_1) \neq f(x_2) = y_2 \text{ for some } y_1, y_2 \in Y$,

since Y is $NbT_2 - space$ then there exist disjoint Nb-open sets U and V such that $y_1 = f(x_1) \in U$ and $y_2 = f(x_2) \in V$ then $x_1 = f^{-1}(y_1) \in f^{-1}(U)$, $x_2 = f^{-1}(y_2) \in f^{-1}(V)$, and since f is Nb-irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are Nb - open sets in X, hence

 $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$, then X is NbT_2 - space.

"Definition"(3.31):[3]A space X is said to be b-regular space if for each $x \in X$ and A closed subset of X such that $x \notin A$ then there exist disjoint b-open sets U and V such that $x \in U$ and $A \subseteq V$.

Definition(3.32):[6]A space X is said to be N-regular space iff for each $p \in X$ and C closed subset in X such that $p \notin C$, there exist disjoint N-open sets U,V in X such that $p \in U$ and $C \subseteq V$.

By the same context, we can define the definition of NbRegular - space

Definition(3.33): A space X is said to be Nb – regular space if for each x in X and

A closed set such that $x \notin A$ there exist disjoint Nb-open sets U,V such that $x \in U, A \subseteq V$.

Remark(3.34): There is no such thing as an Nb-regular space in general, and there is no such thing as a regular Nb-space.

Example(3.35): $X = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}, 1 \in X \text{ and } \{3\} \text{ is } Nb - closed in X, 1 \notin \{3\}$

but {1}*and* {3}*are* Nb-open sets which contain it selfs, since X is not regular, {3} $\subseteq_{closed} X$ and $1 \notin$ {3}*but there no exist two disjoint open sets Contain* 1 and {3}.

Definition(3.36): A function $f: X \to Y$ is said to be Nb - closed, if f(A) is an Nb-closed set

in Y for every closed subset A of X.

Theorem(3.37): let X and Y be homeomorphism topology, if X is regular space then

Y is Nb - regular space.

Proof: *let X and Y be homeomorphic* topological space and let X be regular space , to prove Y is Nb-regular space, let $y \in Y$ and A closed set in Y such that $y \notin A$, since f is onto

then there exists $x \in X$ such that f(x)=y, since f is continuous function and $f^{-1}(A)$ closed in Y, and $x \notin f^{-1}(A)$ and X is regular space then there exist open sets U and V, $U \cap V = \emptyset$

such that $x \in U$, $f^{-1}(A) \subseteq V$, then f(U) and f(V) are open sets in Y, "hence $y = f(x) \in f(U)$, $A = f(f^{-1}(A)) \subseteq f(V)$ but every open is Nb – open therefore Y is Nb-regular space.

Proposition(3.38): A topological space X is Nb-regular space iff for every $x \in X$ and each

open U in X such that $x \in U$ there exists an Nb – open set L such that $x \in L \subseteq \overline{L}^{Nb} \subseteq U$.

Proof: let X be Nb - regular space and $x \in X$, U be open set in X such that

 $x \in U$ then U^c is closed set in X and $x \notin U^{c}$ thus there exist disjoint Nb – open sets

L, V hence $x \in L$, V^c \subseteq Utherefore $x \in L \subseteq \overline{L}^{Nb} \subseteq V^{c} \subseteq U$,

conversely; let $x \in X$ and M be a closed set in X such that $x \notin M$ then M^c is an open

set in X and $x \in M^{c}(L \cap V = \emptyset \to L \subseteq V^{c} \to \overline{L}^{Nb} \subseteq \overline{V^{c}}^{Nb} = V^{c}(V^{c} \text{ is } Nb - closed))$ thus there exists an Nb-open set L such that $x \in L \subseteq \overline{L}$ $\stackrel{Nb}{\longrightarrow} \subseteq M$ $\stackrel{c}{\longrightarrow} hencex \in L, M \subseteq (\overline{L} \quad \stackrel{Nb}{\longrightarrow})$ $\stackrel{c}{\longrightarrow} but \ L and (\overline{L} \quad \stackrel{Nb}{\longrightarrow})$ $\stackrel{c}{\longrightarrow} are \ disjoint \ Nb - open \ sets \ therefore \ X \ is \ Nb - regular.$

Definition(3.39):[3]A topological space X is called b-normal space, if for every disjoint closed set c1,c2 there exist disjoint b-open sets V1, V2 such that $c1 \subseteq V1$, $c2 \subseteq V2$.

Definition(3.40):[6] A space \mathcal{X} is said to be N-normal space if and only if for every disjoint

closed sets C_1, C_2 there exist disjoint N-open sets V_1, V_2 such that $C_1 \subseteq V_1$

and $C_2 \subseteq V_{2"}$.

By the same context, we can define the definition of NbNormal – space

Definition(3.41): "A space \mathcal{X} is said to be Nb-normal space if for every disjoint closed sets c_1, c_2 there exist disjoint Nb-open sets V_1, V_2 such that $c_1 \subseteq V_1, c_2 \subseteq V_2$.

Remark(3.42):Nb-normal spaces can be found in every common space. However, this is not always the case.

Example(3.43): *let* $X = \{1,2,3\}$ *and* $\tau = \{\emptyset, X, \{2,3\}, \{1,2\}, \{2\}\}$ is Nb-normal but not normal.

"Proposition" (3.44): A topological space X is Nb-normal space, iff for every closed set $D \subseteq X$ and each open set U in X, such that $D \subseteq U$ there exists an Nb-open set V such that $D \subseteq V \subseteq \overline{V}^{Nb} \subseteq U$.

Proof: Let X be Nb-normal space and let D be closed set and U open set in X such that $D \subseteq U$ then D and U^c are disjoint closed sets in X since X is Nb-normal space thus, there exist disjoint Nb-open sets V, L hence $D \subseteq V, U^c \subseteq L$ therefore $D \subseteq V \subseteq \overline{V}^{Nb} \subseteq \overline{L^c}^{Nb} = L^c \subseteq U$, Conversely":

Let D_1 , D_2 be disjoint closed sets in X, then D_2^c is open set in X and $D_1 \subseteq D_2^c$ there exists an Nb-open set V such that $D_1 \subseteq V \subseteq \overline{V}^{Nb} \subseteq D_2^c$ hence

$$D_1 \subseteq V, D_2 \subseteq \left(\overline{V}^{Nb}\right)^c$$
 and $V, \left(\overline{V}^{Nb}\right)^c$ are disjoint Nb – open sets therefore X

Is Nb-normal space.

Definition(3.45): A space X is said to be Nb-compact if for every Nb-open cover has a finite subcover. So every Nb-compact space is compact although the converse may not always be accurate in practice.

Example(3.46): The indiscrete space is compact space but not Nb-compact, since if $C=\{\{x\}:x \in R\}$ is Nb-open cover to R which has no finite subcover where $\{x\}$ is Nb-open set.

Proposition(3.47): Every Nb-compact subset of T₂-space is closed.

Proof: Let A be Nb-compact subset of a T₂-space X. To prove that A is closed that is; X-A is open, let $p \in X - A$, so for every point q in A is distinct with p. But X is T₂-space, then there exist two disjoint open sets M(p) and N(q) containing p and q respectively. The collection {N(q): $q \in A$ } is an open cover to A, so the cover is Nb-open to A(every open set is Nb-open) which is Nb-compact, so there exists a finite subcover to A, $A \subset \bigcup_{i=1}^{n} N(q_i) = N$ and suppose $M = \bigcap_{i=1}^{n} M(p_i)$, but the finite intersection of open sets is open. So M is open set containing p and contained in X-A. therefore it is open so A is closed.

Proposition(3.48): Every Nb-closed subset of Nb-compact space is Nb-compact.

Proof: Suppose A be an Nb-closed subset of Nb-compact space X and let $c = \{U_{\alpha} : \alpha \in \Lambda\}$

be an Nb-open cover to A that is ; $A \subset \bigcup \{U_{\alpha} : \alpha \in \Lambda\}$ but X - A is Nb - open. So

 $X \subset \bigcup_{\alpha \in \Lambda} U_{\alpha} \cup (X - A)$ but X is Nb-compact, which lead us to $X \subset (\bigcup_{i=1}^{n} U_{\alpha i}) \cup (X - A)$

which means that $A \subset \bigcup_{i=1}^{n} U_{\propto i}$. then we have A is Nb – compact.

References:

[1] AL-Omari, A. and M.S.Md.Noorani, 2009" New characterizations of compact spaces,"

proceedings of 5th Asian Mathematical Conference, Malaysia.

[2] D. Andrijevic, "On b-open sets", Mat. Vesnik, 48 (1996),59-64.

[3] Gaber, S. K. "On b-Dimension Theory," M. S. c. Thesis University of AL-Qadissiya, College of Mathematics and Computer Science, (2010).

[4] Hamza S.H. and F.M.Majhool, 2011 "On N – Proper Action ",M.Sc., thesis university of ALQadisiya.

[5] Hashmiya Ibrahim Nasser, 2012 "On Some Topological Spaces by using N-open set" M.Sc. thesis university of AL-Qadisiya, college of mathematics and computer science. [6] Ali E. R. and Hussain R. A. "On Dimension Theory by using N-open Sets" University of AL-Qadissiya College of Mathematics and Computer Science, (2015).

[8] Hussein R. A. and Nasser Z. A., "On the ωb-Separation Axioms", International Jornal of Science and Research,(2015), pp. 1989-1993.

[9] T. A. Al-Hawary, A. Al-Omari, Quasi b-open sets in bitopological spaces, Abhath AL-Yarmouk Journal, 21 (2012) 1-14.