

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Some Results in Fuzzy 2- Metric Space

Raghad I.Sabri ^a , Mayada N. Mohammedali ^b , Fatema Ahmad Sadiq ^c

^a *Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology, Baghdad, Iraq. Email: [raghad.i.sabri@ uotechnology.edu.iq.](mailto:raghad.i.sabri@%20uotechnology.edu.iq)*

^b *Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology, Baghdad, Iraq. Email: [mayada.n.mohammedali@uotechnology.edu.iq.](mailto:mayada.n.mohammedali@uotechnology.edu.iq)*

^c *Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology, Baghdad, Iraq. Email: [fatema.a.sadiq@uotechnology.edu](mailto:fatema.a.sadiq@uotechnology.edu.iq).iq*

ARTICLE INFO

Article history: Received: 10 /02/2022 Rrevised form: 29 /02/2022 Accepted : 15 /03/2022 Available online: 04 /04/2022

Keywords:

Fuzzy2- metric space**,** convergent sequence, Compact fuzzy 2-metric space, Fuzzy totally bounded.

ABSTRACT

The notion of fuzzy 2-metric space and its essential features are initially examined in this study. Following that, the ideas of compact fuzzy2- metric space and fuzzy totally bounded space are discussed. Furthermore, the essential theorems relating to these concepts are established. In particular, we prove that a fuzzy 2- metric space (W, \Im, \Im) which is compact must be complete.

MSC.41A25; 41A35; 41A3

https://doi.org/10.29304/jqcm.2022.14.1.890

1. Introduction and Preliminaries

The fuzzy set notion was created in 1965. Since then, researchers have applied this key set to a variety of fields. Fuzzy sets have also become a recognized study topic in both pure and practical mathematics and statistics, demonstrating how this theory is very adaptable and fruitful in a wide range of applications, see[5,7,11,18,30]. In functional analysis, the main tools are metrics, norms, and inner product structures. As a result, fuzzy metrics, fuzzy norms, and fuzzy inner products are essential in the development of fuzzy functional analysis. Numerous authors have proposed various papers for fuzzy normed spaces, like [9,13,17,19,21,22,24]. The notion of a fuzzy metric space, which can be thought of as a generalization of the statistical metric space, was initially described by Kramosil

[∗]Corresponding author Raghad I.Sabri

Email addresses: raghad.i.sabri@uotechnology.edu.iq

Communicated by : Dr. Alaa Taima Abd Akadhem

and Michálek [16] in 1975. From various perspectives, many authors have introduced and debated various concepts of fuzzy metric space. (see[6,8,14]). On the other hand, a large number of research works on fuzzy metric spaces have been published, such as [3,4, 10,12, ,20, 23, ,25,28,29]. In 2002 [27]Sharma proposed the notion of fuzzy 2 metric space and proved a common fixed point theory in this space. Recently Kocinac et al.[15] introduced and investigated various selective covering properties in fuzzy 2-metric spaces*.*

The major goal of this work is to continue looking at some of the properties of Sharma's fuzzy2- metric space definition. we will define the compact 2-fuzzy metric space and fuzzy totally bounded space, as well as examine some essential characteristics associated with these notions.

Gahler established the concept of 2-metric space in 1960 [1, 2].

Assume that W be a nonempty set. If a function $\mathcal{D}: W \times W \times W \to R$ fulfill the following rules, it is termed a 2metric function on W:

($\mathfrak{D}1$)For all $x, y \in \mathbb{W}$ there exists $z \in \mathbb{W}$ such that $\mathfrak{D}(x, y, z) \neq 0$.

 $(\mathfrak{D}2)\mathfrak{D}(x, y, z) = 0$ if at least two of the three points are the same.

 $(\mathfrak{O}(3)\mathfrak{O}(x, y, z)) = \mathfrak{O}(x, z, y) = \mathfrak{O}(y, x, z) = \mathfrak{O}(y, z, x) = \mathfrak{O}(z, x, y) = \mathfrak{O}(z, y, x)$, for all $x, y, z \in \mathbb{W}$

 $(\mathcal{D}4)\mathcal{D}(x, y, z) \leq \mathcal{D}(w, z, y) + \mathcal{D}(x, w, z) + \mathcal{D}(x, y, w)$, for all $x, y, z, w \in \mathbb{W}$.

The pair (W, \mathcal{D}) is then referred to as a 2-metric space.

To define fuzzy 2-metric spaces, we need to use the well-known concept of triangular or t-norm.

Definition 1.1[26]: Assume that $\tilde{\mathbf{x}}$: [0,1] \times [0,1] \rightarrow [0,1] is a binary operation. If $\tilde{\mathbf{x}}$ achieve the following:

- 1- $\mathcal{I} \tilde{\ast} \mathbf{n} = \mathbf{n} \tilde{\ast} \mathcal{I}$, for each $\mathcal{I}, \mathbf{n} \in [0,1]$.
- 2- $(\mathcal{I} \tilde{\ast} \mathfrak{n}) \tilde{\ast} \mathfrak{c} = \mathcal{I} \tilde{\ast} (\mathfrak{n} \tilde{\ast} \mathfrak{c}), \mathfrak{c} \in [0,1].$
- 3- $7 \times 1 = 7$.
- 4- $\mathcal{I}^* \times \eta \leq \varsigma \times \tau$ whenever $\mathcal{I} \leq \varsigma$ and $\eta \leq \tau$, for each \mathcal{I} , η , ς , $\tau \in [0,1]$.

Then $\tilde{\ast}$ is termed continuous t-norm.

Definition 1.2[27]: A binary operation $\tilde{\mathbf{x}}$: $[0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ is termed a continuous t-norm if $([0,1], \tilde{\mathbf{x}})$ is an abelian topological monoid with unit 1 such that $\mathcal{I}_1 \tilde{\ast} \eta_1 \tilde{\ast} \zeta_1 \leq \mathcal{I}_2 \tilde{\ast} \eta_2 \tilde{\ast} \zeta_2$ whenever $\mathcal{I}_1 \leq \mathcal{I}_2$, $\eta_1 \leq \eta_2$, $\varsigma_1 \leq \varsigma_2$ for all \mathcal{I}_1 , \mathcal{I}_2 , η_1 , η_2 and ς_1 , ς_2 are in [0,1].

Definition 1.3[27]: If W is a nonempty set, $\tilde{\ast}$ is a continuous t-norm, and $\tilde{\Lambda}$ is a fuzzy set in $W \times W \times W \times (0, \infty)$ meeting the following criteria for all $x, y, z \in W$ and $\vartheta, \vartheta_1, \vartheta_2, \vartheta_3 > 0$, then the triplet $(W, \Im, \widetilde{\ast})$ is known as fuzzy 2metric space briefly $(\hat{F}(W)2 - space)$

 $(\mathfrak{J}_1) \mathfrak{J}(x, y, z, 0) = 0.$

 $({\mathfrak Y}_2) {\mathfrak J}(x, y, z, \theta) = 1$, if at least two of x, y, z are equal;

$$
(\mathfrak{J}_3) \mathfrak{J}(x, y, z, \theta) = \mathfrak{J}(x, z, y, \theta) = \mathfrak{J}(y, z, x, \theta)
$$

 $(\mathfrak{J}_4) \mathfrak{J}(x, y, z, \theta_1 + \theta_2 + \theta_3) \geq \mathfrak{J}(x, y, u, \theta_1) \widetilde{*} \mathfrak{J}(x, u, z, \theta_2) \widetilde{*} \mathfrak{J}(u, y, z, \theta_3)$

 $(\mathfrak{J}_5) \mathfrak{J}(x, y, z, .): [0,1) \rightarrow [0,1]$ is continuous.

A sample example of a fuzzy 2-metric is shown below.

Example 1.4[15]: Let (W, \mathcal{D}) be a 2-metric space. Then the mapping $\mathfrak{F}: W \times W \times W \times (0, \infty) \rightarrow [0,1]$

defined by

$$
\mathfrak{J}(x, y, z, \vartheta) = \frac{\frac{\mathfrak{J}(x, z, y, \vartheta)}{\vartheta}}{\vartheta + \mathfrak{O}(x, y, z)}
$$

is a fuzzy 2-metric on W induced by the 2-metric D .

Definition1.5[15]: Let $(W, \tilde{\chi}, \tilde{\chi})$ be an $\hat{F}(W)$ 2-space. For $x \in W$, $e \in (0, 1)$, $\vartheta > 0$, the open ball is given as follow:

 $B(x, e, \theta) = \{ \psi \in \mathbb{W} : \Im(x, \psi, z, \theta) > 1 - e \text{ for each } z \in \mathbb{W} \}.$

Definition 1.6[27]: Suppose that (W, $\tilde{\mathfrak{F}}(\mathfrak{W})$ be an $\hat{F}(\mathfrak{W})$ 2-space and $\{x_n\}$ be a sequence in W. If there exists $x \in \mathfrak{W}$ such that $\lim_{n\to\infty} \Im(x_n, x, u, \vartheta) = 1$, for all $u \in \mathbb{W}$ and $\vartheta > 0$, then $\{x_n\}$ is called a convergent sequence.

Definition 1.7[27]: Suppose that (W, \tilde{x} , \tilde{y}) be an $\hat{f}(W)$ 2-space and $\{x_n\}$ be a sequence in W. Then $\{x_n\}$ is called Cauchy sequence if $\lim_{n\to\infty} \Im(x_{n+m}, x_n, u, \vartheta) = 1$, for all $u \in \mathbb{W}$ and $\vartheta > 0$, $p > 0$.

This definition of a Cauchy sequence is equivalent to $\lim_{n \to \infty} \Im(x_n, x_n, u, \vartheta) = 1$, for all $\vartheta > 0$.

We use this as the definition of the Cauchy sequence throughout the paper.

Definition 1.8[27]: A complete fuzzy 2-metric space(W, $\tilde{\mathbf{x}}$) is defined as an $\hat{\mathbf{F}}(\mathbf{W})$ 2-space in which every Cauchy sequence is a convergent sequence.

2. Compact Fuzzy2- metric space

This section introduces the concept of compact fuzzy 2- metric space. The fundamental properties will then be investigated. We'll start by explaining the concept of an open and closed set.

Definition2.1: Let (W, \Im, \Im) be an $\widehat{F}(W)$ 2-space and *H* indicate a subset in W. If for any $x \in H$ there exists $0 < e < 1$, and $\theta > 0$ such that $B(x, e, \theta) \subseteq H$, then H is called an open set in (W, $\mathfrak{F}, \mathfrak{F}$).

Definition2.2: Let $(W, \Im, \widetilde{\ast})$ be an $\widehat{f}(W)$ 2-space and \mathcal{H} be a subset of W. If any sequence $\{x_n\}$ in \mathcal{H} is convergence to $x \in \mathcal{H}$, then the subset \mathcal{H} is called closed.

Definition 2.3: Let(W, \Im ,*) be an $\widehat{f}(\mathbb{W})$ 2-space and $\mathcal H$ indicate a subset in \mathbb{W} . Let $\widehat{\mathcal L}$ be a collection of open sets in **EXECUTE:** $\text{Let } (\sigma, \zeta, \zeta) \to \text{Let } \zeta \in \mathcal{U}$ and $\zeta \in \text{Int}_\zeta$ and $\zeta \in \text{Int}_\zeta$ and $\zeta \in \mathcal{U}$ are a concerned and $\zeta \in \mathcal{U}$. Then a family ζ is termed an open cover of \mathcal{H} .

 ${\bf Definition\ 2.4}\colon$ Let $({\mathbb W}, {\mathfrak J}, \widetilde*)$ be an $\widehat{ {\bf f}}({\mathbb W})$ 2-space. If each open cover has a finite sub-collection $\{ {\rm L}_1, {\rm L}_2, ..., {\rm L}_{\rm k} \}$ \subseteq ${\widehat{\cal L}}$ with $\mathbb{W} = \bigcup_{i=1}^k L_i$, then $(\mathbb{W}, \mathfrak{J}, \tilde{\ast})$ is called compact $\widehat{F}(\mathbb{W})$ 2-space.

Definition 2.5: Assume that $(W, \tilde{X}, \tilde{*})$ be an $\hat{F}(W)$ -space and $\mathcal{H} \subseteq W$. If each sequence in W has a convergent subsequence whose limit is a point of W , then W is compact.

Proposition 2.6: Assume that $(W, \tilde{\chi}, \tilde{\ast})$ be a compact $\hat{F}(W)$ 2-space and $\mathcal{H} \subseteq W$. If \mathcal{H} is closed set in W then \mathcal{H} is compact.

Proof:

Consider (W, \tilde{S}, \tilde{X}) be a compact $\hat{F}(W)$ 2-space. Let $\mathcal H$ be a closed subset of W. Suppose that $\{x_n\} \in \mathcal H$ then ${x_n} \in \mathbb{W}$. By Definition (2.5), Since W is compact then ${x_n}$ has a subsequence ${x_{nk}}$ converges to x_{n_i} . Then $x_{\rm n_i}\in\mathcal{H} \,\,\,$ since $\mathcal{H} \,\,$ is a closed subset, hence $\,\mathcal{H} \,$ is compact.

Definition 2.7: Let (W, \Im ,**) be an $\hat{F}(W)$ 2-space and \mathcal{H} is a subset of W then \mathcal{H} is said to be fuzzy totally bounded(briefly ($\hat{F}T$ – bounded))if for any $m\in(0,1)$ and ϑ >0 there exists a finite set of points $\{\ell_1,\ell_2,...,\ell_n\}\subset$ H that is whenever x in W, $\Im(x,\ell_1,u,\vartheta)>1-m$ for some $\ell_i\in\{\ell_1,\ell_2,...,\ell_n\}$ where $u\in\mathbb{W}$. This set of points $\{\ell_1, \ell_2, ..., \ell_n\}$ is called m - fuzzy net of (W, $\mathfrak{F}, \widetilde{\ast}$).

Proposition 2.8: Let $(W, \tilde{\chi}, \tilde{\ast})$ be $\hat{F}(W)$ 2-space. Then W is $\hat{F}T$ – bounded if it is compact.

Proof:

Suppose that W be compact. For any $x \in W$ and radius $e \in (0,1)$, the collection of all balls $\{B(x, e, \theta)\}\$ is an open cover of W where $\theta > 0$.

Now since W is compact then by Definition(2.4) it follows that this cover includes finite subcover say $\{B(x_1, e, \vartheta), B(x_2, e, \vartheta), ..., B(x_k, e, \vartheta)\}\$ so $\{x_1, x_2, ..., x_k\}$ represent an m - fuzzy net of W and by Definition(2.7) it follows that W is $\hat{F}T -$ bounded.

Proposition 2.9: Let $(W, \tilde{\chi}, \tilde{\ast})$ be compact $\hat{F}(W)$ 2-space. Then $(W, \tilde{\chi}, \tilde{\ast})$ is complete.

Proof:

Assume that $(W, \tilde{S}, \tilde{*})$ is a compact $\hat{F}(W)$ 2-space that is not complete. Then there's a Cauchy sequence $\{x_n\}$ in (W, $\mathfrak{F}, \mathfrak{F}$) that doesn't have a limit in W. Let $y \in \mathbb{W}$ and $\vartheta > 0$ because $\{x_n\}$ does not converge to y there is $0 < \delta < 1$ such that $\Im(x_n, y, u, \vartheta) > 1 - \delta$ for infinitely many values of *n* where $u \in \mathbb{W}$. Since $\{x_n\}$ is Cauchy, there exists an integer N such that $n, m \ge N$. As a result of this $\Im(x_m, x_n, u, \vartheta) > 1 - \delta$. Choose $m \ge N$ such that $\Im(x_m, y, u, \vartheta) > 1 - \delta$. So, the open ball $B(y, \delta, \vartheta)$ includes x_n for only finitely many values of n.

In this way, we may correlate a ball $B(\psi, \delta(\psi), \vartheta)$ with each $\psi \in \mathbb{W}$ where $0 < \delta(\psi) < 1$ relies on ψ , and the ball B(ψ , $\delta(\psi)$, θ) has x_n for only a finite number of *n* values. Notice that $W = \bigcup B(\psi, \delta(\psi), \theta)$ implying that

 $\{B(y,\delta(y),\theta): y \in W\}$ is a covering for W. Now, because W is compact, a finite sub covering $B(y_i,\delta_i(y),\theta)$, $i = 1, 2, ..., n$ exists. Since every ball possesses x_n for only a finite number of values of n , the balls are in the finite sub covering, consequently W must also have x_n for only a finite number of values of π . This, on the other hand, is not possible. As a result, $(W, \tilde{\chi}, \tilde{\ast})$ must be complete.

Proposition 2.10: Let (W, 3,*) be an $\hat{F}(W)$ 2-space and $\mathcal{H} \subseteq W$. If W is $\hat{F}T$ – bounded then \mathcal{H} is $\hat{F}T$ – bounded.

Proof:

Suppose that $(W, \Im, \widetilde{\ast})$ be an $\widehat{F}(W)$ 2 – space and W is $\widehat{F}T$ – bounded. Consider $\{x_1, x_2, ..., x_k\}$ represent an m fuzzy net of W where $m \in (0,1)$. Then for any $x_1 \in W$ and some $y_i \in \mathcal{H}$ we have:

 $\Im(x_1, y_1, u, \theta\prime_3) > 1 - m$ where $u \in \mathbb{W}$.

Putting $\mathcal{D} = \{z_1, z_2, ..., z_m\}$ which is a finite subset of \mathcal{H} .

Then for every $1 < i < m$, we have $\Im(x_1, z_i, u, \frac{\vartheta}{3}) > 1 - m$ for some $z_i \in \mathcal{H}$.

Now ,

$$
\mathfrak{J}(x_1, y_1, u, \vartheta) \ge \mathfrak{J}(x_1, y_1, z, \vartheta'_3) \mathfrak{F} \mathfrak{J}(x_1, z_1, u, \vartheta'_3) \mathfrak{F} \mathfrak{J}(z_1, y_1, u, \vartheta'_3)
$$

$$
\ge (1 - m) \mathfrak{F}(1 - m) \mathfrak{F}(1 - m)
$$

$$
> 1 - \delta
$$

for some $\delta \in (0,1)$. This indicates that \mathcal{H} is $\hat{F}T -$ bounded.

Proposition 2.11: Let $(W, \tilde{X}, \tilde{X})$ be an $\hat{F}(W)$ 2-space and $\mathcal{H} \subseteq W$. If \mathcal{H} is compact then every infinite subset $\mathcal{D} \subseteq \mathcal{H}$ has a limit point.

Proof:

Consider (W, $\mathfrak{F}(\mathbb{W})$ be an $\widehat{f}(\mathbb{W})$ 2-space and \mathcal{H} be a compact subset in (W, $\mathfrak{F}(\mathbb{R})$ and let $\mathcal{D} \subseteq \mathcal{H}$ be an infinite set. We state that D does not include any limit point, and then we demonstrate that this is false. Because D does not have a limit point, then for all $x \in \mathcal{D}$ there exists $e \in (0,1)$ such that the open ball $B(x, e, \vartheta)$ does not include any points of *K* different from *x*, that is for all $x \in \mathcal{D}$ we have $B(x, e, \vartheta) \cap \mathcal{D} \setminus \{x\} = \varnothing$.

Now for each $x \in \mathcal{D}$, let $B(x, e, \vartheta)$: $e \in (0, 1), \vartheta > 0$ } represents the family of the open ball. Then we have $\mathcal{D} \subseteq \bigcup_{x \in \mathcal{D}} B(x, \epsilon, \vartheta)$ which is an infinite open covering of \mathcal{D} and each element in this covering of \mathcal{D} includes only one point x , consequently, there is no finite open sub covering implying that D is not compact and this contradiction, hence statement that the infinite subset D of H dose does not include any limit point is wrong. Hence D has a limit point.

References

[1] AHLER .S. G.(1963). 2–metrische Raume und ihre topologische Struktur, *Math. Nachr*. 26 (1-4) , 115–148.

[2] AHLER S. G. (1964). Lineare 2-normierte Raume, *Math. Nachr*. 28(1-2), 1–43.

[3]Alias, B. (2021).On a Fuzzy Metric Space and Fuzzy Convergence. *Proyecciones Journal of Mathematics*, 40(5), 1279-1299.

[4]Amit, K. A. &Alam, M. Z. (2018).Continuous Fuzzy Mappings In Fuzzy Metric Space. *GSJ,* 6 (7), 612-620.

[5]Bigand, .A & . Colot,. O. (2010) .Fuzzy filter based on interval-valued fuzzy sets for image filtering. *Fuzzy Sets Syst*,161 (1), 96–117.

[6]Ereeg, M. A.(1979). Metric spaces and fuzzy set theory. *J. Math. Anal. Appl*. 69, 205-230.

[7]Eyke, H.(2011).Fuzzy sets in machine learning and data mining. *Applied Soft Computing*, 11, 1493–1505.

[8]George, A. & Veeramani, P.V.(1994). On some results in fuzzy metric spaces. *Fuzzy Sets and Systems*. 64, 395-399.

[9]Govindan,, V& Murthyb, S.(2019).Solution and Hyers-Ulam Stability Of n-Dimensional Non-Quadratic Functional Equation In Fuzzy Normed Space Using Direct Method. *Fuzzy Sets Syst*. , 16, 384–391.

[10] Hussein M., Z. (2018). On the(G.n)_ Tupled fixed point theorems in fuzzy metric space. *Journal of Al-Qadisiyah for Computer Science and Mathematics*, *10*(2), Math Page 15 - 25.

[11]Isabelle, .B.(2015). Fuzzy sets for image processing and understanding. *[Fuzzy Sets and Systems](https://www.sciencedirect.com/journal/fuzzy-sets-and-systems)*[, 281](https://www.sciencedirect.com/journal/fuzzy-sets-and-systems/vol/281/suppl/C) (15), 280-291.

[12]Jialiang, X., Qingguo, L,Shuili Chen, & Huan H.(2016). The fuzzy metric space based on fuzzy measure. *Open Math*, 14,603–612.

[13]Ju, M. K.& Keun, Y.(2019). Approximation Properties in Felbin Fuzzy Normed Spaces. *Math J*., 22:1-14.

[14]Kaleva, O. & Seikkala, S.(1984). On fuzzy metric spaces. *Fuzzy Sets and Systems*, 12, 215-229.

[15]Kocinac, L. , Cetkin, V. & Dolicanin, D.(2020).Selective Properties of Fuzzy 2-Metric Spaces. *SER. A: APPL. MATH. INFORM. AND MECH*,12(2),67-73.

[16]Kramosil, I. & Michalek J.(1975). Fuzzy metric and statistical metric spaces, *Kybernetika ll* , 336-344.

- **[17]**Mayada, N. M. & Raghad, I. S.(2021). Bounded Linear Transformations in G-Fuzzy Normed Linear Space. *Journal of Al-Qadisiyah for Computer Science and Mathematics*.13(1), 110–119.
- **[18]**Mehmet, .S.(2016) . An Application of Fuzzy Sets to Veterinary Medicine. *Theory and Applications of Mathematics & Computer Science*, 6 (1) 1– 12.
- **[19]** Noori, F.A., & A . Abd alsaheb, D. (2017). Separation theorem for fuzzy normed space. *Journal of Al-Qadisiyah for Computer Science and Mathematics*, *6*(2), 53-64**.**
- **[20]** Noori, F.A., & H . Hadi, S. (2017). Some New result of Compact sets in fuzzy metric space. *Journal of Al-Qadisiyah for Computer Science and Mathematics*, *6*(2), 77-82.
- **[21]** Noori, F.A., & William Twair, H. (2017). Some Results on Weak and Strong Fuzzy Convergence for Fuzzy Normed Spaces. *Journal of Al-Qadisiyah for Computer Science and Mathematics*, *7*(2), 126-131.

 [22]Raghad, I. S.(2012). Product of Two Fuzzy Normed Spaces and its Completion. *Engineering and Technology Journal*, 30 (11), 1925-1934.

[23]Raghad, I. S.(2021). Compactness Property of Fuzzy Soft Metric Space and Fuzzy Soft Continuous Function.*Iraqi Journal of Science*, 62(9), 3031-3038.

[24]Raghad, I. S. (2021). Fuzzy Convergence Sequence and Fuzzy Compact Operators on Standard Fuzzy Normed Spaces. *Baghdad Science Journal*,18(4), 1204-1211.

- **[25]** Sabri, R., RASHEED, M., Alabdali, O., SHIHAB, S., & RASHID, T. (2021). On Some Properties in Fuzzy Metric Space. *Journal of Al-Qadisiyah for Computer Science and Mathematics*, *13*(1), Math Page 55.
- **[26]**Schweizer, B.& Sklar, A. (1960). Statistical metric spaces. *Pacific J. Math*., 10: 314–334.
- **[27]**Sharma, S. (2002). On Fuzzy Metric Space. Southeast Asian Bulletin of Mathematics, 26, 133-145.

[28]Swati, B. K.r.(2019).A Study Of Fuzzy Metric Space. *IJEDR,* 7(3),186-188.

.

[29][Valentı́n,](https://www.sciencedirect.com/science/article/abs/pii/S0165011498002814#!) G & [Salvador, R.\(](https://www.sciencedirect.com/science/article/abs/pii/S0165011498002814#!)2000). Some properties of fuzzy metric spaces. *[Fuzzy Sets and Systems](https://www.sciencedirect.com/journal/fuzzy-sets-and-systems)*[, 115 \(3\)](https://www.sciencedirect.com/journal/fuzzy-sets-and-systems/vol/115/issue/3), 485-489.

[30]Zimmerman, H. J.(1985).Fuzzy Sets Theory and Its Application. *Kluwer Academic Publisher*, Dordrecht.