

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Some Results in Fuzzy 2- Metric Space

Raghad I.Sabri^a, Mayada N. Mohammedali^b, Fatema Ahmad Sadiq^c

^a Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology, Baghdad, Iraq. Email: raghad.i.sabri@ uotechnology.edu.iq.

^b Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology, Baghdad, Iraq. Email: mayada.n.mohammedali@uotechnology.edu.iq.

^c Branch of Mathematics and Computer Applications, Department of Applied Sciences, University of Technology, Baghdad, Iraq. Email: fatema.a.sadiq@uotechnology.edu.iq

ARTICLEINFO

Article history: Received: 10 /02/2022 Rrevised form: 29 /02/2022 Accepted : 15 /03/2022 Available online: 04 /04/2022

Keywords:

Fuzzy2- metric space, convergent sequence, Compact fuzzy 2-metric space, Fuzzy totally bounded.

ABSTRACT

The notion of fuzzy 2-metric space and its essential features are initially examined in this study. Following that, the ideas of compact fuzzy2- metric space and fuzzy totally bounded space are discussed. Furthermore, the essential theorems relating to these concepts are established. In particular, we prove that a fuzzy 2- metric space $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ which is compact must be complete.

MSC.41A25; 41A35; 41A3

https://doi.org/10.29304/jqcm.2022.14.1.890

1. Introduction and Preliminaries

The fuzzy set notion was created in 1965. Since then, researchers have applied this key set to a variety of fields. Fuzzy sets have also become a recognized study topic in both pure and practical mathematics and statistics, demonstrating how this theory is very adaptable and fruitful in a wide range of applications, see[5,7,11,18,30]. In functional analysis, the main tools are metrics, norms, and inner product structures. As a result, fuzzy metrics, fuzzy norms, and fuzzy inner products are essential in the development of fuzzy functional analysis. Numerous authors have proposed various papers for fuzzy normed spaces, like [9,13,17,19,21,22,24]. The notion of a fuzzy metric space, which can be thought of as a generalization of the statistical metric space, was initially described by Kramosil

^{*}Corresponding author Raghad I.Sabri

Email addresses: raghad.i.sabri@uotechnology.edu.iq

Communicated by : Dr. Alaa Taima Abd Akadhem

and Michálek [16] in 1975. From various perspectives, many authors have introduced and debated various concepts of fuzzy metric space. (see[6,8,14]). On the other hand, a large number of research works on fuzzy metric spaces have been published, such as [3,4, 10,12, ,20, 23, ,25,28,29]. In 2002 [27]Sharma proposed the notion of fuzzy 2-metric space and proved a common fixed point theory in this space. Recently Kocinac et al.[15] introduced and investigated various selective covering properties in fuzzy 2-metric spaces.

The major goal of this work is to continue looking at some of the properties of Sharma's fuzzy2- metric space definition. we will define the compact 2-fuzzy metric space and fuzzy totally bounded space, as well as examine some essential characteristics associated with these notions.

Gahler established the concept of 2-metric space in 1960 [1, 2].

Assume that \mathbb{W} be a nonempty set. If a function $\mathfrak{D}: \mathbb{W} \times \mathbb{W} \times \mathbb{W} \to \mathbb{R}$ fulfill the following rules, it is termed a 2-metric function on \mathbb{W} :

 $(\mathfrak{D}1)$ For all $x, y \in \mathbb{W}$ there exists $z \in \mathbb{W}$ such that $\mathfrak{D}(x, y, z) \neq 0$.

 $(\mathfrak{D}2)\mathfrak{D}(x, \psi, z) = 0$ if at least two of the three points are the same.

 $(\mathfrak{D}3)\mathfrak{D}(x,y,z) = \mathfrak{D}(x,z,y) = \mathfrak{D}(y,x,z) = \mathfrak{D}(y,z,x) = \mathfrak{D}(z,x,y) = \mathfrak{D}(z,y,x), \text{ for all } x, y, z \in \mathbb{W}$

 $(\mathfrak{D}4)\mathfrak{D}(x,y,z) \leq \mathfrak{D}(w,z,y) + \mathfrak{D}(x,w,z) + \mathfrak{D}(x,y,w)$, for all $x, y, z, w \in \mathbb{W}$.

The pair (W, \mathfrak{D}) is then referred to as a 2-metric space.

To define fuzzy 2-metric spaces, we need to use the well-known concept of triangular or t-norm.

Definition 1.1[26]: Assume that $\tilde{*}: [0,1] \times [0,1] \rightarrow [0,1]$ is a binary operation. If $\tilde{*}$ achieve the following:

- 1- $\mathcal{I} \cong \eta = \eta \cong \mathcal{I}$, for each $\mathcal{I}, \eta \in [0,1]$.
- 2- $(\mathcal{I} \cong \mathfrak{n}) \cong \mathfrak{s} = \mathcal{I} \cong (\mathfrak{n} \cong \mathfrak{s}), \mathfrak{s} \in [0,1].$
- 3- $\mathcal{I} \approx 1 = \mathcal{I}$.
- 4- $\mathcal{I} \approx \eta \leq \varsigma \approx \tau$ whenever $\mathcal{I} \leq \varsigma$ and $\eta \leq \tau$, for each $\mathcal{I}, \eta, \varsigma, \tau \in [0,1]$.

Then $\tilde{*}$ is termed continuous t-norm.

Definition 1.2[27]: A binary operation $\widetilde{*}: [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ is termed a continuous t-norm if $([0,1], \widetilde{*})$ is an abelian topological monoid with unit 1 such that $\mathcal{I}_1 \widetilde{*} \eta_1 \widetilde{*} \varsigma_1 \leq \mathcal{I}_2 \widetilde{*} \eta_2 \widetilde{*} \varsigma_2$ whenever $\mathcal{I}_1 \leq \mathcal{I}_2$, $\eta_1 \leq \eta_2$, $\varsigma_1 \leq \varsigma_2$ for all $\mathcal{I}_1, \mathcal{I}_2, \eta_1, \eta_2$ and ς_1, ς_2 are in [0,1].

Definition 1.3[27]: If \mathbb{W} is a nonempty set, $\tilde{*}$ is a continuous t-norm, and \mathfrak{J} is a fuzzy set in $\mathbb{W} \times \mathbb{W} \times \mathbb{W} \times (0, \infty)$ meeting the following criteria for all $x, y, z \in \mathbb{W}$ and $\vartheta, \vartheta_1, \vartheta_2, \vartheta_3 > 0$, then the triplet $(\mathbb{W}, \mathfrak{J}, \tilde{*})$ is known as fuzzy 2-metric space briefly ($\hat{F}(\mathbb{W})$ 2 – space)

 $(\mathfrak{J}_1)\,\mathfrak{J}(x,y,z,0)=\,0\;.$

 $(\mathfrak{J}_2)\mathfrak{J}(x, y, z, \vartheta) = 1$, if at least two of x, y, z are equal;

$$(\mathfrak{J}_3)\mathfrak{J}(x, y, z, \vartheta) = \mathfrak{J}(x, z, y, \vartheta) = \mathfrak{J}(y, z, x, \vartheta)$$

 $(\mathfrak{J}_4)\,\mathfrak{J}(x,y,z,\vartheta_1+\vartheta_2+\vartheta_3)\geq\mathfrak{J}(x,y,u,\vartheta_1)\,\,\widetilde{*}\,\mathfrak{J}(x,u,z,\vartheta_2)\,\widetilde{*}\,\mathfrak{J}(u,y,z,\vartheta_3)$

 $(\mathfrak{J}_5) \mathfrak{J}(x, y, z, .): [0,1) \rightarrow [0,1]$ is continuous.

A sample example of a fuzzy 2-metric is shown below.

Example 1.4[15]: Let $(\mathbb{W}, \mathfrak{O})$ be a 2-metric space. Then the mapping $\mathfrak{J}: \mathbb{W} \times \mathbb{W} \times \mathbb{W} \times (0, \infty) \rightarrow [0,1]$

defined by

$$\mathfrak{J}(x,y,z,\vartheta) = \frac{\frac{\mathfrak{I}(x,z,y,\vartheta)}{\vartheta}}{\vartheta + \mathfrak{D}(x,y,z)}$$

is a fuzzy 2-metric on \mathbb{W} induced by the 2-metric \mathfrak{O} .

Definition1.5[15]: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\hat{f}(\mathbb{W})$ 2-space. For $x \in \mathbb{W}$, $e \in (0, 1)$, $\vartheta > 0$, the open ball is given as follow:

 $B(x, e, \vartheta) = \{y \in \mathbb{W} : \Im(x, y, z, \vartheta) > 1 - e \text{ for each } z \in \mathbb{W}\}.$

Definition 1.6[27]: Suppose that $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\hat{F}(\mathbb{W})$ 2-space and $\{x_n\}$ be a sequence in \mathbb{W} . If there exists $x \in \mathbb{W}$ such that $\lim_{n\to\infty} \mathfrak{J}(x_n, x, u, \vartheta) = 1$, for all $u \in \mathbb{W}$ and $\vartheta > 0$, then $\{x_n\}$ is called a convergent sequence.

Definition 1.7[27]: Suppose that $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\widehat{f}(\mathbb{W})$ 2-space and $\{x_n\}$ be a sequence in \mathbb{W} . Then $\{x_n\}$ is called Cauchy sequence if $\lim_{n\to\infty} \mathfrak{J}(x_{n+n}, x_n, u, \vartheta) = 1$, for all $u \in \mathbb{W}$ and $\vartheta > 0$, p > 0.

This definition of a Cauchy sequence is equivalent to $\lim_{n,m\to\infty} \mathfrak{J}(x_m, x_n, u, \vartheta) = 1$, for all $\vartheta > 0$.

We use this as the definition of the Cauchy sequence throughout the paper.

Definition 1.8[27]: A complete fuzzy 2-metric space($\mathbb{W}, \mathfrak{J}, \mathfrak{K}$) is defined as an $\hat{\mathfrak{f}}(\mathbb{W})$ 2-space in which every Cauchy sequence is a convergent sequence.

2. Compact Fuzzy2- metric space

This section introduces the concept of compact fuzzy 2- metric space. The fundamental properties will then be investigated. We'll start by explaining the concept of an open and closed set.

Definition2.1: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\widehat{f}(\mathbb{W})$ 2-space and \mathcal{H} indicate a subset in \mathbb{W} . If for any $x \in \mathcal{H}$ there exists 0 < e < 1, and $\vartheta > 0$ such that $B(x, e, \vartheta) \subseteq \mathcal{H}$, then \mathcal{H} is called an open set in $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$.

Definition2.2: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\widehat{F}(\mathbb{W})$ 2-space and \mathcal{H} be a subset of \mathbb{W} . If any sequence $\{x_n\}$ in \mathcal{H} is convergence to $x \in \mathcal{H}$, then the subset \mathcal{H} is called closed.

Definition 2.3: Let($\mathbb{W}, \mathfrak{J}, \mathfrak{K}$) be an $\hat{\mathcal{F}}(\mathbb{W})$ 2-space and \mathcal{H} indicate a subset in \mathbb{W} . Let \mathcal{L} be a collection of open sets in \mathbb{W} that have the characteristic that $\mathcal{H} \subseteq \bigcup_{i \in \mathcal{L}} L$. Then a family \mathcal{L} is termed an open cover of \mathcal{H} .

Definition 2.4: Let $(\mathbb{W}, \mathfrak{J}, \widetilde{\ast})$ be an $\widehat{f}(\mathbb{W})$ 2-space. If each open cover has a finite sub-collection $\{L_1, L_2, ..., L_k\} \subseteq \widehat{\mathcal{L}}$ with $\mathbb{W} = \bigcup_{i=1}^k L_i$, then $(\mathbb{W}, \mathfrak{J}, \widetilde{\ast})$ is called compact $\widehat{f}(\mathbb{W})$ 2-space.

Definition 2.5: Assume that $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\widehat{F}(\mathbb{W})$ 2 -space and $\mathcal{H} \subseteq \mathbb{W}$. If each sequence in \mathbb{W} has a convergent subsequence whose limit is a point of \mathbb{W} , then \mathbb{W} is compact.

Proposition 2.6: Assume that $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be a compact $\widehat{\mathcal{F}}(\mathbb{W})$ 2-space and $\mathcal{H} \subseteq \mathbb{W}$. If \mathcal{H} is closed set in \mathbb{W} then \mathcal{H} is compact.

Proof:

Consider $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be a compact $\hat{f}(\mathbb{W})$ 2-space. Let \mathcal{H} be a closed subset of \mathbb{W} . Suppose that $\{x_n\} \in \mathcal{H}$ then $\{x_n\} \in \mathbb{W}$. By Definition (2.5), Since \mathbb{W} is compact then $\{x_n\}$ has a subsequence $\{x_{nk}\}$ converges to x_{n_i} . Then $x_{n_i} \in \mathcal{H}$ since \mathcal{H} is a closed subset, hence \mathcal{H} is compact.

Definition 2.7: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\hat{f}(\mathbb{W})$ 2-space and \mathcal{H} is a subset of \mathbb{W} then \mathcal{H} is said to be fuzzy totally bounded(briefly ($\hat{f}T$ – bounded)) if for any $m \in (0,1)$ and $\vartheta > 0$ there exists a finite set of points $\{\ell_1, \ell_2, ..., \ell_n\} \subset \mathcal{H}$ that is whenever x in \mathbb{W} , $\mathfrak{J}(x, \ell_i, u, \vartheta) > 1 - m$ for some $\ell_i \in \{\ell_1, \ell_2, ..., \ell_n\}$ where $u \in \mathbb{W}$. This set of points $\{\ell_1, \ell_2, ..., \ell_n\}$ is called m-fuzzy net of $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$.

Proposition 2.8: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be $\hat{f}(\mathbb{W})$ 2-space. Then \mathbb{W} is $\hat{f}T$ – bounded if it is compact.

Proof:

Suppose that \mathbb{W} be compact. For any $x \in \mathbb{W}$ and radius $e \in (0,1)$, the collection of all balls {B(x, e, ϑ) } is an open cover of \mathbb{W} where $\vartheta > 0$.

Now since \mathbb{W} is compact then by Definition(2.4) it follows that this cover includes finite subcover say $\{B(x_1, e, \vartheta), B(x_2, e, \vartheta), ..., B(x_k, e, \vartheta)\}$ so $\{x_1, x_2, ..., x_k\}$ represent an *m*-fuzzy net of \mathbb{W} and by Definition(2.7) it follows that \mathbb{W} is \widehat{FT} – bounded.

Proposition 2.9: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be compact $\hat{F}(\mathbb{W})$ 2-space. Then $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ is complete.

Proof:

Assume that $(\mathbb{W}, \mathfrak{J}, \widetilde{*})$ is a compact $\widehat{f}(\mathbb{W})$ 2-space that is not complete. Then there's a Cauchy sequence $\{x_n\}$ in $(\mathbb{W}, \mathfrak{J}, \widetilde{*})$ that doesn't have a limit in \mathbb{W} . Let $\psi \in \mathbb{W}$ and $\vartheta > 0$ because $\{x_n\}$ does not converge to ψ there is $0 < \delta < 1$ such that $\mathfrak{J}(x_n, \psi, u, \vartheta) > 1 - \delta$ for infinitely many values of \mathfrak{n} where $u \in \mathbb{W}$. Since $\{x_n\}$ is Cauchy, there exists an integer N such that $\mathfrak{n}, \mathfrak{m} \ge \mathbb{N}$. As a result of this $\mathfrak{J}(x_m, x_n, u, \vartheta) > 1 - \delta$. Choose $\mathfrak{m} \ge \mathbb{N}$ such that $\mathfrak{J}(x_m, \psi, u, \vartheta) > 1 - \delta$. So, the open ball $B(\psi, \delta, \vartheta)$ includes x_n for only finitely many values of \mathfrak{n} .

In this way, we may correlate a ball $B(\psi, \delta(\psi), \vartheta)$ with each $\psi \in W$ where $0 < \delta(\psi) < 1$ relies on ψ , and the ball $B(\psi, \delta(\psi), \vartheta)$ has x_n for only a finite number of n values. Notice that $W = \bigcup B(\psi, \delta(\psi), \vartheta)$ implying that

 $\{B(\psi, \delta(\psi), \vartheta): \psi \in W\}$ is a covering for W. Now, because W is compact, a finite sub covering $B(\psi_i, \delta_i(\psi), \vartheta)$, i = 1, 2, ..., n exists. Since every ball possesses x_n for only a finite number of values of n, the balls are in the finite sub covering, consequently W must also have x_n for only a finite number of values of n. This, on the other hand, is not possible. As a result, $(W, \mathfrak{J}, \mathfrak{K})$ must be complete.

Proposition 2.10: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\hat{f}(\mathbb{W})$ 2-space and $\mathcal{H} \subseteq \mathbb{W}$. If \mathbb{W} is $\hat{f}T$ – bounded then \mathcal{H} is $\hat{f}T$ – bounded.

Proof:

Suppose that $(\mathbb{W}, \mathfrak{J}, \widetilde{*})$ be an $\widehat{f}(\mathbb{W})^2$ – space and \mathbb{W} is $\widehat{f}T$ – bounded. Consider $\{x_1, x_2, ..., x_k\}$ represent an *m*-fuzzy net of \mathbb{W} where $m \in (0,1)$. Then for any $x_1 \in \mathbb{W}$ and some $y_i \in \mathcal{H}$ we have:

 $\mathfrak{J}(x_1, y_1, u, \vartheta/2) > 1 - m \text{ where } u \in \mathbb{W}.$

Putting $\mathcal{D} = \{z_1, z_2, ..., z_m\}$ which is a finite subset of \mathcal{H} .

Then for every 1 < i < m, we have $\mathfrak{J}(x_1, z_i, u, \vartheta/2) > 1 - m$ for some $z_i \in \mathcal{H}$.

Now,

$$\begin{aligned} \mathfrak{J}(x_1, \ \psi_i, u, \vartheta) &\geq \mathfrak{J}(x_1, \ \psi_i, z, \vartheta/3) \,\widetilde{*} \, \mathfrak{J}(x_1, z_i, u, \vartheta/3) \,\widetilde{*} \, \mathfrak{J}(z_i, \psi_i, u, \vartheta/3) \\ &\geq (1 - m) \,\widetilde{*} \, (1 - m) \,\widetilde{*} \, (1 - m) \\ &> 1 - \delta \end{aligned}$$

for some $\delta \in (0,1)$. This indicates that \mathcal{H} is $\widehat{F}T$ – bounded.

Proposition 2.11: Let $(\mathbb{W}, \mathfrak{J}, \mathfrak{K})$ be an $\hat{\mathbb{F}}(\mathbb{W})$ 2-space and $\mathcal{H} \subseteq \mathbb{W}$. If \mathcal{H} is compact then every infinite subset $\mathcal{D} \subseteq \mathcal{H}$ has a limit point.

Proof:

Consider $(\mathbb{W}, \mathfrak{J}, \widetilde{*})$ be an $\widehat{F}(\mathbb{W})$ 2-space and \mathcal{H} be a compact subset in $(\mathbb{W}, \mathfrak{J}, \widetilde{*})$ and let $\mathcal{D} \subseteq \mathcal{H}$ be an infinite set. We state that \mathcal{D} does not include any limit point, and then we demonstrate that this is false. Because \mathcal{D} does not have a limit point, then for all $x \in \mathcal{D}$ there exists $e \in (0,1)$ such that the open ball $B(x, e, \vartheta)$ does not include any points of \mathcal{H} different from x, that is for all $x \in \mathcal{D}$ we have $B(x, e, \vartheta) \cap \mathcal{D} \setminus \{x\} = \emptyset$.

Now for each $x \in D$, let $B(x, e, \vartheta): e \in (0,1), \vartheta > 0$ } represents the family of the open ball. Then we have $D \subseteq \bigcup_{x \in D} B(x, e, \vartheta)$ which is an infinite open covering of D and each element in this covering of D includes only one point x, consequently, there is no finite open sub covering implying that D is not compact and this contradiction, hence statement that the infinite subset D of \mathcal{H} dose does not include any limit point is wrong. Hence D has a limit point.

References

[1] AHLER .S. G.(1963). 2-metrische Raume und ihre topologische Struktur, Math. Nachr. 26 (1-4), 115-148.

[2] AHLER S. G. (1964). Lineare 2-normierte Raume, Math. Nachr. 28(1-2), 1-43.

[3] Alias, B. (2021). On a Fuzzy Metric Space and Fuzzy Convergence. Proyectiones Journal of Mathematics, 40(5), 1279-1299.

[4] Amit, K. A. & Alam, M. Z. (2018). Continuous Fuzzy Mappings In Fuzzy Metric Space. GSJ, 6 (7), 612-620.

[5]Bigand, .A & . Colot, O. (2010) .Fuzzy filter based on interval-valued fuzzy sets for image filtering. Fuzzy Sets Syst, 161 (1), 96-117.

[6] Ereeg, M. A.(1979). Metric spaces and fuzzy set theory. J. Math. Anal. Appl. 69, 205-230.

[7]Eyke, H.(2011).Fuzzy sets in machine learning and data mining. Applied Soft Computing, 11, 1493–1505.

[8]George, A. & Veeramani, P.V.(1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems. 64, 395-399.

[9]Govindan,, V& Murthyb, S.(2019). Solution and Hyers-Ulam Stability Of n-Dimensional Non-Quadratic Functional Equation In Fuzzy Normed Space Using Direct Method. *Fuzzy Sets Syst.*, 16, 384–391.

[10] Hussein M., Z. (2018). On the(G.n) Tupled fixed point theorems in fuzzy metric space. Journal of Al-Qadisiyah for Computer Science and Mathematics, 10(2), Math Page 15 - 25.

[11]Isabelle, .B.(2015). Fuzzy sets for image processing and understanding. Fuzzy Sets and Systems, 281 (15), 280-291.

[12] Jialiang, X., Qingguo, L, Shuili Chen, & Huan H.(2016). The fuzzy metric space based on fuzzy measure. Open Math, 14,603-612.

[13] Ju, M. K.& Keun, Y.(2019). Approximation Properties in Felbin Fuzzy Normed Spaces. Math J., 22:1-14.

[14]Kaleva, O. & Seikkala, S.(1984). On fuzzy metric spaces. Fuzzy Sets and Systems, 12, 215-229.

[15]Kocinac, L., Cetkin, V. & Dolicanin, D.(2020).Selective Properties of Fuzzy 2-Metric Spaces. SER. A: APPL. MATH. INFORM. AND MECH,12(2),67-73.

[16]Kramosil, I. & Michalek J.(1975). Fuzzy metric and statistical metric spaces, Kybernetika ll, 336-344.

- [17]Mayada, N. M. & Raghad, I. S. (2021). Bounded Linear Transformations in G-Fuzzy Normed Linear Space. Journal of Al-Qadisiyah for Computer Science and Mathematics. 13(1), 110–119.
- [18]Mehmet, .S.(2016) . An Application of Fuzzy Sets to Veterinary Medicine. *Theory and Applications of Mathematics & Computer Science*, 6 (1) 1–12.
- [19] Noori, F.A., & A. Abd alsaheb, D. (2017). Separation theorem for fuzzy normed space. Journal of Al-Qadisiyah for Computer Science and Mathematics, 6(2), 53-64.
- [20] Noori, F.A., & H. Hadi, S. (2017). Some New result of Compact sets in fuzzy metric space. Journal of Al-Qadisiyah for Computer Science and Mathematics, 6(2), 77-82.
- [21] Noori, F.A., & William Twair, H. (2017). Some Results on Weak and Strong Fuzzy Convergence for Fuzzy Normed Spaces. Journal of Al-Qadisiyah for Computer Science and Mathematics, 7(2), 126-131.

[22] Raghad, I. S. (2012). Product of Two Fuzzy Normed Spaces and its Completion. Engineering and Technology Journal, 30 (11), 1925-1934.

[23] Raghad, I. S.(2021). Compactness Property of Fuzzy Soft Metric Space and Fuzzy Soft Continuous Function. *Iraqi Journal of Science*, 62(9), 3031-3038.

[24]Raghad, I. S. (2021). Fuzzy Convergence Sequence and Fuzzy Compact Operators on Standard Fuzzy Normed Spaces. *Baghdad Science Journal*, 18(4), 1204-1211.

- [25] Sabri, R., RASHEED, M., Alabdali, O., SHIHAB, S., & RASHID, T. (2021). On Some Properties in Fuzzy Metric Space. Journal of Al-Qadisiyah for Computer Science and Mathematics, 13(1), Math Page 55.
- [26] Schweizer, B.& Sklar, A. (1960). Statistical metric spaces. Pacific J. Math., 10: 314–334.
- [27] Sharma, S. (2002). On Fuzzy Metric Space. Southeast Asian Bulletin of Mathematics, 26, 133-145.

[28]Swati, B. K.r.(2019). A Study Of Fuzzy Metric Space. IJEDR, 7(3), 186-188.

[29] Valentín, G & Salvador, R.(2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115 (3), 485-489.

[30] Zimmerman, H. J. (1985). Fuzzy Sets Theory and Its Application. Kluwer Academic Publisher, Dordrecht.