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l.Introduction. The chaotic dynamical systems has the notation of topological transitivity of uniform

been studied in detail in the past [1, 2, 3, 4, 5, 6] . Any limit functions on metric G —

chaotic system is established on the notion of spaces is considered . In [12] different types of
irregularity and can not be disintegrated into two convergence of sequence of real valued functions

invariant open subsets . There are numerous definitions have been considered.

of chaos famous but Devaney’s definition of chaos [4] A topological G — space is atriple (X, G, ) , where
for discrete dynamical systems is most widespread and X is a topological space (not necessarily metrizable
commonly customary definition. In [5] Tian and Chen space ), G is a topological group and 9:G X X - X
have defined and considered Devaney’s chaos for a is a continuous action of GonX . ForS c X,g € G,
sequence of functions in iterative and successive gS = {6(g,s) |s € S}.

ways on a metric space and have given numerous For € X, the set

curious examples to illustrate such chaotic systems . G(x) = {8(g,x) |g € G},

In [7], uniform convergence, mixing and chaos are
considered . 1In[6], Devenay’s chaos of uniform limit

functions is considered . In [8, 9, 10] topological
transitivity of uniform limit functions is studied . In
[11],
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is called the G —orbit of x in X. For every x,y € X either
Gx)NGH) =0 orG(x)=G(y) . Asubset SofX is
called G —invariant if0(Gx S) < S . Let
X/G = {G(x):x € X}

and pX:X—>X/(GJ be the natural quotient map taking
x t0 G(x), x € X then X/G donated with the quotient
topology is called the orbit space of X ( with respect to
G) . The map p, is also a closed map .
action of G on X we mean 6(g,x) foralle G, x € X
If X,Y are G —spaces, then a continuous map h:X -
Y is called equivariant if h(6(g,x)) = 6(g, h(x)) for
each g € G and each x € X . The continuous map h is
called pseudo-equivariant if h(G(x)) = G(h(x)) for each
x € X . An equivariant map is pseudo-equivariant but
converse is not true [7] . In[7, 9, 10] numerous curious
consequences using pseudo-equivariant maps have been
obtained . The orbit [4] of f at a point x € X is defined
as follows

o(f,x) ={f"(x):n = 0}.
Let f be a function from a G —space X into itself. We
define the Gy —orbit [11] of f at a point x € X as
follows

G-0(f,x) ={6(g,f"(x)): g € G,n = 0}.

By trivial

A topological space X is said to be Urysohn space [21]
if for every x,y € X with x # y there exist couple of open
sets M and N suchthatx c M,y c Nand M N N = ¢.

R. Das in [17] present the concept of the chaos of a
sequence of maps in a metric G —space .

R. Das in [18] gave sufficient conditions
under which product  of two maps, in which one
is Devaney’s G, —chaotic and other is

Devaney’s G, —chaotic, is Devaney’s G; X G, — chaotic .

V. Kumar, in [19] introduce chaos in topological
spaces and study some properties of chaos spaces which
include hyper spaces .

S.H.Abd and I.J.Kadhim in [20]
expansive maps in general topological space (not
necessarily metrizable space) and generalize this
definition to G —spaces and give some properties of such
maps . Also they study some properties of new type of
chaotic maps which called G —expansive chaotic maps.

The goal of this paper is to define sensiti-ve, transitive,
mixing and equicontinuous maps in topological G —

they define
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space and study the Devaney’s chaotic in topological
G —space

2. G —Periodic Points

Here the definition of periodic points in G —space is
stated and some essential properties are proved.

Definition 2.1 [11] A point x in a topological space X
is said to be periodic point of amap f:X - X if f"(x) =
x for some n € N. The smallest positive integer n satisfy
f*(x) = xis called period of f

Definition 2.2 [11 A point x € X is said to be
G —periodic point of a map f from a G — space into
itself if f"(x) = (g, x) for some n € N and g € G.The
periodic of f is the smallest positive integer n satisfy

1) = 6(g, %) |

Remark 2.3 The concepts of periodic point and
G —periodic point are coincide Under trivial action of G
on X . Under non-trivial action of G on X, if x € X is
periodic point of f:X — X, then it is G —periodic point.
Nonetheless the converse need not be true as we see in the
next example

Example 2.4[20] Let X =[0,1] under the usual
topology, G ={—1,1} under the discrete topology.
Define :GxX > Xby#(—1,x)=1—-xand 6(1,x) =
X, x € X. Then 6 is a continuous action of G on X. Let
T:X - X be the tent map. Then x =§ is G —peridic
point but not periodic point .

For the proof of the following three statement see [18,20].

Proposition 2.5 Let (X,G;,6;) be G; —space and
(Y,G,,0,) be G, — space. Let f:X - Xand h:Y - Y be
equivariant functions. Then x € X is G; —periodic point
of f and x € Y is G, —periodic point of h if and only if
(x,y) € X XY is G; X G, —periodic pointof f X h
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Corollary 2.6 Let (X,Gq,0,) be G, —space and
(Y,G,, 6,) be G, — space. Let f:X -» Xand h:Y =Y be
equivariant maps. If x € X is G; —periodic point of f of
period n,and x € Y is G, —periodic point of h of period
n, then (x,y) € X XY is G; X G, —periodic point of
f x h with period n = lcm(nq,n;)

Theorem 2.7 Let (X,Gq,6,) be G; —space and
(Y,G,, 6,) be G, — space. Let f:X -» Xand h:Y =Y be
equivariant maps. If the set G, —periodic point of f is
dense in X and the set of G, —periodic point of h is dense
in Y then the set of G, X G, —periodic point of f X h is
densein X xY.

3. G — Sensitive Maps

V. Kumar in [19] define the sensitivity of maps in
topological spaces. In this section we shall define the
sensitivity of maps in G — spaces and give some
properties of such maps .

Definition 3.1[19] Let X be a topological space. A
continuous function f:X — X is said to be f sensitive at
x € X, if given any open setU with x € U then there
exist y € U, n € N and an open V such that f"(x) eV
and f"(y) € V. We say that f is sensitive if it is sensitive
at every points of X .

Now we shall introduce the following definition .

Definition 3.2 Let X be a G —space. We say that f: X —
X is acontinuous map is G — sensitive at x € X, if given
any open set U with x € U then there exist y € U with
G(x) # G(y), n € Nand an open V such that f"(u) € V
and f"(v) ¢ Vforallu € G(x),v € G(y) .

Remark 3.3 The concepts of sensitive and G — sensitive
are agreed under the trivial action of G on X.

Examples 3.4

(a) In indiscrete space and discrete space there are no
(G —)sensitive maps.

(b) Constant maps are not (G —)sensitive.
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(c) Let X =[0,1] with the usual topology, consider the
tent function T:X — X define by T(x) =1 - 2|x — 1|
and G ={—-1,1} be discrete group with the action
0:GxX - X define by 6(-1,x) =1—-x,0(1,x) =x
for all x € X. We shall show that the tent map is
G —sensitive at x = 0. The collection of all open sets
containing x=0 is given by
{[0,a),0 <a< 1}u{[0,1]}.If M =[0,1], then 0 € U.
Let y =3, then y € M. Set N = [0,2), then N is open set
in X. Since G(x) = {0(g,x): g € G}, then G(0) = {0,1},
and G(2) ={%2}. It follows that G(0) # G(%). Since
T(6(g,0)) =0 € N for every g € G and T(e(g,g)) =
2¢ N forevery g € G .If M = [0,a) with 0 < a < 3. Set
N =1[0,a) and let 0 <y < a. Then there exists n € N
such that 7"(6(g,0)) =0 € N for every g € G and
T”(e(g,y)) g N for every g € G. If M =[0,a) with
><a<1 Set N=[03) and let y=21 Then
T(6(g,0)) =0 € N for every g € G and T(6(g,y)) =
1¢ N for every g € G. Thus we get the result. In a
similar way we can show that the tent map is G —sensitive
atevery x € X.

Theorem 3.5 Let X,Y be two G —spaces and f: X —
X, f,:Y =Y be equivariant topologically conjugate via
p:X->Y. If f is G—sensitive at x € X, then f, is
G —sensitive at ¢ (x).

Proof Suppose that f, is G — sensitive at x € X. Let V be
an open set in Y containing y = ¢(x).Since ¢ is
topological conjugacy then U, = ¢~1(U,) is an open set
in X containing x. By hypothesis there exist x € U, with
G(x) # G(x"), n€N and an open set V, such that
flw) eV, and fr(u) eV, for all ueGx),u €
G(x"). Since ¢ is equivariant, then it is pseudo
equivariant.  Therefore  ¢(G(x)) = G(p(x)) = G(y).
Also (G(x’)) = G(p(x) = G(y'). Since G(x) %
G(x") and ¢ is bijective, then G(y) # G(y').Set V, =
@(V,) , then V, is an open set in X.Let v € G(y) and
v €G(y), then ¢ '(v) €G(x) and ¢ '(v)E€
G(x).Thus
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frlelp™ () €V, and fi(p(p~'(v)) &V, e,
fh(v1) €V, and f)(v,) & V,.This mean that h, is G —

sensitive at ¢ (x). =

Corollary 3.6 Let X,Y be two topological spaces and
fiiX—>X, f,;Y > Y be topologically conjugate via
@:X > Y. If f is sensitive at x € X, then f, is sensitive
at p(x).

Theorem 3.7 Let X be a G; —space , Y be G, —space
and fpX->X , fprY->Y . If either f s
G, —sensitive or  f, is G, —sensitive, then f, X f, is
G; X G, —sensitive .

Proof Let z=(x;,y,) € XxY and let U be an open
set containing z. Then x; € X,y, € Y and there exist open

set U, in X containing x;and U, in Y containing y, such
that Uy x U, € U . Since f, is Gy —sensitive then there
exists x, € U; with G(x;) # G(x,), n € N and an open
set V, in X such that 7 (u,) € Vy and f7(u,) & V; for
all u; € G(x;),u, € G(x,). Now for any y, € U,,
w=(x,,y,) EU; XU, €U, we Gy X
(Gz(xl‘yl) # Gy X (Gz(leyz) g=
(91, 92),9 = (41, 92) € G = Gy X G, we have

have
and for all

(F, % £,)"(6(g,2)) = f, x f2(6(9,2))
= (f1n(91(g1' x1))'f2n(92(gz'J’1))
eV, XY=V

and
(F, % £,)" (6 w)) = £, x f2(6(q,w))
= (fln(91(‘h' xz)):fzn(gz(‘h:h))
gV, XY =Vm

Corollary 3.8 Let X and Y be two topological spaces and
fii= X, fY > Y . Ifeither f, is sensitive or f, is
sensitive, then f X f, is sensitive .
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Definition 3.9 [19] A non-empty subset F of a
topological space X is said to be attracting to the
continuous map f:F - F if f"(x) € F for all non-
negative integer n, x € F.

Definition 3.10 A non-empty subset F of a G —space X
is said to be attracting to the continuous map f:F - F
with respect to the action 8: G x X — X if f(6(g,x)) €
F for all non-negative integern ,x € Fand g € G.

Remark 3.11 Under trivial action of G on X the notions
of attracting and G — attracting are coincided .

Example 3.12 LetX =R G={-1,1}and 8:GX R » R
be an action of G on R defined by 6(—1,x) =1-—
x,0(1,x) = x. Then (R, G, 0) is G —space. If F =[0,1],
then F is attracting to the tent map with respect to the
given action . While, W = [0,3] is not attracting to the
tent map with respect to the same action .

Theorem 3.13 Let X be a Urysohn G —space and F be a
perfect attracting subset of X of a continuous map
f:F - F with the property that f™ not constant for some
n = 1, then f is G —sensitive on F.

Proof Letx € F and U be an open set in X containing x
. Then UN F # ¢. Hence x is an adherence point. Since
F is perfect, then F "cannot have an isolated point, thus x
is not isolated point and consequently x is a limit point of
F. Then (U — {x})NF # ¢. Hence there exists y € (U —
{xPDNF. Thus x # y, then G(x) # G(y)( since 8 is
effective). Since F is attracting to f with respect to 6, then
f*(6(g,x)) € F for all non-negative integer n. Now,

1(0(g,%)) # (6(q,y)), for some n and all g,q € G
Otherwise f™ becomes constant on U N F.Since X is
Urysohn, there exists an open set V such that

f"(6(g,x)) €V and f*(6(q,y)) €V for all g,q €G.
Thus all f is all G — sensitive on all F.m

Corollary 3.14. Let X be a Urysohn G —space and
f:X — X be a continuous map with the property that f not
constant. Then f € G — S(F)iff F is perfect .

Example 3.15. Consider Example 2.4(c). According to
the Example 1.11 and Theorem 2.12, the tent map is
G —sensitiveonall F = [0,1].m
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Definition 3.16 [20] If X is a topological space and
h € H(X) then h is called expansive, if for every
x,y € X with x # y, then there exists an open setV in X
and a positive integer n such that f"(x) €V and

frfo ev.

Definition 3.17[20] If X is a G —space and h € H(X)
then h is called G —expansive, if there exists an open set
V in X such that whenever x,y € X, G(x) # G(y) then
there exists an integer n satisfying f"(u) € V and
f"(v) ¢ V, forall u € G(x) and v € G(y)

Remark 3.18 Under the trivial action of G on X the
notions of expansive and G — expansive are coincided. It
is observed that the notion of expansiveness and the
notation of G —expansive under a nontrivial action of G
are independent of each other .

Proposition  3.19 Every
(G —)sensitive .

(G —)expansive map is

Proof Clear.
4. G — equicontinuos Maps

In this section the notion of equicontinuous mapping
is defined in general topological space and some essential
results are proved.

Definition 4.1 [19] A mapping f: X — X is said to be
equicontinuos at a point x € X if for every neighborhood
V of f(x) and for every positive integer n, there exists a

neighborhood U of x such that f*(U) € V.

Clearly that any self-continuous map is equicontinuos
but the converse need not be true .

Definition 4.2 Let X be a G— space. A mapping
f:X — X is said to be G — equicontinuos at a point x € X
if for every neighborhood V of f(6(g,x)) and for every
positive integer n, there exists a neighborhood U of x such

that f*(8(g,U)) c V forall g € G.

Remark 4.3 The concepts of equicontinuous and G —
equicontinuous are agreed under the trivial action of G
onx .
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Theorem 4.4 LetX ,Y be G — spaces and h: X - X,
h.:Y =Y be equivariant topologically conjugate via
@: X = Y. If hy is G —equicontinuous, then so is h,.

Proof. Suppose that h; is G —equicon-tinuous. Let y € Y

and V, be a neighborhood of h,(6(g, y)). Since ¢ is onto,

then there exists x € X such ¢@(x) =y. Since ¢ is

equivariant topologically conjugacy, then so is ¢!
. Thus

R (ACCEN)EXACICRAE )

= h.(6(g,x)).

Therefore h,(6(g,x)) € V, where V, = ¢ 1(V,) .Hence
¢ is homeomorphism and consequently V, is a
neighborhood of  hy(6(g,x)). But hy is
G —equicontinuous, there exists a neighborhood U, of x
such that h}(8(g,U,)) € V, for all g € G and all integer
n. Then @(hT(6(g,U;))) € o(V;) for all g € G and all
integer n. Since ¢ is equivariant topological conjugacy,
we have h3(68(g,U,)) €V, forall g € G and
all integer n,where U, = @(U;) isa neighborhood of y.
Then h, is G —equicontinuous. =

Corollary 45 Let h;: X —> X and
topologically conjugate via ¢@:X -Y.
equicontinuous, then so is h,.

If hy is

Theorem 4.6 Let , Y be G — spaces and h:X = X,
hi:Y ->Y be maps. Then hy X hy: X XY > X XY is
G, X G, — equicontinuous iff h; is G; — equicontinuous
and h, is G, —equaicontinuous.

Proof.  Suppose that hyxh, is GyX
G, —equicontinuous. We shall show that h; is
G, —equicontionuos and similarly we can show that h, is
G, —equaicontinuous. Let x € X, V be neighborhood of
hi(8,(g,x)) and n be any positive integer. If y € Y then
(x,y)€XxY. Since Y is a neighborhood of
hy(8,(g,v)) for everyg € G, then VXY =W is a
neighborhood of
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hy x hy(8((g, 9), (x,9))).

By hypothesis, there exists a neighborhood U of (x,y)
such that (h; x h,))"(0(g,U)) €V for all ge G, X
G,.Since U be a neighborhood of (x,y), then there exists
two neighborhoods U, and U, of x and y respectively
such that U; x U, € U. Thus we have

1(0(g,U)) X h3(8(q,U)) €V xY  for all
g € G4, q € G,. Hence

1(8(g,U)) cViorall g € Gy.
This means that h, is G; —equicontinuous .

Conversely, suppose that h, is G; — equico-ntinuous and
h, is G, —equaicontinuous. Let (x,y) € X X Y and be a
nhd of

(h, x hy) (8((g,9), (&, 1))

Then there exists two nhd's V, and V,, of h;(8,(g, x))
and h,(6,(q,v)) respectively such that V, X V, € V. By
hypothesis, there exist two neighborhoods U; and U, of x
and y respectively such that

M0,(g9,U)) €V, for all g€ G, and
2(8,(q,U,)) €V, for all g€ G,. Set U; x U, =U.
Thus we have

(hy x hy)"(6(g,U)) €V

for all g € G; X G,.This means that h; X h,: X XY —
X xYis G; X G, —equicontinu-ous. m

Corollary 4.7 Suppose that X,Y be spaces and h;: X —
X, hy:Y > Y bemaps. Then hy X h): X XY = X X Y is
equicontinuous iff both h; and h, are equicontinuous.

Theorem 4.8 Let X be a Urysohn G —space with a finite
group G and f € H(X). If f is G —equicontinuous map,
then its G —expan-sive.
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Proof. Suppose that f is G —equsicontinuous. Let
x,y € X with G(x) # G(y). Since f is equivariant and
one-to-one, then G(f(x)) # G(f(y)). Since X s
Urysohn and G(f(x)), G(f(y)) are disjoint sets in X
then there exist two open sets V, and W, such that
(g, f(x)) €V, 0(g,f(3)) c W, and V, n W, = ¢.Set
Q={V:g€G} and ¥ ={W,:g €G}. Then Q¥ are
finite collections of open sets. Set V =Ugeq V; and W =
Ugeg W, then V and W open sets containing G(f(x)),
G(f (y)) respectively. Since Q, ¥ are finite collections
then V =Uye;V, W =Uges W, and VNW = ¢.By
hypothesis f is G —equicontinuous on X, then its
G —equicontinuous at every point in X.Therefore there
exist tow open sets U; and U, containing x and y
respectively such that

f"(0(g,.U)) c Vand f"(6(g,U;)) c W

for every g € G and every integer n. We have

(68(g,x)) € Vand f*(8(q,y)) & V for every integer
n. Let u € G(x) and v € G(y). Then there exist g,q € G
such that u=06(g,x),v=206(qy). Thus we have
ff(w) €V and f"(v) ¢V for every ue G(x) and
v € G(y). This means that f is G —expansive. =

Corollary 4.9 Let X be a Urysohn G —space with a finite
group G and f € H(X). If f is G —equicontinuous map,
then its G —sensitive .

Theorem 4.10 Let X be a Urysohn space and f € H (X).
If f is equicontinuous map, then its expansive .

Proof. Suppose that f is equicontinuous. Let x,y € X
with x # y. Since f is equivariant and one-to-one, then
f(x) # f(y). Since X is Urysohn then there exist tow
open sets V and W such that f(x) €eV,f(y) c W and
V n W = ¢.By hypothesis f is equicontinuous on X, then
its equicontinuous at every point in X.Therefore there
exist tow open sets U; and U, containing x and y
respectively such that
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ffU)cVvand AU, cwW
for every g € G and every integer n.Thus we have
ff"(x) evVand f'"(y) ¢ V vn € Z.
This means that f is expansive. m
Here we shall generalize Theorem 4.11.

Theorem 4.11 Let X be a compact Hausdorff G —space
with a compact group G and feH(X). If f is
G —equicontinuous map, then its G —expansive .

Proof Suppose that f is G —equsicontinuous. Let
x,y € X with G(x) # G(y). Since f is equivariant and
one-to-one, then G(f(x)) # G(f(y)). Since X is T, and
G is compact then G(x),G(y) are closed sets in X. But
f e H(X)so G(f(x)), G(f(y)) are disjoint closed sets in
X. Since X is compact and T, then it is normal, thus
there exist two disjoint open sets ¥V and W containing
G(f(x)), G(f(v)) respectively such that V n W = ¢.By
hypothesis f is G —equicontinuous on X, then its
G —equicontinuous at every point in X.Therefore there
exist tow open sets U; and U, containing x and y
respectively such that

f"(0(g,U)) eV and f*(6(g,U,)) € W

for every g € G and every integer n. For every integer

n we have f"(0(g,x)) €V and f"(6(q,y)) ¢ V.Let
u € G(x) and v € G(y). Then there exist g,q € G such
that u=0(g,x),v=0(q,y). Hence f“(u) €V and
ff(v) ¢V for every u€G(x) and ve€ G(y) and
consequently f is G —expansive. =m

Corollary 4.12 Let X be a compact Hausdorff G —space
with a compact group G and feH((X). If f is
G —equicontinuous map, then its G —sensitive .

Theorem 4.13 Let X be a Urysohn G —space .If f is
equivariant G —equicontinuous map without fixed point
then it is not G —transitive .
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Proof Let x € X. Since f has no fixed point then
f(0(g,x)) # x for every g € G. Set y = f(6(g, x)) then
x # y. Since X be Urysohn space then there exist pair of
disjoint open sets U and V such that x c U,y c V and
UNnV =¢. Now since f(6(g,x)) €V and f is G —
equicontinu-ous on X,then it is G — equicontinuous at
0(g,x)for every g e G therefore there exists open
neighborhood N of x such that f*(6(g, N)) < V for every
integer n. Hence f"(8(g,N)) N U = ¢ for all n. But f is
equivalent, then f"(6(g,N)) = 6(g,f"(N)) for all
n.Hence 6(g, f*(N)) n U = ¢ for all n .This means that
f isnot G —transitive. m

Corollary 4.14 Let X be a Urysohn space .If f is
equivariant equicontinuous map without fixed point then
it is not transitive .

Theorem 4.15 Let X be a G —space. If an onto mapping
f:X =X is G —equicontinuous, then it is not
G —sensitive .

Proof Suppose that f is G —equicontinuous. Let y € X
and let IV be an open set containing y. Since f is onto,
there exists x € X such that y = f(x). By hypothesis
there exists neighborhood U of x such that f*(8(g, U)) c
V for every g € G and every integer n. Let z € U, then

f"(e(g, z)) € f"(08(g,U)) cVcV for every g€ G .
Thus for every open set V in X, there exists x € X and an
open set U such that for every z € U and an integer n we
have f"(6(g,x)) € Vand f"(8(g,z)) € V.This means
that fisnot G — sensitive.m

5. Chaotic Maps on G —spaces

In this final section the chaotic maps on G —space is
studied where the phase space X is any topological
space( not necessarily metrizable). First we state the
definitions of G —transitive map and G —mixing [18].

Definition 5.1.[18] Let X be a topological space . A
continuous map f:X — X is said to be topologically
transitive ( or transitive) if for every pair of non-empty
open subsets U and V of X, there exists n € N such that

franv+é
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Definition 5.2 [18] Let X be a G —space . A continuous
map f:X — X is said to be G —transitive if for every pair
of non-empty open subsets U and V of X, there exists
n€Nand g € Gsuchthat 6(g, f"(U) NV # ¢ .

Remark 5.3 Under trivial action of G on X, notions of
transitive and G —transitive coincide. Under non-trivial
action of G on X, if f is transitive then it isG —transitive.
But the following example shows that every G —transitive
map need not be transitive .

Example 54 [18] Let X ={¥.F(1-2):neN}
under usual topology. Consider action of Z, , additive
group of integers mod 2, on X given by 6(0,t) =t and

6(1,t)=1—t,t € X. Then f: X —» X defined by

Xy, ifxe{%,l—%:n;tl,nEN}
f(x):!x_ ifxE{—%,—(l—%):n;tl,nEN}
x if xe{-1,01}

where x, (resp. x_ ) denotes element of X immediate to
right (resp. to left) of x. then f is Z, —transitive but not
transitive.

Definition 5.5 [18] Let X be a G —space. A continuous
map f:X — X is said to be G —mixing if for every pair of
non-empty open subsets U and V of X, there exists n, € N
and g € G such that for all n > ny, 6(g, f"(U) NV #
¢ .

Remark 5.6[18] Every topologically G —mixing map is
topologically G —transitive.

Theorem 5.7 [18] Let X be a G, —space , Y be
G, —space and f,:X > X, f,:Y > Y be continuous
f,is
topologically G, —mixing, then f, x f, is topologically

maps. If f is topologically G, —mixing and

Gy X G, — mixing.

Now, we shall introduce the notion of G — chaotic
map in general topological space.

19

lhsan. J / Sema. K

Definition 5.8. Let X be a G —space and F be a compact
subset of X. A continuous map f: X — X is said to be G —
chaotic on F if

(i) f is G —transitive, (ii) The G —periodic points of f are
dense in F (iii) f is G —sensitive on F.

Notation 5.9
(i) GC(F) = {f: F - F: fis G — chaotic on F}.
(ii) GCH(X) = {F € K(X): GC(F) # p}.

Definition 5.10 A G —space X is said to be G —chaos
space if GCH(X) # ¢. In this case the elements of
GCH (X) are called G —chaotic sets.

Remark 5.11 By Example 3.4 , if a G —space X is
discrete or indiscrete space, then it is not G —chaos
space .

In the following examples we shall show that the
statements (i),(ii) and (iii) in Definition 6.1 are
independent and not two of them imply the other .

Example 5.12 In this example we shall show that (i) and
(i) #(iii). Let X ={0,1},t={¢,{0}, X} and G=
{—1,1} under the discrete topology with the action
0:G XX - X defined by 6(—1,x) =1—x,0(1,x) = x,
x € X. Define f:X—->X by f(0)=0,f(1)=1 (the
identity map). Then f is continuous on X. It is easy to see
that

(a) f is G —transitive; (b) GPr(f,X) = X;
(c) f is not G —sensitive on X.

Example 5.13 In this example we shall show that (ii) and
(iii) #(i). Let X =[0,1] under the usual topology and
G = {—1,1} under the discrete topology with the action
0:G XX - X defined by 6(—1,x) =1—x,0(1,x) = x,
x € X. Define f:X > X by f(x)=x (the identity
map). Then f is continuous on X. It is easy to see that

(@) f is not G —transitive; (b) GPr(f,X) = X;

(c) f is G —sensitive on X.
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Example 5.14 In this example we shall show that (i) and (iii) so 6, (g, (p—l(hn(U))) N~ (V) = ¢ which implies

#(ii) Let X = [0,3/4] under the usual topology and G = {—1,1}
under the discrete topology with the action 6: G X X — X defined

by 68(—1,x) =1—x,0(1,x) = x, x € X. Define f: X - X by

L ifo<x<1/2
fey = {%(1 — ),

Then f is homeomorphism on X. It is easy to see that
(@) GO(f,x) = X, forall x € X; (b) GPr(f,X) # X.
(c) f is G — sensitive on X.

Example 5.15 In this example we need to show that (iii)
#(ii) and (i). For, let X =R and F = [—1,1] under the
usual topology and G = Z, under the discrete topology
with the action 6:G x X — X defined by 6(0,x) =
x,0(1,x) =1—x, x € X. Define f: X - X by (x) = x?
. Then £ is continuous on X. It is easy to see that

(@) f is not G —transitive on F. (b) Since the (f,F) =
{0,1}, then GPr(f,F) # F. (c) f is G —sensitive on F.

Theorem 5.16 A G —chaos space is topological property.

Proof We want to prove that if X is G —chaos space and
if X and Y are homeomorphic, then Y is G —space. Let
@: X =Y be a homeomorphism. Since X is a G —space,
there exists F € GCH(X). So GC(F)# ¢. Let f€
GC(F). Let h=@ofo@™t Then h is continuous
function from ¢(F) onto ¢@(F). We prove that h €
GC(¢p(F)) so that ¢(F) € GCH(Y).i.e., we have to prove
that

(i) h is G —transitive, (ii) the set of all G —periodic
points of h are dense in F and (iii) h is G —sensitive on
@(F).

Proof of (i) Let U and V be two non-empty sets in ¢ (F).
Then ¢~ 1(U) and ¢ 1(V) be two non-empty sets in F.
Since f is G —transitive on F, then there exists n € N,
g € G such that

0,9, (") N~ (V) # .

if1/2 <x<3/4
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97 1(8,(g, (")) N7 (V) * ¢, hence

0,(g, (A" ()) NV #¢. This means that h is
G —transitive.

Proof of (ii). Since F € GCH(X), then GPr(f,F) = F.
Suppose, if possible, that GPr(h, p(F)) # @(F). Then
there is an open set V in ¢ (F) such that GPr(h, ¢(F)) n
V =¢. Let y € GPr(h,@(F)), then y € o(F) such that
h"(y) = 6(g,y) for some n € N and g € G. Since y is
G —periodic points of h, then x = ¢~1(y) is G —periodic
point of f. Now, we have y = ¢(x) & V which implies

6(g,y) € 6(g,V), then h"(y) € 6(g,V) and s0 @ o f™ o
o H(p(x)) & 8(g,V). Therefore

o(f*(x)) ¢ 6(g,V) which implies

f'(x) & 97 (8(g. V) = 8(g. 9 (V). ie.
6(g,x) € 6(g, 9~ (V)),s0x & ¢~ (V),
which is a contradiction .

Proof of (iii). Lety, € ¢(F). Theny, = ¢(x;) for some
x; € F. LetV be an open nhd of y,. Then @ 1(V) is open
in F and ¢~ 1(V) is a neighborhood of x;. Since f €
GS(F), there exists x, € o '(V) NF with G(x;) #
G(x,) ,n € N and an open set U such that

f0(gx)) €U and f"(6(qx,)) U,

Since f"(68(g,x,)) € U, then
@(f"(6(g,x1))) € p(U)

so@ofop™ o (8(g,%1))) € p(U)
hence

pofop ' (0(g.9(x)))) € p(U)ie.
h"(0(g,v,)) € o(U).



Journal of AL-Qadisiyah for computer science and mathematics
Vol.9 No.l Year 2017

Similarly, since f"(6(q, x,)) € U , then

(f"(6(q,x2))) & o) = )

SO

poffoplog(d(qx,)) & o)

hence
@ofop (0(q 0(x,))) & o),

i.e. h"(B(g, yz)) € o(U), where y, = @(xy).

Since ¢ is homeomorphism, 6 is equvariant and G(x;) #
G(x;), then G(y;) # G(y,).m

Theorem 5.17 Let X be a G; —space, Y be a G, — space
and f:X > X, h:Y - Y be equivariant maps. If f is
Devaney's G, —chaotic, topologically G,, —mixing and h
is Devaney's G, —chaotic, topologically G, —mixing then
f % his Devaney's G, X G, —chaotic.

Proof By Theorem 3.7 , f X h is G; X G, — sensitive.
By Theorem 2.7 , f X h has dense G; X G, — periodic
points. By Theorem 5.3 , the map fxh is G; X
G, —topologically mixing and hence G; X G, —
topologically transitive. Thus f x h is Devaney's G; X
G, — chaotic .
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