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1. Introduction

Throughout this work, R denotes an associative ring with identity, and all modules are unital right R-modules. Let M
be a right R-module. The notions L € M, L < M and L <® M to signify that L is a subset, a submodule, and a
direct summand of M. A submodule K < M is called to be essential in M, denoted as K < M, if K N L = 0 implies
L =0 for all L <M [10]. The socle of an R-module M is denoted by Soc(M) and defined as the sum of all simple
submodules of M. If there are no minimal submodules in M we put Soc(M) = 0 [24]. Dually for any submodule L of
M, if H+ L = M implies L = M, then the proper submodule H < M is called to be small in M and denoted as H < M.
The intersection of all maximal submodules of M is called the Jacobson radical of M, and denoted by Rad (M) or, as
in alternative, the sum of all small submodules of M. If M does not contained any maximal submodules, then it is
show as Rad(M) = M. Zhou [27] introduced &-small submodules, extended small submodules as follows. A proper
submodule N of a module M is called §-small in M (denoted by N <5 M) if whenever M = N + L with M /L singular,
we have M = L. Recall [28] that a submodule H < M is called g-small in M, denoted as H <, M if, whenever
M = H + E with E 2 M, implies E = M, in reality, authors Zhou and Zhang put a g-small submodule in place of an e-
small submodule. When any proper (cyclic) submodule of M is g-small, then M is named as (principally) generalized
hollow ([14], resp. [8]). It is clear that any small submodule is g-small. If T is essential and maximal submodule of M
then T is said to be a generalized maximal submodule of M. The intersection of all generalized maximal submodules
of M is called the generalized radical of M and denoted by Rad,(M) that also knows as the sum of all g-small
submodules in M [28]. Recall [24] that K a supplementof Nin M if M = K + N and K N N is small in K. A module M
is called supplemented if every submodule of M has a supplement in M. A module M is said to be principally
(supplemented) dJ-supplemented if any cyclic submodule N of M, there exists a submodule X of M such that
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M =N+ X and N N X is (small) §-small in X ([1], resp. [11]). Moreover, a module M is said to be principally -
supplemented if for all cyclic submodule N of M, there exists a direct summand X of M such that M = N + X and
N N X < X [21]. A module M is called principally @-6-supplemented if for all cyclic submodule N of M, there exists
a direct summand H of M suchthat M = H+ X and HN X is §-small in X [22]. Also, A module M called principally
semisimple if all it is cyclic submodules are direct summands of M. Also, the author called a principally semisimple
module as a regular module [20]. Moreover, the module M called (principally) lifting if, for all (cyclic) submodule N
of M, there exists a decomposition M = A@B such that A < N and N N B < B ([6], resp. [24]). A module M is said to
be g-lifting if it has a decomposition M = S®S such that S < Aand AN S &y M, if for any submodule A < M [18].
Ghawi in [8], recall that M is principally g-lifting module if, for each m € M, M has a decomposition M = A@®B such
that A < mR and mR N B is g-small in B. Ghawi in [9], recall that a module M is @-g-supplemented if for any
submodule of M has a g-supplement that is a direct summand of M, i.e. for any N < M there exists a direct summand
Hof M suchthat N+ H =Mand N N H <, H.

In view of the definitions and concepts by the above it was natural to introduce a new definition of modules named
principally @-g-supplemented modules as generalization of @-g-supplemented modules. A module M is called
principally @-g-supplemented if every cyclic submodule of M has a principally @-g-supplement in M, that is, for
each m € M, there exists a submodule L of M such that M = mR + L = L@®L for some L < M with mR N L is g-small
in L. Our work consists of one section in which the notion of principally @-g-supplemented modules was presented
and studied. Some properties and examples, also the relations between this concept and other different kinds of
modules are discussed.

2. Principally @-g-supplemented modules
First, we will present the following lemma.

Lemma 2.1. Let M be a module, m € M and L a direct summand of M. Then the following are equivalent.

()M =mR + Land mR N Lis g-smallin L.

(2) M = mR + L and for a proper essential submodule K of L, M # mR + K .

Proof. (1) = (2) Let K be an essential submodule of L with M =mR+K. Then L=LNn(mR+K)=K +
(mR N L).AsmR n L is g-small in L, we deduce L = K.

)= Q) UfL=mMRNL)+KwithK 2L, thenM = mR + L =mR + K. By (2), K = L. Hence mR N L is g-small in
L m

Moreover, if M is a right R-module and m € M. we say that a submodule (= direct summand) L of M called a
principally @-g-supplement of mR in M if, mR and L satisfy Lemma 2.1.

In following, we will present our next main definition.

Definition 2.2. A module M is called principally é@-g-supplemented if every cyclic submodule of M has a
principally @-g-supplement in M, that is, for each m € M, there exists a submodule L of M suchthat M = mR + L =
L®L for some L < M and mR N Lis g-smallin L .

Remarks 2.3.

(1) By definitions, it is clear that every @®-g-supplemented and so every g-lifting module is principally @-g-
supplemented.

(2) For the same reason in [16, Remark 2.6], we deduce that any cyclic principally @-g-supplemented module over a
PID is @-g-supplemented.

Proposition 2.4. Every principally @©-g-supplemented module is principally g-supplemented.
Proof. Itis clear. m

Proposition 2.5. Every principally g-lifting module is principally @-g-supplemented.
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Proof. Suppose M is a principally g-lifting module and m € M. Then there is a decomposition M = A®B such that
A<mR and mRNAK; M. Thus M=mR+B. As mRNACSA and A <® M, [9, Lemma 2.12] implies mR N
A K, A.Hence M is principally ©-g-supplemented. m

Examples 2.6. (1) Consider the Z-module Q. Every cyclic submodule of Q is a small Z-submodule, so is g-small.
Therefore Q is a g-supplement (direct summand) for every cyclic submodule of itself. Thus, Q is a principally ®-g-
supplemented Z-module. But, by [16 , Examples 2.4(1)], the Z-module Q is neither @®-g-supplemented nor g-lifting .
(2) Suppose M =Q @ Z, as Z-module. We prove M is a principally @-g-supplemented module but neither
supplemented nor lifting. It is routine to show that M = (1,1)Z + (Q + (0)). Suppose that (¢, %) € M. If 4 = 1 and
q # 1.1n this case we prove M = (q,u)Z + (Q + (0)).

Let (x, ) € M. We have two possibilities:

() ¥ = L. Then (x,y) = (x,1) = (q,1) + (x — q,0) € (q,0)Z + (Q + (0)).

(ii) ¥ = 0. Then (x,¥) = (x,0) = (q,1)0 + (x,0) € (q,0)Z + (Q + (0)).

Hence M = (q,@)Z + (Q + (0)). As (q,w)Z N (Q + (0)) is either zero or isomorphic to Z&®(0) that is small (so is g-
small) in Q + (0), hence M is a principally ®-g-supplemented Z-module. If M = Q @ Z, were a supplemenetd Z-
module, its direct summand Q would be a supplemented Z-module, that is a contradiction. So M is neither
supplemented nor lifting.

(3) Since every principally @-g-supplemented is principally g-supplemented, so we deduce the Z-module Z is not
principally @-g-supplemented, see [16, Example 2.5].

Proposition 2.7. Consider the following cases for a module M:

(1) Rady,(M) = M;

(2) M is a principally generalized hollow module;

(3) M is a principally g-lifting module;

(4) M is a principally @©-g-supplemented module.

Then (1) = (2) = (3) = (4).If M is non-cyclic indecomposable, then (4) = (1).

Proof. (1) = (2) Let mR c M, where m € M. By (1), m € Rad,(M) and so mR <, M. Hence M is a principally
generalized hollow module.

(2) = (3) By [8, Lemma 3.20]

(3) = (4) By Proposition 2.5

(4) = (1) If m € M, by hypothesis, there exists submodules D and H of M such that M = mR + H = D®H,
mRNH K, H,so thatmRNH S Radg(H). As M is an indecomposable module, either H =0 or H = M.If H = 0, we
deduce that M = mR, a contradiction. Thus, D = 0 and H = M. Therefore, mR < Radg(M), m € mR S Radg(M)
and hence Rad,(M) =M. =

Proposition 2.8. Let R be a non-local commutative domain. Then every injective R-module is principally @-g-
supplemented.

Pl‘OOﬁ Let M be an injective module over non-local commutative domain R, then M does not contain a maximal
submodule, i.e. Rad(M) = M by [2, Lemma 4.4]. Because that Rad(M) € Rad,(M), we have Rad,(M) = M. Thus,
Proposition 2.7 implies the result. m

The reverse of Proposition 2.8 may not be true, generally.

Example 2.9. For any prime number p € Z,, the Z-module Z, is principally @-g-supplemented, because it is
simple. While Z, as Z-module does not injective.

Corollary 2.10. Let R be a Dedekind domain. Then every injective R-module is principally @-g-supplemented.
Proof. By Proposition 2.8. =

Theorem 2.11. Let M be an R-module, consider the following cases:
(1) M is principally semisimple.

(2) M is principally g-lifting.

(3) M is principally @-g-supplemented.

(4) M is principally g-supplemented.

Then (1) = (2) = (3) = (4).If Rad,(M) = 0, then (4) = (1).
Proof. (1) = (2) Obvious.

(2) = (3) By Proposition 2.5.

(3) = (4) By Proposition 2.4.
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(4) = (1) Let m € M. As M is a principally g-supplemented module, then there is a submodule A of M such that
M =mR+ A and mRN A is g-small in A. Since mRN A is g-small in M, then mRNA C Radg(M) = 0, that is

mRN A =0,somR <® M. Therefore, (1) holds. =

Recall that a module M is called an e-noncosingular module. If Z,(M) = M. Where Z,(M) = N{kerg| g €
Hom(M,N), N is e-small module} [19].

However, we have the following consequence.

Corollary 2.12. Let R be an arbitrary ring such that every right R-module is e-noncosingular. Then the following
are equivalent for an R-module M.

(1) M is principally semisimple.

(2) M is principally g-lifting.

(3) M is principally @-g-supplemented.

(4) M is principally g-supplemented.

Proof. Since any right R-module is e-noncosingular, we have Rady(M) = 0 by [19, Proposition 3.7]. This
completes the proof by Theorem 2.11. m

Remarks 2.13. (1) The condition Rad,;(Mg) = 0 is necessary in Theorem 2.11. By Examples 2.6(1), Q is a
principally @-g-supplemented Z-module. But, we know that Q as Z-module is not principally semisimple, in fact
Rad,(Qz) # 0.

(2) Itis well known that the Z-module Z is not principally semisimple, and it is easy to see that Rad,(Zz) = 0, so by
Theorem 2.11 this another reason to make Z-module Z is neither principally  g-supplemented nor principally ®-g-
supplemented.

(3) Because the example in (2) it can be said that every submodule of a principally @-g-suppl emented module may
not be principally @-g-supplemented; that is Z is not principally @-g-suppl emented in a principally ®-g-
supplemented Z-module Q.

Proposition 2.14. Let M be a principally @-g-supplemented R-module and L a submodule of M. If any cyclic
submodule of M has a @-g-supplement contains L, then M/L is principally @-g-supplemented.
Proof. Let m € M and consider the submodule MR of M/L, then MR = (mR + L)/L. By hypothesis, there exists a
direct summand N of M suchthat L < N,M =mR+ NandmRNN K4 N. Thus M = N@®K for some submodule K of
M. Consider a natural map m: M - M/L. It is easy to prove that M/L = N/L@® (K + L)/L = N/L + mR. Also, by the
modular law and [28, Proposition 2.5], we deduce (N/L)nmR =N/Ln(mR+L)/L=(Nn(mR+L))/L=(+
(mR N N))/L =mn(mR N N) is g-small in 7(N) = N/L. This mean that N/L is a g-supplement of mR that is a direct
summand of M /L, and hence M /L is principally @-g-supplemented. =

Wisbauer [24] recall that. Let M be an R-module. A submodule N of M is said to be fully invariant if f(N) € N for
all nonzero f € End(M). If all submodules of M are fully invariant, then M is called a duo module. And also If all
direct summand submodules of M are fully invariant, then M is called a weak duo module [17].

Proposition 2.15.Let M be a principally @-g-supplemented R-module. The factor M/L is principally @®-g-
supplemented for every fully invariant submodule L of M.

Proof. Let L be a fully invariant submodule of M and mR = (mR + L)/L be a cyclic submodule of M /L for some
m € M. Since M is principally @-g-supplemented, then there exists a direct summand N of M such that M = mR + N
and mRNN K;N. Thus M=N@K for some K<M. By [22, Lemma 33], we have that
M/L=((N+L)/LY®(K + L)/L). However, we get M/L = (N + L)/L) + mR. 1t is clear that ((N + L)/L) N mR is
g-small in (N + L) /L. This completes the proof. m

The next consequence is clear from Proposition 2.15.

Corollary 2.16. Every factor module of a principally @-g-supplemented duo R-module is principally é@-g-
supplemented.

Corollary 2.17. 1f M is a principally @-g-supplemented R-module, then so is M /Rad,(M).
Proof. By [28, Corollary 2.11] Rad,(M) is fully invariant, so that the result is obtained by Proposition 2.15. m
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Corollary 2.18. Let R be any ring such that every right R-module is e-noncosingular, and let M be a module. Then
M is principally ©-g-supplemented if and only if M /Rad, (M) principally @-g-supplemented.

Proof. By [19, Proposition 3.7], we have Rad,( M) = 0, so that M/Rad,(M) = M . This completes the proof. m

Corollary 2.19. Let M be a weak-duo and principally @-g-supplemented module. Then every direct summand of
M is principally @-g-supplemented .

Pl‘OOﬁ Let N be a direct summand of a principally @-g-supplemented module M, then M = N@K for some K < M.
Since M is weak-duo, then K is a fully invariant submodule. So, N = M /K is principally @-g-supplemented by
Proposition 2.15. =

In coming example shows that for a module M and a submodule L, if M/L is a principally @-g-supplemented
module, then M need not be principally @-g-supplemented.

Example 2.20. Consider the Z-module Z/p"Z, where p is a prime number and n € Z.. By [8] Z/p™Z is principally
g-lifting and so principally @-g-supplemented, but Z is not principally @-g-supplemented.

In following, we investigate a condition which ensure that a homomorphic image of a principally ®-g-
supplemented module is principally @©-g-supplemented.

Camillo [5], recall that a module M is called distributive if XN (Y +Z2) =X nY)+ (XNnZ)or X+ (Y NZ)=
X +Y)n (X + Z) for all submodules Y,Z of M. A module M is said to be distributive if all submodules of M are
distributive.

Theorem 2.21. Let M be a distributive and principally @-g-supplemented R-module. Then the homomorphic
image of M is principally @-g-supplemented.

Proof. Let K be a submodule of M and (mR + K)/K a cyclic submodule of M /K, where m € M. Since M is principally
@-g-supplemented, then there exists a direct summand A of M such that M = A@B = mR + A for a submodule B of M
and mRNA K, A.So, M/K = (mR+K)/K + (A+ K)/K and as M is a distributive module, (mR + K) N (A + K) =
(mR N A) + K. Therefore (mR + K)/KNn (A+ K)/K = ((mR N A) + K)/K is g-small in (A + K)/K as a homomorphic
image of g-small mRNA in A under the natural map m:4 - (A+ K)/K by [28, Proposition 2.5]. Again by
distributivity of M and AN B =0, we get M/K = ((A + K)/K)® ((B + K)/K). So (A + K)/K is a direct summand of
M/K. m

Kasch [12], recall that an R-module P is called projective if and only if for any two R-module A, B and for any
epimorphism f: A — B and for any homomorphism g: P — B, there is a homomorphism h: P - A such that f e h =

g.

Proposition 2.22. Let M be a principally @-g-supplemented R-module. Then M/Rad,(M) is a principally
semisimple R-module if M has one of the following conditions.

(1) M is a distributive R-module.

(2) M is a projective R-module.

Proof. (1) Suppose that mR is a cyclic submodule of M/Rady,(M) where me€M, then
mR = (mR + Rady;(M))/Rad,(M). By hypothesis, there exists a direct summand A of M such that M = mR + A and
mRNA is g-small in A Also mRNA is g-small in M, and hence mRNAC Radg (M). Hence,
(mR + Rady,(M))/Rady(M) + (A + Rady(M))/Rad,(M) = M/Rad,(M). On the other hand, by distributivity of M,
we have that (mR+ Rad,(M)) N (A+ Rad,;(M)) = (mR N A)+ Rady(M) = Rad,(M). It follows that
(mR + Rad,(M))/Rady(M) N (A + Rady(M))/Rady,(M) = Rady(M). Hence,
M/Rad,(M) = (mR + Rad,(M))/Rad,(M) @ (A + Rady,(M))/Rad,(M), o) that
M/Rad,(M) = mR @ (A + Rad,(M))/Rad,(M).

(2) Let mR be any cyclic submodule of M/Rad,(M), m € M, then mR = (mR + Rad,(M))/Rad,(M). By hypothesis,
there exists submodules X, A of M such that M = XA =mR+Aand mR N A is g-small in 4. AlsomR N A is g-
small in M, and hence mR N A € Rad,(M). By projectivity of M and [15, Lemma 4.47], there exists a direct
summand N of M such that M = N@A where N < mR. Therefore
(mR + Rady(M))/Rady(M) = (N + Rady(M))/Rady,(M) and  Rad,(M) = Rad,(N)®Rad,(A) implies that
M/Rad,(M) = mR @ (A + Rad,(M))/Rad,(M). So, any principal submodule of M/Rad,(M) is a direct summand
in either case. Therefore M/Rad,(M) is principally semisimple. m
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Recall that a module M is called refinable if for all submodules U and V of M with M = U + V, there is a direct
summand U of M suchthat U € Uand M = U + V [25].

Theorem 2.23. Let M be a projective (or, distributive) R-module. Consider the following cases:

(1) M is principally @-g-supplemented.

(2) M/Radg (M) is principally semisimple.

Then (1) = (2),and (2) = (1) in case M is a refinable R-module with Rad, (M) <, M.

Proof. (1) = (2) It follows by Proposition 2.22.

(2) = (1) Suppose that m € M. Since MR = (mR + Rad,(M))/Rady(M) is a cyclic submodule of M/Rad (M), so
by (2), there exists a submodule U of M such that M/Rad,(M) = mR® U/Rad,(M), where Rad,(M) € U. Then
M =mR+ U and (mR + Rad,(M)) N U = (mR N U) + Rad,(M) = Rad,(M), by the modular law. Hence mRnU <
Radg (M), and so mR N U is g-small in M. As M = mR + U is refinable, there is a direct summand A of M such that
A<Uand M=mR+A. As mRNA<mRnNU and A<® M, so by [9, Lemma 2.12], mR N A is g-small in A.
Therefore mR has a principally @-g-supplement A in M. This completes the proof. =

Corollary 2.24. Let M be a projective (or, distributive) R-module. Consider the following cases:
(1) M is principally @-g-supplemented.

(2) M/Rad,(M) is principally semisimple.

Then (1) = (2), and (2) = (1) if M is a refinable finitely generated R-module.

Proof. 1t follows by [9, Lemma 5.4] and Theorem 2.23. =

Corollary 2.25. Let R be a commutative ring and M be a projective (or, distributive) R-module. Consider the
following cases:

(1) M is principally @-g-supplemented.

(2) M/Rady(M) is principally semisimple.

Then (1) = (2), and (2) = (1) if M is a refinable and Noetherian R-module.

Proof. Since a Noetherian module implies finitely generated, then the result is obtained by Corollary 2.24. =

Corollary 2.26. Let R be a ring. Consider the following cases:

(1) R is principally @-g-supplemented.

(2) R/Rady(R) is principally semisimple.

Then (1) = (2), and (2) = (1) in case R is a refinable R-module.
Proof. Since R = (1), so the result is followed by Corollary 2.24. m

Theorem 2.27. Let M be a principally @-g-supplemented module. If K is a submodule of M such that M/K is
projective, then K is principally @-g-supplemented.

Proof. Suppose that L is a cyclic submodule of K. By hypothesis, there exists a direct summand N of M such that
M =L+ N and LN N is g-small in N, so in M. Thus, M = K + N and so K N N is a direct summand of M, by [13,
Lemma 2.3]. So M = (K N N)®H for some H < M. By the modular law, we have K =KNM =Kn(L+N) =L+
(KNN), also LNn(KNN)=LNN is g-small in M. Since LN (KNN)SKNN and KNN <® M this implies
LNn(KNN) is g-small in KNN by [9, Lemma 2.12]. Again by the modular law, we deduce that K = K n
((KNN)®H) = (KN N)®(K nH), this mean K N N is a direct summand of K, and hence K is principally @-g-
supplemented. m

Recall [15] that a module M is said to have (D;) property: if for any direct summands A and B of M with
M = A + B then A N B is also a direct summand of M. If the intersection of any two direct summands of a module M
is a direct summand of M, then M is said to have the summand intersection property, and denoted by SIP [23].

Proposition 2.28. Let M be a principally @®-g-supplemented module has (D;), then every direct summand of M is
principally @-g-supplemented.

Proof. Assume L is a direct summand of M and a € L. Since M a principally @-g-supplemented module and a € M,
M =aR+BandaRNB Ky B for some direct summand B of M. By the modular law, we havethat L=LNnM =L n
(aR + B) =aR + (L n B). We have L and B are direct summands of M with M = L + B, that implies L N B is so a
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direct summand in M, because M has (D;). Since aRN B <z M and L N B <® M, we deduce thataR N (LNB) =
aR N B is a g-small submodule in L N B, by [9, Lemma 2.12]. Hence L is principally @©-g-supplemented. m

Corollary 2.29. Let M be a module has the SIP. Then M is principally ©-g-supplemented if and only if every
direct summand of M is principally @-g-supplemented.

Proof. =) It is obvious that every module with the summand intersection property has (D). So the result is
obtained by Proposition 2.28.

&) C(Clear. =

Recall that a module M is called extending if any closed submodule is a direct summand [7]. A module M said to
be polyform if, all it is partial endomorphisms has closed kernel [26].

Corollary 2.30. Let M be an extending polyform R-module. Then M is principally @-g-supplemented if and only if
every direct summand of M is principally @-g-supplemented.

Pl‘OOﬁ By [3, Lemma 11], M has the SIP. So by Corollary 2.29., the result is follow. m

Corollary 2.31. If M is a quasi-projective module, then

(1) M is principally ®-g-supplemented if and only if every direct summand of M is principally @-g-supplemented.
(2) M is principally @-6-supplemented if and only if every direct summand of M is principally @-3-supplemented.
Proof. By [15, Lemma 4.6] and [15, Proposition 4.38], M has (D;). Thus (1) and (2) are follows directly by
Proposition 2.28, and [22, Proposition 3.6], respectively. m

Wisbauer in [24], recall that. If for any two submodules 4, B of M with M = A + B there exists an f € Endiy (M)
such that Imf <A and Im(1—f) < B. Then M is called m-projective. A submodule A of a module M is weak
distributive if A = (A N X) + (ANY) for all submodules X,Y of M with X + Y = M. A module M is said to be weakly
distributive if every submodule of M is a weak distributive submodule of M [4].

Only in certain cases, the classes principally @-g-supplemented modules and principally g-lifting modules are
identical as the below theorem shows.

Theorem 2.32. Let M be a principally @®-g-supplemented R-module and satisfy any one of the following
conditions:

(1) M is duo.

(2) M is weakly distributive.

(3) M is m-projective.

(4) M is refinable and have the SIP.

Then M is a principally g-lifting R-module.

Proof. (1) Let m € M. Since M is a principally @-g-supplemented module, then M = mR + L and mRN L Ky L for
some a direct summand L of M. So M = L@®K for some K < M. Since mR is fully invariant in M, mR = (mR N
LY®(mR N K), and hence M = (mR N K)®L where mR N K < mR and mR N L <, L. Hence M is a principally g-
lifting module. Proof (2) similar to proof (1).

(3) Let m € M. Then M = mR + L and mR N L K, L for some a direct summand L of M, as M is principally &-g-
supplemented. By m-projectivity for M, there exists K < mR such that M = K@L, by [24, 41.14(3)]. It follows M is a
principally g-lifting module.

(4) As M is a principally &-g-supplemented module and m € M, then M = mR + L and mR N L <, L for some a
direct summand L of M. Since M is a refinable module, then there exists a direct summand K of M such that K < mR
and M = K + L. Thus L N K is a direct summand of M, since M have the SIP. Let M = (L N K)®N for some N < M.
By modular law, we deduce L = (LN K)®(L N N),soM = K + L = K&(L N N).Itis clear thatmR n (L N N) K, L N
N. Hence completes the proof. m

Corollary 2.33. 1f amodule M satisfy any one of the following cases:

(1) M is duo.

(2) M is weakly distributive.

(3) M is m-projective.

Then M is a principally @-g-supplemented module if and only if every direct summand of M is principally @-g-
supplemented.
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Proof. Suppose (1), to prove =) By Theorem 2.32, M is a principally g-lifting module. By [8, Proposition 3.4], any
direct summand of M is principally = g-lifting, so it is principally = @-g-supplemented.
<) Clear.

(2) and (3) similar to proof (1). =

The proof of following two propositions are exactly analogous to proof [16, Proposition 2.13] and [16,
Proposition 2.14], respectively.

Proposition 2.34. Let M =@®;¢; M; be an infinite direct sum of principally @-g-supplemented R-modules
{M;| i € I}. If every cyclic submodule of M is fully invariant, then M is principally @-g-supplemented.

Proposition 2.35. Let M = M; @ M, be a direct sum of principally ©-g-supplemented modules M;, M,. If any
cyclic submodule of M is weak distributive, M is principally @-g-supplemented.

Corollary 2.36. Let M be an R-module,

(1) if M =@;¢; M; is a duo infinite direct sum of R-modules {M;| i € I}. Then M is principally @-g-supplemented if
and only if M; is principally @-g-supplemented, for i € I.

(2) if M =M, @ M, is a weakly distributive direct sum of R-modules M;, M,. Then M is principally -g-
supplemented if and only if M;, M, are principally @-g-supplemented.

Proof. (1) It follows directly by Corollary 2.33 and Proposition 2.34.

(2) It follows directly by Corollary 2.33 and Proposition 2.35. =

Proposition 2.37.Let M be a principally @-g-supplemented R-module and L a submodule of M. If LN
Rad,(M) = 0, then L is principally semisimple.

Proof. Leta € L. Since M is a principally @-g-supplemented R-module, then there exists a direct summand A of M
such that M = aR + A and aR N A is g-small in A. Also aR N A is g-small in M, and hence aR N A € Rad,(M). By the
modular law, we have that L=LN(aR+A)=aR+(LNA). As aRn(LNA) S LNRad,(M) =0, we get
L = aR®(L N A). Therefore aR <® L and L is principally semisimple. m

Proposition 2.38. If M is a principally @-g-supplemented module has a cyclic generalized radical. Then
M = M;®M, where M, is a module with Rad,(M,) is g-small in M; and M, is a module with Rad, M,) = M,.
Proof. Since M is a principally @-g-supplemented module and Rad, (M) is a cyclic submodule of M, then Rad (M)
has a g-supplement M; in M, ie. M = M; + Rad,(M) and M; N Rad,(M) <, M;, where M = M;@®M, for a
submodule M, of M. As Rady(M,) < M; N Rad,(M) implies that Rady(M,) <, M;. By [19, Corollary 2.3],
M = M, + Rady(M) = M, + Rad,(M;®M,) = M; + Rad,(M,)®Rad,(M,), so that M = M;®Rad,(M,). By modular
law, M, N M = M, N (M;®Rady(M,)) = Rady,(M,)®(M; N M,) that deduce Rad,(M,) = M,. m

Theorem 2.39. Let M be a principally @®-g-supplemented R-module. Then M has a principally semisimple
submodule A such that Soc(4) 2 A and Rad,;(M)@A is essential in M.

Proof. Since Rady(M) < M, so by [10, Proposition 1.3], there exists a submodule A of M such that Rad,(M)®A is
essential in M. As A N Rad,(M) = 0, A is principally semisimple, by Proposition 2.37. Next we show that Soc(4) 2
A. For this we prove for any a € 4, aR has a simple submodule. If aR is simple, the proof is finish. Otherwise, assume
a; € aR such that a;R # aR. Since M is principally ©-g-supplemented, there exists a direct summand C of M such
that M = a;R+ C and a;RNC is g-small in C, so in M, and hence a;R N C S Rad,(M). Then ¢;RNC S AN
Rady(M) = 0. Thus M = a;R®C and then aR = a;R®(aR N (), by the modular law. Obviously, aR N C = d;R for
some d; € aR and aR = a;R®d;R. If a;R and a;R are simple, then we stop. Otherwise let a, € a;R such that
a,R # a,R. By similar way, there is an d, € a;R such that a;R = a,R®d,R. Hence aR = a,R®d,R®a,R. If a,R is
simple, then we stop. Otherwise we continue in this way. Since aR is cyclic, this process must terminate at a finite
step, say n. At this step all direct summands of aR should be simple. Hence every cyclic submodule of A contains a
simple submodule. Therefore the socle of 4 is essential in A. m

Theorem 2.40. Let M be a principally @-g-supplemented module. If M satisfies ascending chain condition on
direct summands. Then M = M;@®M,, where M, is a semisimple module and M, is a module with Rad,(M;) 2 M,.
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Proof. Since Rady,(M) < M, so by [10, Proposition 1.3], there is a submodule M, of M with Rad,(M)®M, is
essential in M. Since M; N Rad,(M) = 0, Proposition 2.37 implies M, is principally semisimple. Let m; € M;.As M is
principally @-g-supplemented, there is a direct summand A; of M such that M = m;R + A; and m;R N 4, is g-small
in A; and M. Hence m;RNA; € M; NRady,(M) =0 and M =m;R®A;. By the modular law, M; = M; n
(myR®A;) = mR®&(M; N A;). If M; N A; # 0, let (0 #)m, € M; N A;. There is a direct summand 4, of M such that
M =myR+ A, and myRN A, is g-small in A, and M. Similarly, m,R N A, € M; N Rad,(M) =0, and M =
m,RDA,. Since myR € Ay, M = (mRBA;) N (m,RBA,) = mRO(A; N (M,RBA,)) = mR&M,RD(4; N 4,), by
the modular law. Also, by the modular law, we have that M\; N A; = (M; N A;) N M = (M; n A;) N (m,RDA,) =
myR®(M; NA;N4;) and M, =mROWM; NA) =mREMROM; NA;NA,). If MinA NnA,+#0, let
(0 #)ms € M; N A; N A,. There exists a direct summand A; of M such that M = m3R + A; and m3R N A5 is g-small
in A; and M.

Similarly, m3R N A3 € M; N Rady(M) =0 and M = m3R@®A; = m;R®m,RO®mM3;R® (A4, N A, N A3). Also, by the
modular law, we have that M\; N4, N A, = (M; NA; NA,)NM = (M, nA; NAy) N (M3ROA;) = mgRO(M; NAL N
A, N A3) and,

M; = mR®&m,RO(M; N A; N A,) = mR®m,R®&m;R®(M; N A; N A, N A3). By the hypothesis this procedure
stops at a finite number of steps, say r. At this stage we may have

M = m,.R®A, = mROEM,ROM;RD ...&m, . RO(A; N A, N A; N ...N A )and M; = mROEm,R®m;R® ... Bm,.R.
Since M has the ascending chain condition on direct summands, without loss of generality, we may assume that all
cyclic submodules m;R, m,R, m3R, ..., m,.R to be simple. So by [12, Theorem 8.1.3], M; is a semisimple module. Let
M, =A;NA;NA3;Nn..NA,, then M= M;@®M,. Since M; is semisimple, Rad,(M,) =M, and Rad,(M) =
M;@®Rad,(M,). Consider the inclusion map I: M, — M;@®M,. Since Rad,(M)®M, is essential in M = M,;®M,, that
means M, ®Rad,(M,) 2 M;®M,, it follows that I"*(M,; ®Radg(M,)) 2 M,, hence Rady(M,) is essential in M,.m
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