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A B S T R A C T 

In this paper, we defined and studied the idea of principally ⨁-g-

supplemented modules as an advanced concept of ⨁-g-supplemented 

modules. Many properties, characterizations and examples of these modules 

are discussed. Also, a number of relations between these modules and other 

kinds of modules are examined in this work. 
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1. Introduction  

Throughout this work, 𝑅 denotes an associative ring with identity, and all modules are unital right 𝑅-modules. Let 𝑀 
be a right 𝑅-module. The notions 𝐿 ⊆ 𝑀, 𝐿 ≤ 𝑀 and 𝐿 ≤⨁ 𝑀 to signify that 𝐿 is         a subset,  a submodule, and a 
direct summand of 𝑀. A submodule 𝐾 ≤ 𝑀  is called to be essential in 𝑀, denoted as 𝐾 ⊴ 𝑀, if 𝐾 ∩ 𝐿 = 0 implies 
𝐿 = 0 for all 𝐿 ≤ 𝑀 [10]. The socle of an  𝑅-module 𝑀 is denoted by 𝑆𝑜𝑐(𝑀) and defined as the sum of all simple 
submodules of 𝑀. If there are no minimal submodules in 𝑀 we put 𝑆𝑜𝑐(𝑀) = 0 [24]. Dually for any submodule 𝐿 of 
𝑀, if 𝐻 + 𝐿 = 𝑀 implies 𝐿 = 𝑀, then the proper submodule 𝐻 ≤ 𝑀 is called to be small in 𝑀 and denoted as 𝐻 ≪ 𝑀. 
The intersection of all maximal submodules of 𝑀 is called the Jacobson radical of 𝑀, and denoted by 𝑅𝑎𝑑(𝑀) or, as 
in alternative, the sum of all small submodules of 𝑀. If 𝑀 does not contained any maximal submodules, then it is 
show as 𝑅𝑎𝑑(𝑀) = 𝑀. Zhou [27] introduced 𝛿-small submodules, extended small submodules as follows. A proper 
submodule 𝑁 of a module 𝑀 is called 𝛿-small in 𝑀 (denoted by 𝑁 ≪𝛿 𝑀) if whenever 𝑀 = 𝑁 + 𝐿 with 𝑀/𝐿 singular, 
we have 𝑀 = 𝐿. Recall [28] that a submodule 𝐻 ≤ 𝑀 is called g-small in 𝑀, denoted as 𝐻 ≪𝑔 𝑀 if, whenever 
𝑀 = 𝐻 + 𝐸 with 𝐸 ⊴ 𝑀, implies 𝐸 = 𝑀, in reality, authors Zhou and Zhang put a g-small submodule in place of an e-
small submodule. When any proper (cyclic) submodule of 𝑀 is g-small, then 𝑀 is named as (principally) generalized 
hollow ([14], resp. [8]). It is clear that any small submodule is g-small. If 𝑇 is essential and maximal submodule of 𝑀 
then 𝑇 is said to be a generalized maximal submodule of 𝑀. The intersection of all generalized maximal submodules 
of 𝑀 is called the generalized radical of 𝑀 and denoted by 𝑅𝑎𝑑𝑔(𝑀) that also knows as the sum of all g-small 
submodules in 𝑀 [28]. Recall [24] that 𝐾 a supplement of 𝑁 in 𝑀 if 𝑀 = 𝐾 + 𝑁 and 𝐾 ∩ 𝑁 is small in 𝐾. A module 𝑀 
is called supplemented if every submodule of 𝑀 has a supplement in 𝑀. A module 𝑀 is said to be principally 
(supplemented)  𝛿-supplemented if any cyclic submodule 𝑁 of 𝑀, there exists a submodule 𝑋 of 𝑀 such that 
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𝑀 = 𝑁 + 𝑋 and 𝑁 ∩ 𝑋 is (small) 𝛿-small in 𝑋 ([1], resp. [11]). Moreover, a module 𝑀 is said to be principally ⊕-
supplemented if for all cyclic submodule 𝑁 of 𝑀, there exists a direct summand 𝑋 of 𝑀 such that 𝑀 = 𝑁 + 𝑋 and 
𝑁 ∩ 𝑋 ≪ 𝑋 [21]. A module 𝑀 is called principally ⊕-𝛿-supplemented if for all cyclic submodule 𝑁 of 𝑀, there exists 
a direct summand 𝐻 of 𝑀 such that 𝑀 = 𝐻 + 𝑋 and 𝐻 ∩ 𝑋 is    𝛿-small in 𝑋 [22]. Also, A module 𝑀 called principally 
semisimple if all it is cyclic submodules are direct summands of 𝑀. Also, the author called a principally semisimple 
module as a regular module [20]. Moreover, the module 𝑀 called (principally) lifting if, for all (cyclic) submodule 𝑁 
of 𝑀, there exists a decomposition 𝑀 = 𝐴⨁𝐵 such that 𝐴 ≤ 𝑁 and 𝑁 ∩ 𝐵 ≪ 𝐵 ([6], resp. [24]). A module 𝑀 is said to 
be g-lifting if it has a decomposition 𝑀 = 𝑆⨁�̀� such that 𝑆 ≤ 𝐴 and 𝐴 ∩ �̀� ≪𝑔 𝑀, if for any submodule 𝐴 ≤ 𝑀 [18]. 
Ghawi in [8], recall that 𝑀 is principally g-lifting module if, for each 𝑚 ∈ 𝑀, 𝑀 has a decomposition 𝑀 = 𝐴⨁𝐵 such 
that 𝐴 ≤ 𝑚𝑅 and 𝑚𝑅 ∩ 𝐵 is g-small in 𝐵. Ghawi in [9], recall that a module 𝑀 is ⨁-g-supplemented if for any 
submodule of 𝑀 has a g-supplement that is a direct summand of 𝑀, i.e. for any 𝑁 ≤ 𝑀 there exists a direct summand 
𝐻 of 𝑀 such that 𝑁 + 𝐻 = 𝑀 and 𝑁 ∩ 𝐻 ≪𝑔 𝐻. 

  In view of the definitions and concepts by the above it was natural to introduce a new definition of modules named 
principally ⨁-g-supplemented modules as generalization of ⨁-g-supplemented modules. A module 𝑀 is called 
principally ⨁-g-supplemented if every cyclic submodule of 𝑀 has a principally ⨁-g-supplement in 𝑀, that is, for 
each 𝑚 ∈ 𝑀, there exists a submodule 𝐿 of 𝑀 such that 𝑀 = 𝑚𝑅 + 𝐿 = �̀�⨁𝐿 for some �̀� ≤ 𝑀 with 𝑚𝑅 ∩ 𝐿 is g-small 
in 𝐿. Our work consists of one section in which the notion of principally ⨁-g-supplemented modules was presented 
and studied. Some properties and examples, also the relations between this concept and other different kinds of 
modules are discussed. 

 

 

2. Principally ⨁-g-supplemented modules 

    First, we will present the following lemma. 
 

Lemma 2.1."Let 𝑀 be a module, 𝑚 ∈ 𝑀 and 𝐿 a direct summand of 𝑀. Then the following are equivalent. 
(1) 𝑀 = 𝑚𝑅 + 𝐿 and 𝑚𝑅 ∩ 𝐿 is g-small in 𝐿. 
(2) 𝑀 = 𝑚𝑅 + 𝐿 and for a proper essential submodule 𝐾 of 𝐿, 𝑀 ≠ 𝑚𝑅 + 𝐾 ".  

Proof. (1) ⟹ (2) Let 𝐾 be an essential submodule of 𝐿 with 𝑀 = 𝑚𝑅 + 𝐾. Then 𝐿 = 𝐿 ∩ (𝑚𝑅 + 𝐾) = 𝐾 +
(𝑚𝑅 ∩ 𝐿). As 𝑚𝑅 ∩ 𝐿 is g-small in 𝐿, we deduce 𝐿 = 𝐾. 
(2) ⟹ (1) If 𝐿 = (𝑚𝑅 ∩ 𝐿) + 𝐾 with 𝐾 ⊴ 𝐿, then 𝑀 = 𝑚𝑅 + 𝐿 = 𝑚𝑅 + 𝐾. By (2), 𝐾 = 𝐿. Hence m𝑅 ∩ 𝐿 is g-small in 
𝐿.   ∎ 
 

   Moreover, if 𝑀 is a right 𝑅-module and 𝑚 ∈ 𝑀. we say that a submodule (= direct summand)  𝐿 of 𝑀 called a 
principally ⨁-g-supplement of 𝑚𝑅 in 𝑀 if, 𝑚𝑅 and 𝐿 satisfy Lemma 2.1.     
 
   In following, we will present our next main definition. 
 

Definition 2.2." A module 𝑀 is called principally ⨁-g-supplemented if every cyclic submodule of 𝑀 has a 
principally ⨁-g-supplement in 𝑀, that is, for each 𝑚 ∈ 𝑀, there exists a submodule 𝐿 of 𝑀 such that 𝑀 = 𝑚𝑅 + 𝐿 =
�̀�⨁𝐿 for some �̀� ≤ 𝑀 and 𝑚𝑅 ∩ 𝐿 is g-small in 𝐿".    
 

Remarks 2.3.  
(1) By definitions, it is clear that every ⨁-g-supplemented and so every g-lifting module is principally ⨁-g-
supplemented. 
 

(2) For the same reason in [16, Remark 2.6], we deduce that any cyclic principally ⨁-g-supplemented module over a 
PID is ⨁-g-supplemented.  
  

Proposition 2.4. Every principally ⨁-g-supplemented module is principally g-supplemented.  

Proof. It is clear.   ∎  
 
 
 

Proposition 2.5."Every principally g-lifting module is principally ⨁-g-supplemented.  
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Proof. Suppose 𝑀 is a principally g-lifting module and 𝑚 ∈ 𝑀. Then there is a decomposition 𝑀 = 𝐴⨁𝐵 such that 
𝐴 ≤ 𝑚𝑅 and 𝑚𝑅 ∩ 𝐴 ≪𝑔 𝑀". Thus 𝑀 = 𝑚𝑅 + 𝐵. As 𝑚𝑅 ∩ 𝐴 ⊆ 𝐴 and 𝐴 ≤⨁ 𝑀, [9, Lemma 2.12] implies 𝑚𝑅 ∩

𝐴 ≪𝑔 𝐴. Hence 𝑀 is principally ⨁-g-supplemented.   ∎    
       

Examples 2.6. (1) "Consider the ℤ-module ℚ. Every cyclic submodule of ℚ is a small ℤ-submodule, so is g-small. 
Therefore ℚ is a g-supplement (direct summand) for every cyclic submodule of itself. Thus, ℚ is a principally ⨁-g-
supplemented ℤ-module. But, by [16 , Examples 2.4(1)], the ℤ-module ℚ is neither ⨁-g-supplemented nor g-lifting".  
(2) "Suppose 𝑀 = ℚ ⊕ 𝑍2 as ℤ-module. We prove 𝑀 is a principally ⨁-g-supplemented module but neither 
supplemented nor lifting. It is routine to show that 𝑀 = (1, 1̅)𝑍 + (ℚ + (0̅)). Suppose that (𝑞, �̅�) ∈ 𝑀. If �̅� = 1̅ and 
𝑞 ≠ 1. In this case we prove 𝑀 = (𝑞, �̅�)𝑍 + (ℚ + (0̅)).  
Let (𝑥, �̅�) ∈ 𝑀. We have two possibilities:    
(i) �̅� = 1̅. Then (𝑥, �̅�) = (𝑥, 1̅) = (𝑞, 1̅) + (𝑥 − 𝑞, 0̅) ∈ (𝑞, �̅�)𝑍 + (ℚ + (0̅)).    
(ii) �̅� = 0̅. Then (𝑥, �̅�) = (𝑥, 0̅) = (𝑞, 1̅)0 + (𝑥, 0̅) ∈ (𝑞, �̅�)𝑍 + (ℚ + (0̅)).    
Hence 𝑀 = (𝑞, �̅�)𝑍 + (ℚ + (0̅)). As (𝑞, �̅�)𝑍 ∩ (ℚ + (0̅)) is either zero or isomorphic to 𝑍⨁(0̅) that is small (so is g-
small) in ℚ + (0̅), hence 𝑀 is a principally ⨁-g-supplemented ℤ-module. If 𝑀 = ℚ ⊕ 𝑍2 were a supplemenetd ℤ-
module, its direct summand ℚ would be a supplemented ℤ-module, that is a contradiction. So 𝑀 is neither 
supplemented nor lifting.   
 

(3) Since every principally ⨁-g-supplemented is principally g-supplemented, so we deduce the ℤ-module ℤ is not 
principally ⨁-g-supplemented, see [16, Example 2.5]".  
 

Proposition 2.7."Consider the following cases for a module 𝑀:  
(1) 𝑅𝑎𝑑𝑔(𝑀) = 𝑀; 

(2) 𝑀 is a principally generalized hollow module; 
(3) 𝑀 is a principally g-lifting module; 
(4) 𝑀 is a principally ⨁-g-supplemented module. 
Then (1) ⟹ (2) ⟹ (3) ⟹ (4). If 𝑀 is non-cyclic indecomposable, then (4) ⟹ (1). 

Proof. (1) ⟹ (2) Let 𝑚𝑅 ⊂ 𝑀, where 𝑚 ∈ 𝑀. By (1), 𝑚 ∈ 𝑅𝑎𝑑𝑔(𝑀) and so 𝑚𝑅 ≪𝑔 𝑀. Hence 𝑀 is a principally 

generalized hollow module. 
(2) ⟹ (3) By [8, Lemma 3.20] 
(3) ⟹ (4) By Proposition 2.5   
(4) ⟹ (1) If 𝑚 ∈ 𝑀, by hypothesis, there exists submodules 𝐷 and 𝐻 of 𝑀"such that 𝑀 = 𝑚𝑅 + 𝐻 = 𝐷⨁𝐻, 
𝑚𝑅 ∩ 𝐻 ≪𝑔 𝐻, so that 𝑚𝑅 ∩ 𝐻 ⊆ 𝑅𝑎𝑑𝑔(𝐻). As 𝑀 is an indecomposable module, either 𝐻 = 0 or 𝐻 = 𝑀. If 𝐻 = 0, we 

deduce that 𝑀 = 𝑚𝑅, a contradiction. Thus, 𝐷 = 0 and 𝐻 = 𝑀. Therefore, 𝑚𝑅 ⊆ 𝑅𝑎𝑑𝑔(𝑀), 𝑚 ∈ 𝑚𝑅 ⊆ 𝑅𝑎𝑑𝑔(𝑀) 

and hence 𝑅𝑎𝑑𝑔(𝑀) = 𝑀.   ∎   
 

Proposition 2.8. Let 𝑅 be a non-local commutative domain. Then every injective 𝑅-module is principally ⨁-g-
supplemented.  

Proof. Let 𝑀 be an injective module over non-local commutative domain 𝑅, then 𝑀 does not contain  a maximal 
submodule, i.e. 𝑅𝑎𝑑(𝑀) = 𝑀 by [2, Lemma 4.4]. Because that 𝑅𝑎𝑑(𝑀) ⊆ 𝑅𝑎𝑑𝑔(𝑀), we have 𝑅𝑎𝑑𝑔(𝑀) = 𝑀. Thus, 

Proposition 2.7 implies the result.   ∎      
 

   The reverse of Proposition 2.8 may not be true, generally.  
 

Example 2.9. For any prime number 𝑝 ∈ ℤ+, the ℤ-module ℤ𝑝 is principally ⨁-g-supplemented, because it is 

simple. While ℤ𝑝 as ℤ-module does not injective. 
 

Corollary 2.10. Let 𝑅 be a Dedekind domain. Then every injective 𝑅-module is principally ⨁-g-supplemented. 

Proof. By Proposition 2.8.   ∎ 

Theorem 2.11."Let 𝑀  be an 𝑅-module, consider the following cases: 
(1) 𝑀 is principally semisimple. 
(2) 𝑀 is principally g-lifting. 
(3) 𝑀 is principally ⨁-g-supplemented.  
(4) 𝑀 is principally g-supplemented. 
Then (1) ⟹ (2) ⟹ (3) ⟹ (4). If 𝑅𝑎𝑑𝑔(𝑀) = 0, then (4) ⟹ (1).  

Proof. (1) ⟹ (2) Obvious.   
(2) ⟹ (3) By Proposition 2.5. 
(3) ⟹ (4) By Proposition 2.4.  
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(4) ⟹ (1) Let 𝑚 ∈ 𝑀. As 𝑀 is a principally g-supplemented module, then there is a submodule 𝐴 of 𝑀 such that 
𝑀 = 𝑚𝑅 + 𝐴 and 𝑚𝑅 ∩ 𝐴 is g-small in 𝐴. Since 𝑚𝑅 ∩ 𝐴 is g-small in 𝑀, then 𝑚𝑅 ∩ 𝐴 ⊆ 𝑅𝑎𝑑𝑔(𝑀) = 0, that is 

𝑚𝑅 ∩ 𝐴 = 0, so 𝑚𝑅 ≤⊕ 𝑀. Therefore, (1) holds.   ∎  
  

    Recall that a module 𝑀 is called an e-noncosingular module. If 𝑍𝑒(𝑀) = 𝑀. Where 𝑍𝑒(𝑀) = ⋂{𝑘𝑒𝑟𝑔| 𝑔 ∈
𝐻𝑜𝑚(𝑀, 𝑁), 𝑁 is e-small module} [19]. 
 

   However, we have the following consequence.  
 

Corollary 2.12. Let 𝑅 be an arbitrary ring such that every right 𝑅-module is e-noncosingular. Then the following 
are equivalent for an 𝑅-module 𝑀.  
(1) 𝑀 is principally semisimple. 
(2) 𝑀 is principally g-lifting. 
(3) 𝑀 is principally ⨁-g-supplemented.".  
(4) 𝑀 is principally g-supplemented. 

Proof. "Since any right 𝑅-module is e-noncosingular, we have 𝑅𝑎𝑑𝑔(𝑀) = 0 by [19, Proposition 3.7]. This 

completes the proof by Theorem 2.11.   ∎   
 

Remarks 2.13. (1) The condition 𝑅𝑎𝑑𝑔(𝑀𝑅) = 0 is necessary in Theorem 2.11. By Examples 2.6(1), ℚ is a 

principally ⨁-g-supplemented ℤ-module. But, we know that ℚ as ℤ-module is not principally semisimple, in fact 
𝑅𝑎𝑑𝑔(ℚℤ) ≠ 0. 

(2) It is well known that the ℤ-module ℤ is not principally semisimple, and it is easy to see that 𝑅𝑎𝑑𝑔(ℤℤ) = 0, so by 

Theorem 2.11 this another reason to make ℤ-module ℤ is neither principally      g-supplemented nor principally ⨁-g-
supplemented. 
 

(3) Because the example in (2) it can be said that every submodule of a principally ⨁-g-suppl emented module may 
not be principally ⨁-g-supplemented; that is ℤ is not principally ⨁-g-suppl emented in a principally ⨁-g-
supplemented  ℤ-module ℚ. 
  

Proposition 2.14."Let 𝑀 be a principally ⨁-g-supplemented 𝑅-module and 𝐿 a submodule of 𝑀. If any cyclic 
submodule of 𝑀 has a ⨁-g-supplement contains 𝐿, then 𝑀 𝐿⁄  is principally ⨁-g-supplemented.  

Proof. Let 𝑚 ∈ 𝑀 and consider the submodule �̅�𝑅 of 𝑀 𝐿⁄ , then �̅�𝑅 = (𝑚𝑅 + 𝐿) 𝐿⁄ . By hypothesis, there exists a 
direct summand 𝑁 of 𝑀 such that 𝐿 ≤ 𝑁, 𝑀 = 𝑚𝑅 + 𝑁 and 𝑚𝑅 ∩ 𝑁 ≪𝑔 𝑁. Thus 𝑀 = 𝑁⨁𝐾 for some submodule 𝐾 of 

𝑀. Consider a natural map 𝜋: 𝑀 → 𝑀 𝐿⁄ . It is easy to prove that 𝑀 𝐿⁄ = 𝑁 𝐿⁄ ⨁ (𝐾 + 𝐿) 𝐿⁄ = 𝑁 𝐿⁄ + �̅�𝑅. Also, by the 
modular law and [28, Proposition 2.5], we deduce (𝑁 𝐿⁄ ) ∩ �̅�𝑅 = 𝑁 𝐿⁄ ∩ (𝑚𝑅 + 𝐿) 𝐿⁄ = (𝑁 ∩ (𝑚𝑅 + 𝐿)) 𝐿⁄ = (𝐿 +
(𝑚𝑅 ∩ 𝑁)) 𝐿⁄ = 𝜋(𝑚𝑅 ∩ 𝑁) is g-small in 𝜋(𝑁) = 𝑁 𝐿⁄ . This mean that 𝑁 𝐿⁄  is a g-supplement of �̅�𝑅 that is a direct 
summand of 𝑀 𝐿⁄ , and hence 𝑀 𝐿⁄  is principally ⨁-g-supplemented.   ∎   
 
   

    Wisbauer [24] recall that. Let 𝑀 be an 𝑅-module. A submodule 𝑁 of 𝑀 is said to be fully invariant    if 𝑓(𝑁) ⊆ 𝑁 for 
all nonzero 𝑓 ∈ 𝐸𝑛𝑑(𝑀)."If all submodules of 𝑀 are fully invariant, then 𝑀 is called     a duo module. And also If all 
direct summand submodules of 𝑀 are fully invariant, then 𝑀 is called  a weak duo module"[17]. 
 

Proposition 2.15."Let 𝑀 be a principally ⨁-g-supplemented 𝑅-module. The factor 𝑀 𝐿⁄  is principally ⨁-g-
supplemented for every fully invariant submodule 𝐿 of 𝑀.  

Proof. Let 𝐿 be a fully invariant submodule of 𝑀 and �̅�𝑅 = (𝑚𝑅 + 𝐿) 𝐿⁄  be a cyclic submodule of 𝑀 𝐿⁄  for some 
𝑚 ∈ 𝑀. Since 𝑀 is principally ⨁-g-supplemented, then there exists a direct summand 𝑁 of 𝑀 such that 𝑀 = 𝑚𝑅 + 𝑁 
and 𝑚𝑅 ∩ 𝑁 ≪𝑔 𝑁. Thus 𝑀 = 𝑁⨁𝐾 for some 𝐾 ≤ 𝑀. By [22, Lemma 3.3], we have that 

𝑀 𝐿⁄ = ((𝑁 + 𝐿) 𝐿⁄ )⨁((𝐾 + 𝐿) 𝐿⁄ ). However, we get 𝑀 𝐿⁄ = ((𝑁 + 𝐿) 𝐿⁄ ) + �̅�𝑅. It is clear that ((𝑁 + 𝐿) 𝐿⁄ ) ∩ �̅�𝑅 is 

g-small in (𝑁 + 𝐿) 𝐿⁄ . This completes the proof.   ∎    
 

       The next consequence is clear from Proposition 2.15. 
 

Corollary 2.16." Every factor module of a principally ⨁-g-supplemented duo 𝑅-module is principally ⨁-g-
supplemented.    
 

Corollary 2.17.  If 𝑀 is a principally ⨁-g-supplemented 𝑅-module, then so is 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ .  

Proof. By [28, Corollary 2.11] 𝑅𝑎𝑑𝑔(𝑀) is fully invariant, so that the result is obtained by  Proposition 2.15.   ∎  
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Corollary 2.18. "Let 𝑅 be any ring such that every right 𝑅-module is e-noncosingular, and let 𝑀 be a module. Then 
𝑀 is principally ⨁-g-supplemented if and only if 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  principally ⨁-g-supplemented.  

Proof. By [19, Proposition 3.7], we have 𝑅𝑎𝑑𝑔( 𝑀) = 0, so that 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ ≅ 𝑀". This completes the proof.   ∎  
 

Corollary 2.19. "Let 𝑀 be a weak-duo and principally ⨁-g-supplemented module. Then every direct summand of 
𝑀 is principally ⨁-g-supplemented". 

Proof. Let 𝑁 be a direct summand of a principally ⨁-g-supplemented module 𝑀, then 𝑀 = 𝑁⨁𝐾 for some 𝐾 ≤ 𝑀. 
Since 𝑀 is weak-duo, then 𝐾 is  a fully invariant submodule. So, 𝑁 ≅ 𝑀 𝐾⁄  is principally ⨁-g-supplemented by  
Proposition 2.15.   ∎  
      

    "In coming example shows that for a module 𝑀 and a submodule 𝐿, if 𝑀 𝐿⁄  is a principally ⨁-g-supplemented 
module, then 𝑀 need not be principally ⨁-g-supplemented.  
 

Example 2.20. "Consider the ℤ-module ℤ 𝑝𝑛ℤ⁄ , where 𝑝 is a prime number and 𝑛 ∈ ℤ+. By [8] ℤ 𝑝𝑛ℤ⁄  is principally 
g-lifting and so principally ⨁-g-supplemented, but ℤ is not principally ⨁-g-supplemented. 
 

    In following, we investigate a condition which ensure that a homomorphic image of  a principally ⨁-g-
supplemented module is principally ⨁-g-supplemented. 
 

    Camillo [5], recall that a module 𝑀 is called distributive if 𝑋 ∩ (𝑌 + 𝑍) = (𝑋 ∩ 𝑌) + (𝑋 ∩ 𝑍) or 𝑋 + (𝑌 ∩ 𝑍) =
(𝑋 + 𝑌) ∩ (𝑋 + 𝑍) for all submodules 𝑌, 𝑍 of 𝑀. A module 𝑀 is said to be distributive if all submodules of 𝑀 are 
distributive.  
 

Theorem 2.21. Let 𝑀 be a distributive and principally ⨁-g-supplemented 𝑅-module. Then the homomorphic 
image of 𝑀 is principally ⨁-g-supplemented.  

Proof. Let 𝐾 be a submodule of 𝑀 and (𝑚𝑅 + 𝐾) 𝐾⁄  a cyclic submodule of 𝑀 𝐾⁄ , where 𝑚 ∈ 𝑀. Since 𝑀 is principally 
⨁-g-supplemented, then there exists a direct summand 𝐴 of 𝑀 such that 𝑀 = 𝐴⨁𝐵 = 𝑚𝑅 + 𝐴 for a submodule 𝐵 of 𝑀 
and 𝑚𝑅 ∩ 𝐴 ≪𝑔 𝐴. So, 𝑀 𝐾⁄ = (𝑚𝑅 + 𝐾) 𝐾⁄ + (𝐴 + 𝐾) 𝐾⁄  and as 𝑀 is   a distributive module, (𝑚𝑅 + 𝐾) ∩ (𝐴 + 𝐾) =

(𝑚𝑅 ∩ 𝐴) + 𝐾. Therefore (𝑚𝑅 + 𝐾) 𝐾⁄ ∩ (𝐴 + 𝐾) 𝐾⁄ = ((𝑚𝑅 ∩ 𝐴) + 𝐾) 𝐾⁄  is g-small in (𝐴 + 𝐾) 𝐾⁄  as a homomorphic 
image of g-small 𝑚𝑅 ∩ 𝐴 in 𝐴 under the natural map 𝜋: 𝐴 → (𝐴 + 𝐾) 𝐾⁄  by [28, Proposition 2.5]. Again by 
distributivity of 𝑀 and 𝐴 ∩ 𝐵 = 0, we get 𝑀 𝐾⁄ = ((𝐴 + 𝐾) 𝐾⁄ )⨁ ((𝐵 + 𝐾) 𝐾⁄ ). So (𝐴 + 𝐾) 𝐾⁄  is a direct summand of 
𝑀 𝐾⁄ .   ∎  
 
    Kasch [12], recall that an 𝑅-module 𝑃 is called projective if and only if for any two 𝑅-module 𝐴, 𝐵 and for any 
epimorphism 𝑓: 𝐴 → 𝐵 and for any homomorphism 𝑔: 𝑃 → 𝐵, there is a homomorphism ℎ: 𝑃 → 𝐴 such that 𝑓 ∘ ℎ =
𝑔. 
 

Proposition 2.22." Let 𝑀 be a principally ⨁-g-supplemented 𝑅-module. Then 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is a principally 

semisimple 𝑅-module if 𝑀 has one of the following conditions. 
(1) 𝑀 is a distributive 𝑅-module. 
(2) 𝑀 is a projective 𝑅-module.  

Proof. (1) Suppose that �̅�𝑅 is a cyclic submodule of 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  where 𝑚 ∈ 𝑀, then 

�̅�𝑅 = (𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ . By hypothesis, there exists a direct summand 𝐴 of 𝑀 such that 𝑀 = 𝑚𝑅 + 𝐴 and 

𝑚𝑅 ∩ 𝐴 is g-small in 𝐴. Also 𝑚𝑅 ∩ 𝐴 is g-small in 𝑀, and hence 𝑚𝑅 ∩ 𝐴 ⊆ 𝑅𝑎𝑑𝑔(𝑀). Hence, 

(𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ + (𝐴 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ = 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ .  On the other hand, by distributivity of 𝑀, 

we have that (𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) ∩ (𝐴 + 𝑅𝑎𝑑𝑔(𝑀)) = (𝑚𝑅 ∩ 𝐴) + 𝑅𝑎𝑑𝑔(𝑀) = 𝑅𝑎𝑑𝑔(𝑀). It follows that 

(𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ ∩ (𝐴 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ = 𝑅𝑎𝑑𝑔(𝑀). Hence, 

𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ = (𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ ⨁ (𝐴 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ , so that 

𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ = �̅�𝑅 ⨁ (𝐴 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ .  

(2) Let �̅�𝑅 be any cyclic submodule of 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ , 𝑚 ∈ 𝑀, then �̅�𝑅 = (𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ . By hypothesis, 

there exists submodules 𝑋, 𝐴 of 𝑀 such that 𝑀 = 𝑋⨁𝐴 = 𝑚𝑅 + 𝐴 and 𝑚𝑅 ∩ 𝐴 is          g-small in 𝐴. Also 𝑚𝑅 ∩ 𝐴 is g-
small in 𝑀, and hence 𝑚𝑅 ∩ 𝐴 ⊆ 𝑅𝑎𝑑𝑔(𝑀). By projectivity of 𝑀 and [15, Lemma 4.47], there exists a direct 

summand 𝑁 of 𝑀 such that 𝑀 = 𝑁⨁𝐴 where 𝑁 ≤ 𝑚𝑅. Therefore 
(𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ = (𝑁 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄  and 𝑅𝑎𝑑𝑔(𝑀) = 𝑅𝑎𝑑𝑔(𝑁)⨁𝑅𝑎𝑑𝑔(𝐴) implies that 

𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ = �̅�𝑅 ⨁ (𝐴 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄ . So, any principal submodule of 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is   a direct summand 

in either case." Therefore 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is principally semisimple.   ∎  
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 " Recall that a module 𝑀 is called refinable if for all submodules 𝑈 and 𝑉 of 𝑀 with 𝑀 = 𝑈 + 𝑉,"there is a direct 
summand �́� of 𝑀 such that �́� ⊆ 𝑈 and 𝑀 = �́� + 𝑉 [25]. 
 

Theorem 2.23." Let 𝑀 be a projective (or, distributive) 𝑅-module. Consider the following cases:  
(1) 𝑀 is principally ⨁-g-supplemented. 
(2) 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is principally semisimple. 

Then (1) ⟹ (2), and (2) ⟹ (1) in case 𝑀 is a refinable 𝑅-module with 𝑅𝑎𝑑𝑔(𝑀) ≪𝑔 𝑀.  

Proof. (1) ⟹ (2) It follows by Proposition 2.22. 
(2) ⟹ (1) Suppose that 𝑚 ∈ 𝑀. Since �̅�𝑅 = (𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) 𝑅𝑎𝑑𝑔(𝑀)⁄  is a cyclic submodule of 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ , so 

by (2), there exists a submodule 𝑈 of 𝑀 such that 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ = �̅�𝑅⨁ 𝑈 𝑅𝑎𝑑𝑔(𝑀)⁄ , where 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑈. Then 

𝑀 = 𝑚𝑅 + 𝑈 and (𝑚𝑅 + 𝑅𝑎𝑑𝑔(𝑀)) ∩ 𝑈 = (𝑚𝑅 ∩ 𝑈) + 𝑅𝑎𝑑𝑔(𝑀) = 𝑅𝑎𝑑𝑔(𝑀), by the modular law. Hence 𝑚𝑅 ∩ 𝑈 ⊆

𝑅𝑎𝑑𝑔(𝑀), and so 𝑚𝑅 ∩ 𝑈 is g-small in 𝑀. As 𝑀 = 𝑚𝑅 + 𝑈 is refinable, there is a direct summand 𝐴 of 𝑀 such that 

𝐴 ≤ 𝑈 and 𝑀 = 𝑚𝑅 + 𝐴. As 𝑚𝑅 ∩ 𝐴 ≤ 𝑚𝑅 ∩ 𝑈 and  𝐴 ≤⨁ 𝑀, so by [9, Lemma 2.12], 𝑚𝑅 ∩ 𝐴 is g-small in 𝐴. 
Therefore 𝑚𝑅 has a principally ⨁-g-supplement 𝐴 in 𝑀. This completes the proof.   ∎ 
 

Corollary 2.24. Let 𝑀 be a projective (or, distributive) 𝑅-module. Consider the following cases: 
(1) 𝑀 is principally ⨁-g-supplemented. 
(2) 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is principally semisimple. 

Then (1) ⟹ (2), and (2) ⟹ (1) if 𝑀 is a refinable finitely generated 𝑅-module. 

Proof. It follows by [9, Lemma 5.4] and Theorem 2.23.   ∎ 
 

Corollary 2.25."Let 𝑅 be a commutative ring and 𝑀 be a projective (or, distributive) 𝑅-module. Consider the 
following cases: 
(1) 𝑀 is principally ⨁-g-supplemented.  
(2) 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is principally semisimple. 

Then (1) ⟹ (2), and (2) ⟹ (1) if 𝑀 is a refinable and Noetherian 𝑅-module. 

Proof. Since a Noetherian module implies finitely generated, then the result is obtained by Corollary 2.24.   ∎ 
 

Corollary 2.26. Let 𝑅 be a ring. Consider the following cases:  
(1) 𝑅 is principally ⨁-g-supplemented. 
(2) 𝑅 𝑅𝑎𝑑𝑔(𝑅)⁄  is principally semisimple. 

Then (1) ⟹ (2), and (2) ⟹ (1) in case 𝑅 is a refinable 𝑅-module. 

Proof. Since 𝑅 = 〈1〉,"so the result is followed by Corollary 2.24.   ∎  
 

Theorem 2.27."Let 𝑀 be a principally ⨁-g-supplemented module. If 𝐾 is a submodule of 𝑀 such that 𝑀 𝐾⁄  is 
projective, then 𝐾 is principally ⨁-g-supplemented.   

Proof. Suppose that 𝐿 is a cyclic submodule of 𝐾. By hypothesis, there exists a direct summand 𝑁 of 𝑀 such that 
𝑀 = 𝐿 + 𝑁 and 𝐿 ∩ 𝑁 is g-small in 𝑁, so in 𝑀. Thus, 𝑀 = 𝐾 + 𝑁 and so 𝐾 ∩ 𝑁 is a direct summand of 𝑀, by [13, 
Lemma 2.3]. So 𝑀 = (𝐾 ∩ 𝑁)⨁𝐻 for some 𝐻 ≤ 𝑀. By the modular law, we have 𝐾 = 𝐾 ∩ 𝑀 = 𝐾 ∩ (𝐿 + 𝑁) = 𝐿 +
(𝐾 ∩ 𝑁), also 𝐿 ∩ (𝐾 ∩ 𝑁) = 𝐿 ∩ 𝑁 is g-small in 𝑀. Since 𝐿 ∩ (𝐾 ∩ 𝑁) ⊆ 𝐾 ∩ 𝑁 and 𝐾 ∩ 𝑁 ≤⨁ 𝑀 this implies 
𝐿 ∩ (𝐾 ∩ 𝑁) is g-small in 𝐾 ∩ 𝑁 by [9, Lemma 2.12]. Again by the modular law, we deduce that 𝐾 = 𝐾 ∩
((𝐾 ∩ 𝑁)⨁𝐻) = (𝐾 ∩ 𝑁)⨁(𝐾 ∩ 𝐻), this mean 𝐾 ∩ 𝑁 is a direct summand of 𝐾, and hence 𝐾 is principally ⨁-g-
supplemented.   ∎  
 

     Recall [15] that a module  𝑀 is said to have (𝐷3) property: if for any direct summands 𝐴 and 𝐵 of 𝑀 with 
𝑀 = 𝐴 + 𝐵 then 𝐴 ∩ 𝐵 is also a direct summand of 𝑀. If the intersection of any two direct summands of a module 𝑀 
is a direct summand of 𝑀, then 𝑀 is said to have  the summand  intersection property, and denoted by SIP [23]. 
 

Proposition 2.28."Let 𝑀 be a principally ⨁-g-supplemented module has (𝐷3), then every direct summand of 𝑀 is 
principally ⨁-g-supplemented.   

Proof. Assume 𝐿 is a direct summand of 𝑀 and 𝑎 ∈ 𝐿. Since 𝑀 a principally ⨁-g-supplemented module and 𝑎 ∈ 𝑀, 
𝑀 = 𝑎𝑅 + 𝐵 and 𝑎𝑅 ∩ 𝐵 ≪𝑔 𝐵 for some direct summand 𝐵 of 𝑀. By the modular law, we have that 𝐿 = 𝐿 ∩ 𝑀 = 𝐿 ∩

(𝑎𝑅 + 𝐵) = 𝑎𝑅 + (𝐿 ∩ 𝐵). We have 𝐿 and 𝐵 are direct summands of 𝑀 with 𝑀 = 𝐿 + 𝐵, that implies 𝐿 ∩ 𝐵 is so a 
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direct summand in 𝑀, because 𝑀  has (𝐷3). Since 𝑎𝑅 ∩ 𝐵 ≪𝑔 𝑀 and 𝐿 ∩ 𝐵 ≤⨁ 𝑀, we deduce  that 𝑎𝑅 ∩ (𝐿 ∩ 𝐵) =

𝑎𝑅 ∩ 𝐵 is a g-small submodule in 𝐿 ∩ 𝐵, by [9, Lemma 2.12].  Hence 𝐿 is principally ⨁-g-supplemented.   ∎                                                                

 

Corollary 2.29."Let 𝑀 be a module has the SIP. Then 𝑀 is principally ⨁-g-supplemented if and only if every 
direct summand of 𝑀 is principally ⨁-g-supplemented.  

Proof. ⟹) It is obvious that every module with the summand intersection property has (𝐷3). So the result is 
obtained by Proposition 2.28.  

⟸) Clear.    ∎  

     Recall that a module 𝑀 is called extending if any closed submodule is a direct summand [7]. A module 𝑀 said to 
be polyform if, all it is partial endomorphisms has closed kernel [26]. 
 

Corollary 2.30. Let 𝑀 be an extending polyform 𝑅-module. Then 𝑀 is principally ⨁-g-supplemented if and only if 
every direct summand of 𝑀 is principally ⨁-g-supplemented.  

Proof. "By [3, Lemma 11] , 𝑀 has the SIP. So by Corollary 2.29., the result is follow.   ∎        
   

Corollary 2.31. If 𝑀 is a quasi-projective module, then  
(1) 𝑀 is principally ⨁-g-supplemented if and only if every direct summand of 𝑀 is principally  ⨁-g-supplemented. 
(2) 𝑀 is principally ⨁-𝛿-supplemented if and only if every direct summand of 𝑀 is principally ⨁-𝛿-supplemented.   

Proof. By [15, Lemma 4.6] and [15, Proposition 4.38], 𝑀 has (𝐷3). Thus (1) and (2) are follows directly by 
Proposition 2.28, and [22, Proposition 3.6] , respectively.   ∎  

     Wisbauer in [24],"recall that. If for any two submodules 𝐴, 𝐵 of 𝑀 with 𝑀 = 𝐴 + 𝐵 there exists an 𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀) 
such that  𝐼𝑚𝑓 ≤ 𝐴  and  𝐼𝑚(1 − 𝑓) ≤ 𝐵. Then 𝑀 is called  𝜋-projective. A submodule 𝐴 of a module 𝑀 is weak 
distributive if 𝐴 = (𝐴 ∩ 𝑋) + (𝐴 ∩ 𝑌) for all submodules 𝑋, 𝑌 of 𝑀 with 𝑋 + 𝑌 = 𝑀. A module 𝑀 is said to be weakly 
distributive if every submodule of 𝑀 is a weak distributive submodule of 𝑀 [4].  
       
      Only in certain cases, the classes principally ⊕-g-supplemented modules and principally g-lifting modules are 
identical as the below theorem shows. 
 

Theorem 2.32. Let 𝑀 be a principally ⊕-g-supplemented 𝑅-module and satisfy any one of the following 
conditions:  
(1) 𝑀 is duo. 
(2) 𝑀 is weakly distributive. 
(3) 𝑀 is  𝜋-projective. 
(4) 𝑀 is refinable and have the SIP. 
Then 𝑀 is a principally g-lifting 𝑅-module.   

Proof. (1) Let 𝑚 ∈ 𝑀. Since 𝑀 is a principally ⊕-g-supplemented module, then 𝑀 = 𝑚𝑅 + 𝐿 and 𝑚𝑅 ∩ 𝐿 ≪𝑔 𝐿 for 

some a direct summand 𝐿 of 𝑀. So 𝑀 = 𝐿⨁𝐾 for some 𝐾 ≤ 𝑀. Since 𝑚𝑅 is fully invariant in 𝑀, 𝑚𝑅 = (𝑚𝑅 ∩
𝐿)⨁(𝑚𝑅 ∩ 𝐾), and hence 𝑀 = (𝑚𝑅 ∩ 𝐾)⨁𝐿 where 𝑚𝑅 ∩ 𝐾 ≤ 𝑚𝑅 and 𝑚𝑅 ∩ 𝐿 ≪𝑔 𝐿. Hence 𝑀 is a principally g-

lifting module. Proof (2) similar to proof (1).  

(3) Let 𝑚 ∈ 𝑀. Then 𝑀 = 𝑚𝑅 + 𝐿 and 𝑚𝑅 ∩ 𝐿 ≪𝑔 𝐿 for some a direct summand 𝐿 of 𝑀, as 𝑀 is principally ⨁-g-

supplemented. By 𝜋-projectivity for 𝑀, there exists 𝐾 ≤ 𝑚𝑅 such that 𝑀 = 𝐾⨁𝐿, by [24, 41.14(3)]. It follows 𝑀 is a 
principally g-lifting module.    

(4) As 𝑀 is a principally ⨁-g-supplemented module and 𝑚 ∈ 𝑀, then 𝑀 = 𝑚𝑅 + 𝐿 and 𝑚𝑅 ∩ 𝐿 ≪𝑔 𝐿 for some a 

direct summand 𝐿 of 𝑀. Since 𝑀 is a refinable module, then there exists a direct summand 𝐾 of 𝑀 such that 𝐾 ≤ 𝑚𝑅 
and 𝑀 = 𝐾 + 𝐿. Thus 𝐿 ∩ 𝐾 is a direct summand of 𝑀, since 𝑀 have the SIP. Let 𝑀 = (𝐿 ∩ 𝐾)⨁𝑁 for some 𝑁 ≤ 𝑀. 
By modular law, we deduce 𝐿 = (𝐿 ∩ 𝐾)⨁(𝐿 ∩ 𝑁), so 𝑀 = 𝐾 + 𝐿 = 𝐾⨁(𝐿 ∩ 𝑁). It is clear that 𝑚𝑅 ∩ (𝐿 ∩ 𝑁) ≪𝑔 𝐿 ∩

𝑁. Hence completes the proof.   ∎                                                                                                                                                                                 

 

Corollary 2.33.  If a module 𝑀 satisfy any one of the following cases:  
(1) 𝑀 is duo. 
(2) 𝑀 is weakly distributive. 
(3) 𝑀 is  𝜋-projective. 
Then 𝑀 is a principally ⨁-g-supplemented module if and only if every direct summand of 𝑀 is principally ⨁-g-
supplemented. 
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Proof. Suppose (1), to prove ⟹) By Theorem 2.32, 𝑀 is a principally g-lifting module. By [8, Proposition 3.4], any 
direct summand of 𝑀 is principally g-lifting, so it is principally ⨁-g-supplemented. 
⟸) Clear.      

(2) and (3) similar to proof (1).   ∎ 
 

     The proof of following two propositions are exactly analogous to proof [16, Proposition 2.13] and [16, 
Proposition 2.14], respectively.   
 

Proposition 2.34. Let 𝑀 =⊕𝑖∈𝐼 𝑀𝑖  be an infinite direct sum of principally ⨁-g-supplemented 𝑅-modules 
{𝑀𝑖| 𝑖 ∈ 𝐼}. If every cyclic submodule of 𝑀 is fully invariant, then 𝑀 is principally ⨁-g-supplemented.   
 

Proposition 2.35. Let 𝑀 = 𝑀1 ⊕ 𝑀2 be a direct sum of principally ⨁-g-supplemented modules 𝑀1, 𝑀2. If any 
cyclic submodule of 𝑀 is weak distributive, 𝑀 is principally ⨁-g-supplemented.   

Corollary 2.36. Let 𝑀 be an 𝑅-module, 
(1) if 𝑀 =⊕𝑖∈𝐼 𝑀𝑖  is a duo infinite direct sum of 𝑅-modules {𝑀𝑖| 𝑖 ∈ 𝐼}. Then 𝑀 is principally ⨁-g-supplemented if 
and only if 𝑀𝑖  is principally ⨁-g-supplemented, for 𝑖 ∈ 𝐼.   
(2) if 𝑀 = 𝑀1 ⊕ 𝑀2 is a weakly distributive direct sum of 𝑅-modules 𝑀1, 𝑀2. Then 𝑀 is principally  ⨁-g-
supplemented if and only if 𝑀1, 𝑀2 are principally ⨁-g-supplemented.  
Proof. (1) It follows directly by Corollary 2.33 and Proposition 2.34.  
(2) It follows directly by Corollary 2.33  and Proposition 2.35.   ∎  
 

Proposition 2.37."Let 𝑀 be a principally ⨁-g-supplemented 𝑅-module and 𝐿 a submodule of 𝑀. If 𝐿 ∩
𝑅𝑎𝑑𝑔(𝑀) = 0, then 𝐿 is principally semisimple.  

Proof. Let 𝑎 ∈ 𝐿. Since 𝑀 is a principally ⨁-g-supplemented 𝑅-module, then there exists  a direct summand 𝐴 of 𝑀 
such that 𝑀 = 𝑎𝑅 + 𝐴 and 𝑎𝑅 ∩ 𝐴 is g-small in 𝐴. Also 𝑎𝑅 ∩ 𝐴 is g-small in 𝑀, and hence 𝑎𝑅 ∩ 𝐴 ⊆ 𝑅𝑎𝑑𝑔(𝑀). By the 

modular law, we have that  𝐿 = 𝐿 ∩ (𝑎𝑅 + 𝐴) = 𝑎𝑅 + (𝐿 ∩ 𝐴). As 𝑎𝑅 ∩ (𝐿 ∩ 𝐴) ⊆ 𝐿 ∩ 𝑅𝑎𝑑𝑔(𝑀) = 0, we get 

𝐿 = 𝑎𝑅⨁(𝐿 ∩ 𝐴). Therefore 𝑎𝑅 ≤⨁ 𝐿 and 𝐿 is principally semisimple.   ∎ 
 

Proposition 2.38. If 𝑀 is a principally ⨁-g-supplemented module has a cyclic generalized radical. Then 
𝑀 = 𝑀1⨁𝑀2 where 𝑀1 is a module with 𝑅𝑎𝑑𝑔(𝑀1) is g-small in 𝑀1 and 𝑀2 is a module with 𝑅𝑎𝑑𝑔(𝑀2) = 𝑀2. 

Proof. Since 𝑀 is a principally ⨁-g-supplemented module and 𝑅𝑎𝑑𝑔(𝑀) is a cyclic submodule of 𝑀, then 𝑅𝑎𝑑𝑔(𝑀) 

has a g-supplement 𝑀1 in 𝑀, i.e. 𝑀 = 𝑀1 + 𝑅𝑎𝑑𝑔(𝑀) and 𝑀1 ∩ 𝑅𝑎𝑑𝑔(𝑀) ≪𝑔 𝑀1, where 𝑀 = 𝑀1⨁𝑀2 for a 

submodule 𝑀2 of 𝑀. As 𝑅𝑎𝑑𝑔(𝑀1) ≤ 𝑀1 ∩ 𝑅𝑎𝑑𝑔(𝑀) implies that 𝑅𝑎𝑑𝑔(𝑀1) ≪𝑔 𝑀1. By [19, Corollary 2.3], 

𝑀 = 𝑀1 + 𝑅𝑎𝑑𝑔(𝑀) = 𝑀1 + 𝑅𝑎𝑑𝑔(𝑀1⨁𝑀2) = 𝑀1 + 𝑅𝑎𝑑𝑔(𝑀1)⨁𝑅𝑎𝑑𝑔(𝑀2), so that 𝑀 = 𝑀1⨁𝑅𝑎𝑑𝑔(𝑀2). By modular 

law, 𝑀2 ∩ 𝑀 = 𝑀2 ∩ (𝑀1⨁𝑅𝑎𝑑𝑔(𝑀2)) = 𝑅𝑎𝑑𝑔(𝑀2)⨁(𝑀1 ∩ 𝑀2) that deduce 𝑅𝑎𝑑𝑔(𝑀2) = 𝑀2.   ∎  
 

Theorem 2.39. "Let 𝑀 be a principally ⨁-g-supplemented 𝑅-module. Then 𝑀 has a principally semisimple 
submodule 𝐴 such that 𝑆𝑜𝑐(𝐴) ⊴ 𝐴 and 𝑅𝑎𝑑𝑔(𝑀)⨁𝐴 is essential in 𝑀.  

Proof. Since 𝑅𝑎𝑑𝑔(𝑀) ≤ 𝑀, so by [10, Proposition  1.3], there exists a submodule 𝐴 of 𝑀 such that 𝑅𝑎𝑑𝑔(𝑀)⨁𝐴 is 

essential in 𝑀. As 𝐴 ∩ 𝑅𝑎𝑑𝑔(𝑀) = 0, 𝐴 is principally semisimple, by Proposition 2.37. Next we show that 𝑆𝑜𝑐(𝐴) ⊴

𝐴. For this we prove for any 𝑎 ∈ 𝐴, 𝑎𝑅 has a simple submodule. If 𝑎𝑅 is simple, the proof is finish. Otherwise, assume 
𝑎1 ∈ 𝑎𝑅 such that 𝑎1𝑅 ≠ 𝑎𝑅. Since 𝑀 is principally ⨁-g-supplemented, there exists a direct summand 𝐶 of 𝑀 such 
that 𝑀 = 𝑎1𝑅 + 𝐶 and 𝑎1𝑅 ∩ 𝐶 is g-small in 𝐶, so in 𝑀, and hence 𝑎1𝑅 ∩ 𝐶 ⊆ 𝑅𝑎𝑑𝑔(𝑀). Then 𝑎1𝑅 ∩ 𝐶 ⊆ 𝐴 ∩

𝑅𝑎𝑑𝑔(𝑀) = 0. Thus 𝑀 = 𝑎1𝑅⨁𝐶 and then 𝑎𝑅 = 𝑎1𝑅⨁(𝑎𝑅 ∩ 𝐶), by the modular law. Obviously, 𝑎𝑅 ∩ 𝐶 = 𝑎1̀𝑅 for 

some 𝑎1̀ ∈ 𝑎𝑅 and 𝑎𝑅 = 𝑎1𝑅⨁𝑎1̀𝑅. If 𝑎1𝑅 and 𝑎1̀𝑅 are simple, then we stop. Otherwise let 𝑎2 ∈ 𝑎1𝑅 such that 
𝑎2𝑅 ≠ 𝑎1𝑅. By similar way, there is an 𝑎2̀ ∈ 𝑎1𝑅 such that 𝑎1𝑅 = 𝑎2𝑅⨁𝑎2̀𝑅. Hence 𝑎𝑅 = 𝑎2𝑅⨁𝑎2̀𝑅⨁𝑎1̀𝑅. If 𝑎2𝑅 is 
simple, then we stop. Otherwise we continue in this way. Since 𝑎𝑅 is cyclic, this process must terminate at  a finite 
step, say 𝑛. At this step all direct summands of 𝑎𝑅 should be simple. Hence every cyclic submodule of 𝐴 contains a 
simple submodule. Therefore the socle of 𝐴 is essential in 𝐴.   ∎ 
 

Theorem 2.40. "Let 𝑀 be a principally ⨁-g-supplemented module. If 𝑀 satisfies ascending chain condition on 
direct summands. Then 𝑀 = 𝑀1⨁𝑀2, where 𝑀1 is a semisimple module and 𝑀2 is a module with 𝑅𝑎𝑑𝑔(𝑀2) ⊴ 𝑀2. 
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Proof. Since 𝑅𝑎𝑑𝑔(𝑀) ≤ 𝑀, so by [10, Proposition 1.3], there is a submodule 𝑀1 of 𝑀 with 𝑅𝑎𝑑𝑔(𝑀)⨁𝑀1 is 

essential in 𝑀. Since 𝑀1 ∩ 𝑅𝑎𝑑𝑔(𝑀) = 0, Proposition 2.37 implies 𝑀1 is principally semisimple. Let 𝑚1 ∈ 𝑀1. As 𝑀 is 

principally ⨁-g-supplemented, there is a direct summand 𝐴1 of 𝑀 such that 𝑀 = 𝑚1𝑅 + 𝐴1 and 𝑚1𝑅 ∩ 𝐴1 is g-small 
in 𝐴1 and 𝑀. Hence 𝑚1𝑅 ∩ 𝐴1 ⊆ 𝑀1 ∩ 𝑅𝑎𝑑𝑔(𝑀) = 0 and 𝑀 = 𝑚1𝑅⨁𝐴1. By the modular law, 𝑀1 = 𝑀1 ∩

(𝑚1𝑅⨁𝐴1) = 𝑚1𝑅⨁(𝑀1 ∩ 𝐴1). If 𝑀1 ∩ 𝐴1 ≠ 0, let (0 ≠)𝑚2 ∈ 𝑀1 ∩ 𝐴1. There is a direct summand 𝐴2 of 𝑀 such that 
𝑀 = 𝑚2𝑅 + 𝐴2 and 𝑚2𝑅 ∩ 𝐴2 is      g-small in 𝐴2 and 𝑀. Similarly, 𝑚2𝑅 ∩ 𝐴2 ⊆ 𝑀1 ∩ 𝑅𝑎𝑑𝑔(𝑀) = 0, and 𝑀 =

𝑚2𝑅⨁𝐴2. Since 𝑚2𝑅 ⊆ 𝐴1, 𝑀 = (𝑚1𝑅⨁𝐴1) ∩ (𝑚2𝑅⨁𝐴2) = 𝑚1𝑅⨁(𝐴1 ∩ (𝑚2𝑅⨁𝐴2)) = 𝑚1𝑅⨁𝑚2𝑅⨁(𝐴1 ∩ 𝐴2), by 

the modular law. Also, by the modular law, we have that 𝑀1 ∩ 𝐴1 = (𝑀1 ∩ 𝐴1) ∩ 𝑀 = (𝑀1 ∩ 𝐴1) ∩ (𝑚2𝑅⨁𝐴2) =
𝑚2𝑅⨁(𝑀1 ∩ 𝐴1 ∩ 𝐴2) and 𝑀1 = 𝑚1𝑅⨁(𝑀1 ∩ 𝐴1) = 𝑚1𝑅⨁𝑚2𝑅⨁(𝑀1 ∩ 𝐴1 ∩ 𝐴2). If 𝑀1 ∩ 𝐴1 ∩ 𝐴2 ≠ 0, let 
(0 ≠)𝑚3 ∈ 𝑀1 ∩ 𝐴1 ∩ 𝐴2. There exists a direct summand 𝐴3 of 𝑀 such that 𝑀 = 𝑚3𝑅 + 𝐴3 and 𝑚3𝑅 ∩ 𝐴3 is g-small 
in 𝐴3 and 𝑀.  
Similarly, 𝑚3𝑅 ∩ 𝐴3 ⊆ 𝑀1 ∩ 𝑅𝑎𝑑𝑔(𝑀) = 0 and 𝑀 = 𝑚3𝑅⨁𝐴3 = 𝑚1𝑅⨁𝑚2𝑅⨁𝑚3𝑅⨁(𝐴1 ∩ 𝐴2 ∩ 𝐴3). Also, by the 

modular law, we have that 𝑀1 ∩ 𝐴1 ∩ 𝐴2 = (𝑀1 ∩ 𝐴1 ∩ 𝐴2) ∩ 𝑀 = (𝑀1 ∩ 𝐴1 ∩ 𝐴2) ∩ (𝑚3𝑅⨁𝐴3) = 𝑚3𝑅⨁(𝑀1 ∩ 𝐴1 ∩
𝐴2 ∩ 𝐴3) and, 
𝑀1 = 𝑚1𝑅⨁𝑚2𝑅⨁(𝑀1 ∩ 𝐴1 ∩ 𝐴2)  = 𝑚1𝑅⨁𝑚2𝑅⨁𝑚3𝑅⨁(𝑀1 ∩ 𝐴1 ∩ 𝐴2 ∩ 𝐴3). By the hypothesis this procedure 
stops at a finite number of steps, say 𝑟. At this stage we may have 
𝑀 = 𝑚𝑟𝑅⨁𝐴𝑟 = 𝑚1𝑅⨁𝑚2𝑅⨁𝑚3𝑅⨁ … ⨁𝑚𝑟𝑅⨁(𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ … ∩ 𝐴𝑟)and 𝑀1 = 𝑚1𝑅⨁𝑚2𝑅⨁𝑚3𝑅⨁ … ⨁𝑚𝑟𝑅. 
Since 𝑀 has the ascending chain condition on direct summands, without loss of generality, we may assume that all 
cyclic submodules 𝑚1𝑅, 𝑚2𝑅, 𝑚3𝑅, … , 𝑚𝑟𝑅 to be simple. So by [12, Theorem 8.1.3], 𝑀1 is a semisimple module. Let 
𝑀2 = 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ … ∩ 𝐴𝑟 , then 𝑀 = 𝑀1⨁𝑀2. Since 𝑀1 is semisimple, 𝑅𝑎𝑑𝑔(𝑀1) = 𝑀1 and 𝑅𝑎𝑑𝑔(𝑀) =

𝑀1⨁𝑅𝑎𝑑𝑔(𝑀2). Consider the inclusion map 𝐼: 𝑀2 ⟶ 𝑀1⨁𝑀2. Since 𝑅𝑎𝑑𝑔(𝑀)⨁𝑀1 is essential in 𝑀 = 𝑀1⨁𝑀2, that 

means 𝑀1⨁𝑅𝑎𝑑𝑔(𝑀2) ⊴ 𝑀1⨁𝑀2, "it follows that I−1(M1⨁Radg(M2)) ⊴ M2, hence Radg(M2) is essential in 𝑀2.∎  
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