

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Principally ⨁**-g-supplemented modules**

Miaad Makki Obaida, Thaar Younis Ghawi^b

^aDiwaniyah Education Directorate, Iraqi Ministry of Education, Iraq .E-mail: edu-math.post17@qu.edu.iq

^bDepartment of Mathematics, College of Education, Univ. of Al-Qadisiyah, Iraq. E-mail[: thar.younis@qu.edu.iq](mailto:thar.younis@qu.edu.iq)

A R T I C L E IN F O

A B S T R A C T

Article history: Received: 02 /03/2022 Rrevised form: 24 /03/2022 Accepted : 13 /04/2022 Available online: 22 /04/2022 *Keywords:*

g-small submodules principally g-supplemented modules principally ⨁-g-supplemented modules principally g-lifting modules principally semisimple modules

In this paper, we defined and studied the idea of principally \oplus -gsupplemented modules as an advanced concept of \oplus -g-supplemented modules. Many properties, characterizations and examples of these modules are discussed. Also, a number of relations between these modules and other kinds of modules are examined in this work.

MSC. 16D10; 16D70; 16D99

https://doi.org/10.29304/jqcm.2022.14.1.906

1. Introduction

Throughout this work, R denotes an associative ring with identity, and all modules are unital right R -modules. Let M be a right R-module. The notions $L \subseteq M$, $L \leq M$ and $L \leq^{\oplus} M$ to signify that L is a subset, a submodule, and a direct summand of M. A submodule $K \le M$ is called to be essential in M, denoted as $K \le M$, if $K \cap L = 0$ implies $L = 0$ for all $L \leq M$ [10]. The socle of an R-module M is denoted by $Soc(M)$ and defined as the sum of all simple submodules of M. If there are no minimal submodules in M we put $Soc(M) = 0$ [24]. Dually for any submodule L of M, if $H + L = M$ implies $L = M$, then the proper submodule $H \leq M$ is called to be small in M and denoted as $H \ll M$. The intersection of all maximal submodules of M is called the Jacobson radical of M, and denoted by $Rad(M)$ or, as in alternative, the sum of all small submodules of M . If M does not contained any maximal submodules, then it is show as $Rad(M) = M$. Zhou [27] introduced δ -small submodules, extended small submodules as follows. A proper submodule N of a module M is called δ -small in M (denoted by $N \ll_{\delta} M$) if whenever $M = N + L$ with M/L singular, we have $M = L$. Recall [28] that a submodule $H \leq M$ is called g-small in M, denoted as $H \ll_q M$ if, whenever $M = H + E$ with $E \le M$, implies $E = M$, in reality, authors Zhou and Zhang put a g-small submodule in place of an *e*small submodule. When any proper (cyclic) submodule of M is g-small, then M is named as (principally) generalized hollow ([14], resp. [8]). It is clear that any small submodule is g-small. If T is essential and maximal submodule of M then T is said to be a generalized maximal submodule of M . The intersection of all generalized maximal submodules of M is called the generalized radical of M and denoted by $Rad_{a}(M)$ that also knows as the sum of all g-small submodules in M [28]. Recall [24] that K a supplement of N in M if $M = K + N$ and K $\cap N$ is small in K. A module M is called supplemented if every submodule of M has a supplement in M . A module M is said to be principally (supplemented) δ -supplemented if any cyclic submodule N of M, there exists a submodule X of M such that

[∗]Corresponding author: Miaad Makki Obaid

Email addresses: edu-math.post17@qu.edu.iq

 $M = N + X$ and $N \cap X$ is (small) δ -small in X ([1], resp. [11]). Moreover, a module M is said to be principally \bigoplus supplemented if for all cyclic submodule N of M, there exists a direct summand X of M such that $M = N + X$ and $N \cap X \ll X$ [21]. A module M is called principally \bigoplus - δ -supplemented if for all cyclic submodule N of M, there exists a direct summand H of M such that $M = H + X$ and $H \cap X$ is δ -small in X [22]. Also, A module M called principally semisimple if all it is cyclic submodules are direct summands of M . Also, the author called a principally semisimple module as a regular module [20]. Moreover, the module M called (principally) lifting if, for all (cyclic) submodule N of M, there exists a decomposition $M = A \oplus B$ such that $A \le N$ and $N \cap B \ll B$ ([6], resp. [24]). A module M is said to be g-lifting if it has a decomposition $M = S \oplus \hat{S}$ such that $S \leq A$ and $A \cap \hat{S} \ll_q M$, if for any submodule $A \leq M$ [18]. Ghawi in [8], recall that M is principally g-lifting module if, for each $m \in M$, \tilde{M} has a decomposition $M = A \oplus B$ such that $A \leq mR$ and $mR \cap B$ is g-small in B. Ghawi in [9], recall that a module M is \bigoplus -g-supplemented if for any submodule of M has a g-supplement that is a direct summand of M, i.e. for any $N \leq M$ there exists a direct summand H of M such that $N + H = M$ and $N \cap H \ll_{a} H$.

 In view of the definitions and concepts by the above it was natural to introduce a new definition of modules named principally \bigoplus -g-supplemented modules as generalization of \bigoplus -g-supplemented modules. A module M is called principally \bigoplus -g-supplemented if every cyclic submodule of M has a principally \bigoplus -g-supplement in M, that is, for each $m \in M$, there exists a submodule L of M such that $M = mR + L = \hat{L} \oplus L$ for some $\hat{L} \leq M$ with $mR \cap L$ is g-small in L. Our work consists of one section in which the notion of principally \bigoplus -g-supplemented modules was presented and studied. Some properties and examples, also the relations between this concept and other different kinds of modules are discussed.

2. Principally ⨁**-g-supplemented modules**

First, we will present the following lemma.

Lemma 2.1. Let M be a module, $m \in M$ and L a direct summand of M. Then the following are equivalent. (1) $M = mR + L$ and $mR \cap L$ is g-small in L.

(2) $M = mR + L$ and for a proper essential submodule K of L, $M \neq mR + K$.

Proof. (1) \Rightarrow (2) Let K be an essential submodule of L with $M = mR + K$. Then $L = L \cap (mR + K) = K +$ $(mR \cap L)$. As $mR \cap L$ is g-small in L, we deduce $L = K$.

 $(2) \Rightarrow (1)$ If $L = (mR \cap L) + K$ with $K \trianglelefteq L$, then $M = mR + L = mR + K$. By (2), $K = L$. Hence mR $\cap L$ is g-small in $L. ■$

Moreover, if M is a right R-module and $m \in M$. we say that a submodule (= direct summand) L of M called a principally \bigoplus -g-supplement of mR in M if, mR and L satisfy Lemma 2.1.

In following, we will present our next main definition.

Definition 2.2. A module M is called principally \oplus -g-supplemented if every cyclic submodule of M has a principally \bigoplus -g-supplement in M, that is, for each $m \in M$, there exists a submodule L of M such that $M = mR + L =$ $\hat{L} \oplus L$ for some $\hat{L} \leq M$ and $mR \cap L$ is g-small in L .

Remarks 2.3.

(1) By definitions, it is clear that every \bigoplus -g-supplemented and so every g-lifting module is principally \bigoplus -gsupplemented.

(2) For the same reason in [16, Remark 2.6], we deduce that any cyclic principally \oplus -g-supplemented module over a PID is \bigoplus -g-supplemented.

Proposition 2.4. Every principally \oplus -g-supplemented module is principally g-supplemented.

Proof. It is clear. ■

Proposition 2.5. Every principally g-lifting module is principally \bigoplus -g-supplemented.

Proof. Suppose *M* is a principally g-lifting module and $m \in M$. Then there is a decomposition $M = A \oplus B$ such that $A \leq mR$ and $mR \cap A \ll_q M$. Thus $M = mR + B$. As $mR \cap A \subseteq A$ and $A \leq^{\oplus} M$, [9, Lemma 2.12] implies $mR \cap A$ $A \ll_q A$. Hence *M* is principally ⊕-g-supplemented. ■

Examples 2.6. (1) Consider the ℤ-module ℚ. Every cyclic submodule of ℚ is a small ℤ-submodule, so is g-small. Therefore ℚ is a g-supplement (direct summand) for every cyclic submodule of itself. Thus, ℚ is a principally ⊕-gsupplemented Z-module. But, by [16, Examples 2.4(1)], the Z-module Q is neither ⊕-g-supplemented nor g-lifting.

(2) Suppose $M = \mathbb{Q} \oplus Z_2$ as Z-module. We prove M is a principally \oplus -g-supplemented module but neither supplemented nor lifting. It is routine to show that $M = (1, \bar{1})Z + (\mathbb{Q} + (\bar{0}))$. Suppose that $(q, \bar{u}) \in M$. If $\bar{u} = \bar{1}$ and $q \neq 1$. In this case we prove $M = (q, \bar{u})Z + (\mathbb{Q} + (\bar{0}))$.

Let $(x, \bar{y}) \in M$. We have two possibilities:

(i) $\bar{y} = \bar{1}$. Then $(x, \bar{y}) = (x, \bar{1}) = (q, \bar{1}) + (x - q, \bar{0}) \in (q, \bar{u})Z + (\mathbb{Q} + (\bar{0})).$

(ii) $\bar{y} = \bar{0}$. Then $(x, \bar{y}) = (x, \bar{0}) = (q, \bar{1})0 + (x, \bar{0}) \in (q, \bar{u})Z + (\mathbb{Q} + (\bar{0}))$.

Hence $M = (q, \bar{u})Z + (\mathbb{Q} + (\bar{0}))$. As $(q, \bar{u})Z \cap (\mathbb{Q} + (\bar{0}))$ is either zero or isomorphic to $Z \oplus (\bar{0})$ that is small (so is gsmall) in $\mathbb{Q} + (\overline{0})$, hence *M* is a principally \bigoplus -g-supplemented *Z*-module. If $M = \mathbb{Q} \bigoplus Z_2$ were a supplemenetd *Z*module, its direct summand Q would be a supplemented Z -module, that is a contradiction. So M is neither supplemented nor lifting.

(3) Since every principally ⨁-g-supplemented is principally g-supplemented, so we deduce the ℤ-module ℤ is not principally \oplus -g-supplemented, see [16, Example 2.5].

Proposition 2.7. Consider the following cases for a module *M*:

 (1) $Rad_{g}(M) = M;$

(2) M is a principally generalized hollow module;

(3) M is a principally g-lifting module;

(4) M is a principally \bigoplus -g-supplemented module.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. If *M* is non-cyclic indecomposable, then $(4) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) Let $mR \subseteq M$, where $m \in M$. By (1), $m \in Rad_{g}(M)$ and so $mR \ll_{g} M$. Hence M is a principally generalized hollow module.

 $(2) \Rightarrow (3)$ By [8, Lemma 3.20]

 $(3) \Rightarrow (4)$ By Proposition 2.5

(4) \Rightarrow (1) If $m \in M$, by hypothesis, there exists submodules D and H of M such that $M = mR + H = D \oplus H$, $mR \cap H \ll_g H$, so that $mR \cap H \subseteq Rad_g(H)$. As M is an indecomposable module, either $H = 0$ or $H = M$. If $H = 0$, we deduce that $M = mR$, a contradiction. Thus, $D = 0$ and $H = M$. Therefore, $mR \subseteq Rad_{g}(M)$, $m \in mR \subseteq Rad_{g}(M)$ and hence $Rad_{g}(M) = M$.

Proposition 2.8. Let R be a non-local commutative domain. Then every injective R -module is principally \bigoplus -gsupplemented.

Proof. Let *M* be an injective module over non-local commutative domain R, then *M* does not contain a maximal submodule, i.e. $Rad(M) = M$ by [2, Lemma 4.4]. Because that $Rad(M) \subseteq Rad_{g}(M)$, we have $Rad_{g}(M) = M$. Thus, Proposition 2.7 implies the result. ∎

The reverse of Proposition 2.8 may not be true, generally.

Example 2.9. For any prime number $p \in \mathbb{Z}_+$, the \mathbb{Z} -module \mathbb{Z}_p is principally \bigoplus -g-supplemented, because it is simple. While \mathbb{Z}_p as \mathbb{Z} -module does not injective.

Corollary 2.10. Let R be a Dedekind domain. Then every injective R-module is principally \oplus -g-supplemented. *Proof.* By Proposition 2.8. ■

Theorem 2.11. Let *M* be an *R*-module, consider the following cases: (1) M is principally semisimple. (2) M is principally g-lifting. (3) M is principally \bigoplus -g-supplemented. (4) M is principally g-supplemented. Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$. If $Rad_g(M) = 0$, then $(4) \Rightarrow (1)$. *Proof.* (1) \Rightarrow (2) Obvious. $(2) \Rightarrow (3)$ By Proposition 2.5. $(3) \Rightarrow (4)$ By Proposition 2.4.

 $(4) \Rightarrow (1)$ Let $m \in M$. As M is a principally g-supplemented module, then there is a submodule A of M such that $M = mR + A$ and $mR \cap A$ is g-small in A. Since $mR \cap A$ is g-small in M, then $mR \cap A \subseteq Rad_{g}(M) = 0$, that is $mR \cap A = 0$, so $mR \leq^{\oplus} M$. Therefore, (1) holds. ■

Recall that a module M is called an *e*-noncosingular module. If $Z_e(M) = M$. Where $Z_e(M) = \bigcap \{ \text{ker } g | g \in$ Hom(M, N), N is *e*-small module} [19].

However, we have the following consequence.

Corollary 2.12. Let R be an arbitrary ring such that every right R-module is e-noncosingular. Then the following are equivalent for an R -module M .

(1) M is principally semisimple.

(2) M is principally g-lifting.

(3) M is principally \bigoplus -g-supplemented.

(4) M is principally g-supplemented.

Proof. Since any right R-module is e-noncosingular, we have $Rad_{g}(M) = 0$ by [19, Proposition 3.7]. This completes the proof by Theorem 2.11. ∎

Remarks 2.13. (1) The condition $Rad_{g}(M_{R}) = 0$ is necessary in Theorem 2.11. By Examples 2.6(1), $\mathbb Q$ is a principally ⨁-g-supplemented ℤ-module. But, we know that ℚ as ℤ-module is not principally semisimple, in fact $Rad_{g}(\mathbb{Q}_{\mathbb{Z}})\neq 0.$

(2) It is well known that the Z-module Z is not principally semisimple, and it is easy to see that $Rad_{g}(\mathbb{Z}_\mathbb{Z})=0$, so by Theorem 2.11 this another reason to make \mathbb{Z} -module \mathbb{Z} is neither principally g-supplemented nor principally \bigoplus -gsupplemented.

(3) Because the example in (2) it can be said that every submodule of a principally \bigoplus -g-suppl emented module may not be principally \oplus -g-supplemented; that is $\mathbb Z$ is not principally \oplus -g-suppl emented in a principally \oplus -gsupplemented ℤ-module ℚ.

Proposition 2.14. Let M be a principally \oplus -g-supplemented R-module and L a submodule of M. If any cyclic submodule of M has a \bigoplus -g-supplement contains L , then M/L is principally \bigoplus -g-supplemented. **Proof.** Let $m \in M$ and consider the submodule $\overline{m}R$ of M/L , then $\overline{m}R = (mR + L)/L$. By hypothesis, there exists a direct summand N of M such that $L \le N$, $M = mR + N$ and $mR \cap N \ll_q N$. Thus $M = N \bigoplus K$ for some submodule K of M. Consider a natural map $\pi: M \to M/L$. It is easy to prove that $M/L = N/L \oplus (K + L)/L = N/L + \overline{m}R$. Also, by the modular law and [28, Proposition 2.5], we deduce (N/L) \cap $\overline{m}R = N/L \cap (mR + L)/L = (N \cap (mR + L))/L = (L +$ $(mR \cap N)/L = \pi(mR \cap N)$ is g-small in $\pi(N) = N/L$. This mean that N/L is a g-supplement of $\overline{m}R$ that is a direct summand of M/L , and hence M/L is principally \bigoplus -g-supplemented. ■

Wisbauer [24] recall that. Let M be an R-module. A submodule N of M is said to be fully invariant if $f(N) \subseteq N$ for all nonzero $f \in End(M)$. If all submodules of M are fully invariant, then M is called a duo module. And also If all direct summand submodules of M are fully invariant, then M is called a weak duo module [17].

Proposition 2.15. Let M be a principally \bigoplus -g-supplemented R-module. The factor M/L is principally \bigoplus -gsupplemented for every fully invariant submodule L of M .

Proof. Let *L* be a fully invariant submodule of *M* and $\overline{m}R = (mR + L)/L$ be a cyclic submodule of *M*/*L* for some $m \in M$. Since M is principally \bigoplus -g-supplemented, then there exists a direct summand N of M such that $M = mR + N$ and $mR \cap N \ll_g N$. Thus $M = N \oplus K$ for some $K \leq M$. By [22, Lemma 3.3], we have that $M/L = ((N + L)/L) \oplus ((K + L)/L)$. However, we get $M/L = ((N + L)/L) + \overline{m}R$. It is clear that $((N + L)/L) \cap \overline{m}R$ is g-small in $(N + L)/L$. This completes the proof. ■

The next consequence is clear from Proposition 2.15.

Corollary 2.16. Every factor module of a principally \oplus -g-supplemented duo R-module is principally \oplus -gsupplemented.

Corollary 2.17. If *M* is a principally \bigoplus -g-supplemented *R*-module, then so is $M/Rad_a(M)$.

Proof. By [28, Corollary 2.11] $Rad_{g}(M)$ is fully invariant, so that the result is obtained by Proposition 2.15. ■

Corollary 2.18. Let R be any ring such that every right R-module is e-noncosingular, and let *M* be a module. Then M is principally \bigoplus -g-supplemented if and only if $M/Rad_\alpha(M)$ principally \bigoplus -g-supplemented.

Proof. By [19, Proposition 3.7], we have $Rad_{g}(M) = 0$, so that $M/Rad_{g}(M) \cong M$. This completes the proof. ■

Corollary 2.19. Let *M* be a weak-duo and principally ⊕-g-supplemented module. Then every direct summand of M is principally \bigoplus -g-supplemented.

Proof. Let N be a direct summand of a principally \bigoplus -g-supplemented module M, then $M = N \bigoplus K$ for some $K \leq M$. Since M is weak-duo, then K is a fully invariant submodule. So, $N \cong M/K$ is principally \bigoplus -g-supplemented by Proposition 2.15. ∎

In coming example shows that for a module M and a submodule L, if M/L is a principally \bigoplus -g-supplemented module, then M need not be principally \bigoplus -g-supplemented.

 $Example$ 2.20. Consider the Z-module $\Z/p^n\Z$, where p is a prime number and $n\in\Z_+$. By [8] $\Z/p^n\Z$ is principally g-lifting and so principally \bigoplus -g-supplemented, but $\mathbb Z$ is not principally \bigoplus -g-supplemented.

In following, we investigate a condition which ensure that a homomorphic image of a principally \bigoplus -gsupplemented module is principally \bigoplus -g-supplemented.

Camillo [5], recall that a module M is called distributive if $X \cap (Y + Z) = (X \cap Y) + (X \cap Z)$ or $X + (Y \cap Z) = (Y \cap Z)$ $(X + Y) \cap (X + Z)$ for all submodules Y, Z of M. A module M is said to be distributive if all submodules of M are distributive.

Theorem 2.21. Let *M* be a distributive and principally \oplus -g-supplemented *R*-module. Then the homomorphic image of M is principally \bigoplus -g-supplemented.

Proof. Let K be a submodule of M and $(mR + K)/K$ a cyclic submodule of M/K , where $m \in M$. Since M is principally \bigoplus -g-supplemented, then there exists a direct summand A of M such that $M = A \bigoplus B = mR + A$ for a submodule B of M and $mR \cap A \ll_a A$. So, $M/K = (mR + K)/K + (A + K)/K$ and as M is a distributive module, $(mR + K) \cap (A + K) =$ $(mR \cap A) + K$. Therefore $(mR + K)/K \cap (A + K)/K = ((mR \cap A) + K)/K$ is g-small in $(A + K)/K$ as a homomorphic image of g-small $mR \cap A$ in A under the natural map $\pi: A \to (A+K)/K$ by [28, Proposition 2.5]. Again by distributivity of M and $A \cap B = 0$, we get $M/K = ((A + K)/K) \oplus ((B + K)/K)$. So $(A + K)/K$ is a direct summand of $M/K.$ ■

Kasch [12], recall that an R -module P is called projective if and only if for any two R -module A, B and for any epimorphism $f: A \to B$ and for any homomorphism $g: P \to B$, there is a homomorphism $h: P \to A$ such that $f \circ h =$.

Proposition 2.22. Let *M* be a principally \oplus -g-supplemented *R*-module. Then *M*/*Rad_a*(*M*) is a principally semisimple R -module if M has one of the following conditions.

(1) M is a distributive R -module.

(2) M is a projective R -module.

Proof. (1) Suppose that $\overline{m}R$ is a cyclic submodule of $M/Rad_g(M)$ where $m \in M$, then $\bar{m}R = (mR + Rad_{g}(M))/Rad_{g}(M)$. By hypothesis, there exists a direct summand A of M such that $M = mR + A$ and $mR \cap A$ is g-small in A. Also $mR \cap A$ is g-small in M, and hence $mR \cap A \subseteq Rad_{g}(M)$. Hence, $(mR + Rad_{g}(M))/Rad_{g}(M) + (A + Rad_{g}(M))/Rad_{g}(M) = M/Rad_{g}(M)$. On the other hand, by distributivity of M, we have that $(mR + Rad_{g}(M)) \cap (A + Rad_{g}(M)) = (mR \cap A) + Rad_{g}(M) = Rad_{g}(M)$. It follows that $(mR + Rad_{g}(M))/Rad_{g}(M) \cap (A + Rad_{g}(M))/Rad_{g}(M) = Rad_{g}$ Hence, $M/Rad_g(M) = (mR + Rad_g(M))/Rad_g(M) \oplus (A + Rad_g(M))/Rad_g(M),$ so that

 $M/Rad_g(M) = \overline{m}R \oplus (A+Rad_g(M))/Rad_g(M).$

(2) Let $\bar{m}R$ be any cyclic submodule of $M/Rad_g(M)$, $m \in M$, then $\bar{m}R = (mR + Rad_g(M))/Rad_g(M)$. By hypothesis, there exists submodules X, A of M such that $M = X \oplus A = mR + A$ and $mR \cap A$ is g-small in A. Also $mR \cap A$ is gsmall in M, and hence $mR \cap A \subseteq Rad_{g}(M)$. By projectivity of M and [15, Lemma 4.47], there exists a direct summand N of M such that $M = N \oplus A$ where $N \leq mR$. Therefore $(mR + Rad_{g}(M))/Rad_{g}(M) = (N + Rad_{g}(M))/Rad_{g}(M)$ and $Rad_{g}(M) = Rad_{g}(N) \oplus Rad_{g}(A)$ implies that $M/Rad_g(M) = \bar{m}R \oplus (A+Rad_g(M))/Rad_g(M)$. So, any principal submodule of $M/Rad_g(M)$ is a direct summand in either case. Therefore $M/Rad_a(M)$ is principally semisimple. ■

Recall that a module M is called refinable if for all submodules U and V of M with $M = U + V$, there is a direct summand \hat{U} of M such that $\hat{U} \subseteq U$ and $M = \hat{U} + V$ [25].

Theorem 2.23. Let *M* be a projective (or, distributive) *R*-module. Consider the following cases:

(1) *M* is principally \bigoplus -g-supplemented.

(2) $M/Rad_a(M)$ is principally semisimple.

Then (1) \Rightarrow (2), and (2) \Rightarrow (1) in case *M* is a refinable *R*-module with $Rad_{g}(M) \ll_{g} M$.

Proof. (1) \Rightarrow (2) It follows by Proposition 2.22.

(2) \Rightarrow (1) Suppose that $m \in M$. Since $\overline{m}R = (mR + Rad_g(M))/Rad_g(M)$ is a cyclic submodule of $M/Rad_g(M)$, so by (2), there exists a submodule U of M such that $M/Rad_{g}(M) = \bar{m}R \oplus U/Rad_{g}(M)$, where $Rad_{g}(M) \subseteq U.$ Then $M = mR + U$ and $(mR + Rad_{g}(M)) \cap U = (mR \cap U) + Rad_{g}(M) = Rad_{g}(M)$, by the modular law. Hence $mR \cap U \subseteq$ Ra $d_g(M)$, and so mR \cap U is g-small in M. As $M=mR+U$ is refinable, there is a direct summand A of M such that $A \leq U$ and $M = mR + A$. As $mR \cap A \leq mR \cap U$ and $A \leq^{\oplus} M$, so by [9, Lemma 2.12], $mR \cap A$ is g-small in A. Therefore mR has a principally \bigoplus -g-supplement A in M. This completes the proof. ■

Corollary 2.24. Let *M* be a projective (or, distributive) *R*-module. Consider the following cases:

(1) *M* is principally \bigoplus -g-supplemented.

(2) $M/Rad_a(M)$ is principally semisimple.

Then (1) \Rightarrow (2), and (2) \Rightarrow (1) if *M* is a refinable finitely generated *R*-module.

Proof. It follows by [9, Lemma 5.4] and Theorem 2.23. ■

Corollary 2.25. Let R be a commutative ring and M be a projective (or, distributive) R-module. Consider the following cases:

(1) *M* is principally \bigoplus -g-supplemented.

(2) $M/Rad_a(M)$ is principally semisimple.

Then (1) \Rightarrow (2), and (2) \Rightarrow (1) if *M* is a refinable and Noetherian *R*-module.

Proof. Since a Noetherian module implies finitely generated, then the result is obtained by Corollary 2.24. ■

Corollary 2.26. Let R be a ring. Consider the following cases:

(1) R is principally \bigoplus -g-supplemented.

(2) $R/Rad_{q}(R)$ is principally semisimple.

Then (1) \Rightarrow (2), and (2) \Rightarrow (1) in case R is a refinable R-module.

Proof. Since $R = \langle 1 \rangle$, so the result is followed by Corollary 2.24. ■

Theorem 2.27. Let *M* be a principally \bigoplus -g-supplemented module. If *K* is a submodule of *M* such that *M*/*K* is projective, then K is principally \bigoplus -g-supplemented.

Proof. Suppose that L is a cyclic submodule of K. By hypothesis, there exists a direct summand N of M such that $M = L + N$ and $L \cap N$ is g-small in N, so in M. Thus, $M = K + N$ and so $K \cap N$ is a direct summand of M, by [13, Lemma 2.31. So $M = (K \cap N) \oplus H$ for some $H \leq M$. By the modular law, we have $K = K \cap M = K \cap (L + N) = L +$ $(K \cap N)$, also $L \cap (K \cap N) = L \cap N$ is g-small in M. Since $L \cap (K \cap N) \subseteq K \cap N$ and $K \cap N \leq^{\oplus} M$ this implies $L \cap (K \cap N)$ is g-small in $K \cap N$ by [9, Lemma 2.12]. Again by the modular law, we deduce that $K = K \cap N$ $((K \cap N) \oplus H) = (K \cap N) \oplus (K \cap H)$, this mean $K \cap N$ is a direct summand of K, and hence K is principally \oplus -gsupplemented. ∎

Recall [15] that a module M is said to have (D_3) property: if for any direct summands A and B of M with $M = A + B$ then $A \cap B$ is also a direct summand of M. If the intersection of any two direct summands of a module M is a direct summand of M , then M is said to have the summand intersection property, and denoted by SIP [23].

Proposition 2.28. Let M be a principally \oplus -g-supplemented module has (D_3) , then every direct summand of M is principally \oplus -g-supplemented.

Proof. Assume *L* is a direct summand of *M* and $a \in L$. Since *M* a principally \bigoplus -g-supplemented module and $a \in M$, $M = aR + B$ and $aR \cap B \ll_a B$ for some direct summand B of M. By the modular law, we have that $L = L \cap M = L \cap B$ $(aR + B) = aR + (L \cap B)$. We have L and B are direct summands of M with $M = L + B$, that implies $L \cap B$ is so a direct summand in M, because M has (D_3) . Since $aR \cap B \ll_a M$ and $L \cap B \leq^{\oplus} M$, we deduce that $aR \cap (L \cap B) =$ $aR \cap B$ is a g-small submodule in $L \cap B$, by [9, Lemma 2.12]. Hence L is principally ⊕-g-supplemented. ■

Corollary 2.29. Let M be a module has the SIP. Then M is principally \bigoplus -g-supplemented if and only if every direct summand of M is principally \bigoplus -g-supplemented.

Proof. \Rightarrow) It is obvious that every module with the summand intersection property has (D_3) . So the result is obtained by Proposition 2.28.

⟸) Clear. ∎

Recall that a module M is called extending if any closed submodule is a direct summand [7]. A module M said to be polyform if, all it is partial endomorphisms has closed kernel [26].

Corollary 2.30. Let M be an extending polyform R-module. Then M is principally \oplus -g-supplemented if and only if every direct summand of M is principally \bigoplus -g-supplemented.

Proof. By [3, Lemma 11], *M* has the SIP. So by Corollary 2.29., the result is follow. ■

Corollary 2.31. If *M* is a quasi-projective module, then

(1) M is principally \bigoplus -g-supplemented if and only if every direct summand of M is principally \bigoplus -g-supplemented. (2) M is principally \bigoplus - δ -supplemented if and only if every direct summand of M is principally \bigoplus - δ -supplemented. **Proof.** By [15, Lemma 4.6] and [15, Proposition 4.38], *M* has (D_3) . Thus (1) and (2) are follows directly by Proposition 2.28, and [22, Proposition 3.6] , respectively. ∎

Wisbauer in [24], recall that. If for any two submodules A, B of M with $M = A + B$ there exists an $f \in End_R(M)$ such that $Im f \leq A$ and $Im(1 - f) \leq B$. Then M is called π -projective. A submodule A of a module M is weak distributive if $A = (A \cap X) + (A \cap Y)$ for all submodules X, Y of M with $X + Y = M$. A module M is said to be weakly distributive if every submodule of M is a weak distributive submodule of M [4].

 Only in certain cases, the classes principally ⊕-g-supplemented modules and principally g-lifting modules are identical as the below theorem shows.

Theorem 2.32. Let M be a principally \bigoplus -g-supplemented R-module and satisfy any one of the following conditions:

 (1) *M* is duo.

(2) M is weakly distributive.

(3) *M* is π -projective.

(4) M is refinable and have the SIP.

Then M is a principally g-lifting R -module.

Proof. (1) Let $m \in M$. Since M is a principally \bigoplus -g-supplemented module, then $M = mR + L$ and $mR \cap L \ll_g L$ for some a direct summand L of M. So $M = L \oplus K$ for some $K \le M$. Since mR is fully invariant in M, $mR = \rho mR$ $L)\bigoplus(mR\cap K)$, and hence $M = (mR\cap K)\bigoplus L$ where $mR\cap K \leq mR$ and $mR\cap L \ll a$, L. Hence M is a principally glifting module. Proof (2) similar to proof (1).

(3) Let $m \in M$. Then $M = mR + L$ and $mR \cap L \ll_g L$ for some a direct summand L of M, as M is principally \bigoplus -gsupplemented. By π -projectivity for M, there exists $K \leq mR$ such that $M = K \oplus L$, by [24, 41.14(3)]. It follows M is a principally g-lifting module.

(4) As *M* is a principally \bigoplus -g-supplemented module and $m \in M$, then $M = mR + L$ and $mR \cap L \ll_g L$ for some a direct summand L of M. Since M is a refinable module, then there exists a direct summand K of M such that $K \leq mR$ and $M = K + L$. Thus $L \cap K$ is a direct summand of M, since M have the SIP. Let $M = (L \cap K) \oplus N$ for some $N \leq M$. By modular law, we deduce $L = (L \cap K) \oplus (L \cap N)$, so $M = K + L = K \oplus (L \cap N)$. It is clear that $mR \cap (L \cap N) \ll_{a} L \cap N$. Hence completes the proof. ∎

Corollary 2.33. If a module M satisfy any one of the following cases:

 (1) *M* is duo.

(2) M is weakly distributive.

(3) *M* is π -projective.

Then M is a principally \bigoplus -g-supplemented module if and only if every direct summand of M is principally \bigoplus -gsupplemented.

Proof. Suppose (1), to prove \Rightarrow) By Theorem 2.32, M is a principally g-lifting module. By [8, Proposition 3.4], any direct summand of M is principally g-lifting, so it is principally \bigoplus -g-supplemented. \Leftarrow) Clear.

(2) and (3) similar to proof (1). \blacksquare

 The proof of following two propositions are exactly analogous to proof [16, Proposition 2.13] and [16, Proposition 2.14], respectively.

Proposition 2.34. Let $M = \bigoplus_{i \in I} M_i$ be an infinite direct sum of principally \bigoplus -g-supplemented R-modules $\{M_i | i \in I\}$. If every cyclic submodule of M is fully invariant, then M is principally \bigoplus -g-supplemented.

Proposition 2.35. Let $M = M_1 \oplus M_2$ be a direct sum of principally \oplus -g-supplemented modules M_1 , M_2 . If any cyclic submodule of M is weak distributive, M is principally \bigoplus -g-supplemented.

Corollary 2.36. Let M be an R -module,

(1) if $M = \bigoplus_{i \in I} M_i$ is a duo infinite direct sum of R-modules { $M_i | i \in I$ }. Then M is principally \bigoplus -g-supplemented if and only if M_i is principally \bigoplus -g-supplemented, for $i \in I$.

(2) if $M = M_1 \oplus M_2$ is a weakly distributive direct sum of R-modules M_1 , M_2 . Then M is principally \oplus -gsupplemented if and only if M_1 , M_2 are principally \oplus -g-supplemented.

Proof. (1) It follows directly by Corollary 2.33 and Proposition 2.34.

(2) It follows directly by Corollary 2.33 and Proposition 2.35. ∎

Proposition 2.37. Let *M* be a principally \oplus -g-supplemented *R*-module and *L* a submodule of *M*. If *L* \cap $Rad_{g}(M) = 0$, then L is principally semisimple.

Proof. Let $a \in L$. Since M is a principally \bigoplus -g-supplemented R-module, then there exists a direct summand A of M such that $M = aR + A$ and $aR \cap A$ is g-small in A. Also $aR \cap A$ is g-small in M, and hence $aR \cap A \subseteq Rad_g(M)$. By the modular law, we have that $L = L \cap (aR + A) = aR + (L \cap A)$. As $aR \cap (L \cap A) \subseteq L \cap Rad_{g}(M) = 0$, we get $L = aR\bigoplus (L \cap A)$. Therefore $aR \leq^{\oplus} L$ and L is principally semisimple. ■

Proposition 2.38. If M is a principally \oplus -g-supplemented module has a cyclic generalized radical. Then $M = M_1 \oplus M_2$ where M_1 is a module with $Rad_{g}(M_1)$ is g-small in M_1 and M_2 is a module with $Rad_{g}(M_2) = M_2$.

Proof. Since *M* is a principally \oplus -g-supplemented module and Rad_a(*M*) is a cyclic submodule of *M*, then Rad_a(*M*) has a g-supplement M_1 in M , i.e. $M = M_1 + Rad_g(M)$ and $M_1 \cap Rad_g(M) \ll_g M_1$, where $M = M_1 \oplus M_2$ for a submodule M_2 of M. As $Rad_g(M_1) \leq M_1 \cap Rad_g(M)$ implies that $Rad_g(M_1) \ll_g M_1$. By [19, Corollary 2.3], $M = M_1 + Rad_g(M) = M_1 + Rad_g(M_1 \oplus M_2) = M_1 + Rad_g(M_1) \oplus Rad_g(M_2)$, so that $M = M_1 \oplus Rad_g(M_2)$. By modular law, $M_2 \cap M = M_2 \cap (M_1 \oplus Rad_g(M_2)) = Rad_g(M_2) \oplus (M_1 \cap M_2)$ that deduce $Rad_g(M_2) = M_2$.

Theorem 2.39. Let *M* be a principally \bigoplus -g-supplemented *R*-module. Then *M* has a principally semisimple submodule A such that $Soc(A) ⊆ A$ and $Rad_{g}(M) ⊕ A$ is essential in M.

Proof. Since $Rad_g(M) \leq M$, so by [10, Proposition 1.3], there exists a submodule A of M such that $Rad_g(M)\oplus A$ is essential in M. As A \cap Ra $d_g(M)=0$, A is principally semisimple, by Proposition 2.37. Next we show that Soc(A) \trianglelefteq A. For this we prove for any $a \in A$, aR has a simple submodule. If aR is simple, the proof is finish. Otherwise, assume $a_1 \in aR$ such that $a_1 R \neq aR$. Since M is principally \bigoplus -g-supplemented, there exists a direct summand C of M such that $M = a_1 R + C$ and $a_1 R \cap C$ is g-small in C, so in M, and hence $a_1 R \cap C \subseteq Rad_g(M)$. Then $a_1 R \cap C \subseteq A \cap C$ $Rad_{g}(M)=0$. Thus $M=a_{1}R\oplus C$ and then $aR=a_{1}R\oplus (aR\cap C)$, by the modular law. Obviously, $aR\cap C=a_{1}R$ for some $\dot{a_1} \in aR$ and $aR = a_1R\oplus\dot{a_1}R$. If a_1R and $\dot{a_1}R$ are simple, then we stop. Otherwise let $a_2 \in a_1R$ such that $a_2R \neq a_1R$. By similar way, there is an $a_2 \in a_1R$ such that $a_1R = a_2R\oplus a_2R$. Hence $aR = a_2R\oplus a_2R\oplus a_1R$. If a_2R is simple, then we stop. Otherwise we continue in this way. Since aR is cyclic, this process must terminate at a finite step, say n. At this step all direct summands of aR should be simple. Hence every cyclic submodule of A contains a simple submodule. Therefore the socle of A is essential in A . \blacksquare

Theorem 2.40. Let *M* be a principally \oplus -g-supplemented module. If *M* satisfies ascending chain condition on direct summands. Then $M = M_1 \oplus M_2$, where M_1 is a semisimple module and M_2 is a module with $Rad_{g}(M_2) \trianglelefteq M_2$.

Proof. Since $Rad_{g}(M) \leq M$, so by [10, Proposition 1.3], there is a submodule M_1 of M with $Rad_{g}(M)\oplus M_1$ is essential in M. Since $M_1 \cap Rad_g(M)=0$, Proposition 2.37 implies M_1 is principally semisimple. Let $m_1\in M_1$. As M is principally \oplus -g-supplemented, there is a direct summand A_1 of M such that $M = m_1 R + A_1$ and $m_1 R \cap A_1$ is g-small in A_1 and M. Hence $m_1R \cap A_1 \subseteq M_1 \cap Rad_g(M)=0$ and $M=m_1R \oplus A_1$. By the modular law, $M_1 = M_1 \cap$ $(m_1R\oplus A_1)=m_1R\oplus (M_1\cap A_1)$. If $M_1\cap A_1\neq 0$, let $(0\neq)m_2\in M_1\cap A_1$. There is a direct summand A_2 of M such that $M = m₂R + A₂$ and $m₂R \cap A₂$ is is g-small in A_2 and M. Similarly, $m_2 R \cap A_2 \subseteq M_1 \cap Rad_g(M)=0$, and $M=$ $m_2R\oplus A_2$. Since $m_2R \subseteq A_1$, $M = (m_1R\oplus A_1) \cap (m_2R\oplus A_2) = m_1R\oplus (A_1 \cap (m_2R\oplus A_2)) = m_1R\oplus m_2R\oplus (A_1 \cap A_2)$, by the modular law. Also, by the modular law, we have that $M_1 \cap A_1 = (M_1 \cap A_1) \cap M = (M_1 \cap A_1) \cap (m_2R \oplus A_2) =$ $m_2R\oplus (M_1 \cap A_1 \cap A_2)$ and $M_1 = m_1R\oplus (M_1 \cap A_1) = m_1R\oplus m_2R\oplus (M_1 \cap A_1 \cap A_2)$. If $M_1 \cap A_1 \cap A_2 \neq 0$, let $(0 \neq)m_3 \in M_1 \cap A_1 \cap A_2$. There exists a direct summand A_3 of M such that $M = m_3R + A_3$ and $m_3R \cap A_3$ is g-small in A_3 and M.

Similarly, $m_3 R \cap A_3 \subseteq M_1 \cap Rad_g(M) = 0$ and $M = m_3 R \oplus A_3 = m_1 R \oplus m_2 R \oplus m_3 R \oplus (A_1 \cap A_2 \cap A_3)$. Also, by the modular law, we have that $M_1 \cap A_1 \cap A_2 = (M_1 \cap A_1 \cap A_2) \cap M = (M_1 \cap A_1 \cap A_2) \cap (m_3R\oplus A_3) = m_3R\oplus (M_1 \cap A_1 \cap A_2)$ $A_2 \cap A_3$) and,

 $M_1 = m_1 R \oplus m_2 R \oplus (M_1 \cap A_1 \cap A_2) = m_1 R \oplus m_2 R \oplus m_3 R \oplus (M_1 \cap A_1 \cap A_2 \cap A_3)$. By the hypothesis this procedure stops at a finite number of steps, say r . At this stage we may have

 $M = m_r R \oplus A_r = m_1 R \oplus m_2 R \oplus m_3 R \oplus ... \oplus m_r R \oplus (A_1 \cap A_2 \cap A_3 \cap ... \cap A_r)$ and $M_1 = m_1 R \oplus m_2 R \oplus m_3 R \oplus ... \oplus m_r R$. Since *M* has the ascending chain condition on direct summands, without loss of generality, we may assume that all cyclic submodules $m_1R, m_2R, m_3R, ..., m_rR$ to be simple. So by [12, Theorem 8.1.3], M_1 is a semisimple module. Let $M_2 = A_1 \cap A_2 \cap A_3 \cap ... \cap A_r$, then $M = M_1 \oplus M_2$. Since M_1 is semisimple, $Rad_g(M_1) = M_1$ and $Rad_g(M) =$ $M_1\oplus Rad_g(M_2)$. Consider the inclusion map $I: M_2\to M_1\oplus M_2$. Since $Rad_g(M)\oplus M_1$ is essential in $M=M_1\oplus M_2$, that means $M_1\oplus Rad_g(M_2)\trianglelefteq M_1\oplus M_2$, it follows that I^{−1}($\rm M_1\oplus Rad_g(M_2))\trianglelefteq M_2$, hence Rad_g(M₂) is essential in $M_2.$

Acknowledgment

The authors would like to thank the referees for their valuable suggestions and comments.

References

- [1] U. Acar and A. Harmancı, Principally supplemented modules, Albanian J. Math., 4(3)(2010), 79-88.
- [2] R. Alizade, G. Bilhan and Smith PF. Modules whose maximal submodules have supplements, Communications in Algebra, 29(6) (2001), 2389-2405.
- [3] M. Alkan, A. Harmanci: On summand sum and summand intersection property of modules, Turk. J. Math., 26(2002), 131-147.
- [4] E. Büyükaşik and Y. Demirci, Weakly distributive modules, Applications to supplement submodules, Proc. Indian Acad. Sci. (Math. Sci.), 120(2010), 525-534.
- [5] V. Camillo, Distributive modules, J. of Algebra, 36(1975), 16-25.
- [6] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, supplements and projectivity in module theory, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.
- [7] N.V. Dung, D.V. Huyn, P.F. Smith and R. Wisbauer, Extending modules, Pitman Research notes in math. Series, 313, Longman Scientific and Technical: Harlow, 1994.
- [8] T. Y. Ghawi, On a class of g-lifting modules, Journal of Discrete Mathematical Sciences & Cryptography, 24(6)(2021), 1857-1872.
- [9] T. Y. Ghawi, Some generalizations of g-lifting modules, Quasigroups and Related Systems, 2022, to appear.
- [10] K. R. Goodearl, Ring theory, *Nonsingular rings and modules*, Dekker, Newyork, 1976.
- [11] I. Hatice, H. Sait and A. Harmanci, A generalization of supplemented modules, Algebra and Discrete Mathematics, 11(1)(2011), 59-74.
- [12] F. Kasch, *Modules and rings module*, New York, 1982.
- [13] D. Keskin and W. Xue, Generalizations of lifting modules, Acta Math. Hungar., 91(3) (2001), 253-261.
- [14] B. Kosar, C. Nebiyev and N. Sökmez, G-supplemented modules, Ukrainian Math. J., 67(6) (2015), 861-864.
- [15] S. H. Mohamed and B. J. Müller, Continuous and discrete modules, London Math. Soc. Lecture Note Series, 147, Cambridge University press, 1990.
- [16] M. M. Obaid and T. Y. Ghawi, Principally g-supplemented modules, 9th International Scientific Conference of Iraqi Al-Khwarizmi Society, 2022, to appear.
- [17] A. C. Ozcan and A. Harmanci, Duo modules, Glasgow Math. J., 48(2006), 533-545.
- [18] T. C. Quynh and P. H. Tin, Some properties of e-supplemented and e-lifting modules, Vietnam J. Math., 41(2013), 303-312.
- [19] L. V. Thuyet and P. H. Tin, Some characterizations of modules via Essential small submodules, Kyungpook Math. J., 56(2016), 1069-1083.
- [20] A. Tuganbaev, Semi distributive modules and rings, Kluwer Academics Publishers, Dordrecht, 1998.
- [21] B. Ungor, S. Halicioglu and A. Harmanci, On a class of ⨁-supplemented modules, in Ring Theory and Its Applications, Contemporary Mathematics, Amer. Math. Soc., 2014, 123–136.
- [22] B. Ungor, S. Halicioglu and A. Harmanci, On a class of δ -supplemented modules, Bull. Malays. Math. Sci. Soc., 37(3)(2014), 703-717.
- [23] G.V. Wilson, Modules with the summand intersection property, comm. In Algebra, 14(1986), 21-38.
- [24] R. Wisbauer*, Foundations of module and ring theory*, University of Dusseldorf, 1991.
- [25] R. Wisbauer, *Modules and algebras: bimodule structure and group actions on algebras,* Pitman Monographs and Surveys in Pure

and Applied Mathematics, 81, Longman, Harlow. MR1396313 (97i:16002), 1996.

- [26] J. M. Zelmanowitz, Representation of rings with faithful polyform modules, Comm. Algebra, 14(1986), 1141-1169.
- [27] Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloq., 7(3)(2000), 305-318.
- [28] D.X. Zhou and X.R. Zhang, Small-essential submodules and Morita Duality, Southeast Asian Bulletin of Mathematics, 35(2011), 1051-1062.