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1. Introduction

In this work, all modules are unitary left R-modules and R is an associative ring with identity. A submodule L < M is
said to be essential in M, denoted by L. 2 M, if NN L # 0 for every nonzero submodule N of M [6]. A submodule L of
M is called small (g-small), denoted by L < M (resp. L <, M), if for every (essential) submodule N of M with the
property M = L + N implies N = M. Recall [18] that the authors renamed a g-small submodule as an e-small
submodule. A submodule N of M is known as a generalized maximal submodule of M, if N is an essential and
maximal submodule of M. The intersection of all maximal submodules of M, equivalently, the sum of all small
submodules of M defined as the radical of a module M, denoted by Rad(M). In [18], Zhou and Zhang defined the
generalized radical of a module M (or Rad,(M)) as the intersection of all generalized maximal submodules of M,
equivalently, the sum of all g-small submodules of M. A nonzero module M is called uniform if all its nonzero
submodules are essential [6]. M is called (generalized) hollow if any proper submodule of M is (g-small) small inside
M ([16], resp. [7]), in fact, Hadi and Aidi [7] named a generalized hollow module as an e-hollow module. Assume L
and V are two submodules of a module M. Recall [16] that L is a supplement of VV in M if it is minimal with respect to
property M =V + L. Equivalently, L is known as a supplement of Vin M if M =V + L and VN L K L. If every
submodule of M has a supplement inside M, then M is known as a supplemented module. Moreover, M is named as
an @-supplemented module if any submodule of M has a supplement that is a direct summand in M. It is clear that
every @-supplemented module is supplemented. Recall ([10] and [16]) the authors defined a submodule V of M as a
g-supplement of L in M iff M=V +L and VNL <K, L. A module M is called to be g-supplemented if every
submodule of M has a g-supplement in M. Recall [5] that a module M is @-g-supplemented if any submodule of M
has a g-supplement that is a direct summand in M. Then M is called a srs-module (srs®-module) if any submodule of
M contains Rad(M) has a supplement (@-supplement) ([2], resp. [15]). Buhphang and Das [4] defined that a
module M is strongly generalized radical supplemented (or, sgrs-modules for short) if any submodule of M contains
Rady(M) has a g-supplement inside M. Obviously, every srs-module is a sgrs-module, in fact Rad(M) S Rad,(M).
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However, a module M is called strongly generalized @-radical supplemented (or, sgrs®-module for short), if for any
submodule L of M with Rad,(M) < L has a direct summand g-supplement of M, in other words, for any L < M with
Rady(M) < L, there exists a direct summand N of M such that M =L+ N and L N N is g-small in N [8]. The main
goal of the study is to present and investigate a number of outcomes that clarify the relations between the idea of
sgrs®-modules and a number of other different kinds of modules, such as @-g-supplemented modules, g-
supplemented modules, sgrs-modules, ... etc.

2. Sgrs®-modules and related concepts
We will start with the following result.

Proposition 2.1. The following are equivalent for a module M such that Rad, (M) = 0.

(1) M is a @-g-supplemented module.

(2) M is a @-supplemented module.

(3) M is a g-supplemented module.

(4) M is a supplemented module.

(5) M is a sgrs®-module.

(6) M is a srs®-module.

(7) M is a sgrs-module.

(8) M is a srs-module.

Proof. Clearly, by definitions (1) = (3) = (7) and (1) = (5) = (7).

(7) = (1) Let N be a submodule of M. Since Rad,(M) = 0 & N, so by assumption, there exists a submodule L of M
suchthat M=N+B and NNB Ky B, also in M. From NN B < Radg(M) implies N N B = 0. Thus, B <® M and
hence (1) holds.

(1) = (2) If N £ M, by (1), there is a direct summand K of M such that

M =K+ Aand K N A <, A. Therefore K N A € Rad,(M) = 0, so that K N A < A. Therefore M is a @-supplemented
module.

(2) = (1) Clear.

Now, since Rad(M) < Rad,(M), we have that Rad(M) = 0. However, by similar technical we can prove

(2) © (4) © (6) & (8), as required. ||||

Recall [17] that a module M is said to be refinable if for all submodules L and V of M with M = L + V, there exists
a direct summand U of M suchthatU < Land M =U + V.

In following, we will give a condition under which sgrs-modules are sgrs®-modules.

Proposition 2.2. A refinable module M is a sgrs-module if and only if M is a sgrs®-module.

Proof. The sufficiency is clear. Suppose M is a sgrs-module. Let U < M with Rady,(M) € U. Then there exists
a submodule H of M suchthat M = U+ Hand UNH Ky H. Since M is refinable, M = U + N for a direct summand
N of M with N < H.Clearly, U N N <, M, so by applying [5, Lemma 2.12(i)], U N N <4 N. Thus U has a g-supplement

N that is a direct summand of M. Hence M is a sgrs®-module. |||||

Lemma 2.3. Let M be a non-simple uniform module. If N <, M, then G is a proper submodule of M. In particular,
G K4 Mifand only if G K M.

Proof. Suppose M is a non-simple uniform module and G «; M. If G = M, then M = G + N for some proper
essential submodule N of M, a contradiction with G Ky M. Thus G # M. Now, if G Ky M. Assume that G+ K =M
for some K < M.If K = 0, then G = M, a contradiction. Since M is a uniform module, then 0 # K < M. Also, K = M

and hence G <« M. The converse is clear. |||||
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Proposition 2.4. Let M be a uniform module with Rad,;(M) # M. The following are equivalent.

(1) M is a @-supplemented module.

(2) M is a @-g-supplemented module.

(3) M is a srs®-module.

(4) M is a sgrs®-module.

Proof. 1t is clear that (1) = (2) = (4) and (3) = (4).

(4) = (3) If M is simple, nothing to prove. Suppose that M is a non-simple module. Let M be a sgrs®-module. If
U <M with Rad(M) € U. We claim that Rad,(M) S Rad(M). Assume m € Rad,(M), then by [14, Lemma 2.2]
mR <4 M and hence mR « M, by Lemma 2.3. Thus, m € Rad(M) and so Rad,(M) S U. By hypothesis, there exist
submodules V, N of M suchthat M = U+ V =V@®&Nand U NV Ky V,soin M. Again, by Lemma 2.3, we deduce that
UNV & M.SinceUNV <V <® M,wegetUNV « Vby[16,19.3(5)]. Therefore M is a srs®-module.

(4) = (2) Assume G < M. Since M is a sgrs®-module and Rady(M) € Rad,(M) + G, then there exist submodules
A, K of M such that M = Rad,(M) + G + A = A®K and (Rad;(M) +G)NA K, A. If G+ A =0, then Rad,(M) =
M, which is a contradiction. Thus, 0 # G + A < M. Since M is a uniform module, [11, Lemma 1.11] implies M is
indecomposable. By [8, Proposition 2.12], Rad,(M) <4 M, and since G + A 2 M, we deduce that G + A = M. Also,
GNAC (Rady(M) + G) N Aimplies G N A <, A. Thus A is a g-supplement of G that is direct summand of M. Hence
M is a @-g-supplemented module.

(2) = (1) If M is simple, nothing to prove. Suppose that M is a non-simple module. Let V < M, by (2), there exist
a direct summand K of M such that M =V + K and VN K <, K, also in M. By Lemma 2.3 and [16, 19.3(5)]

V N K < K, this ends the proof. ||||

If M is an R-module, then the submodule U of M is called fully invariant if f(U) € U for all nonzero f € End(M).
In state that any direct summand submodule of M is fully invariant, then M called a weak duo module [12].

However, we have the following:

Proposition 2.5. Let M be a weak duo and uniform module such that Rad,(M) # M. Then the following are
equivalent.

(1) M is a @-g-supplemented module.

(2) M is a sgrs®-module.

(3) Every direct summand of M is a @-g-supplemented module.

(4) Every direct summand of M is a sgrs®-module.

Proof. (1) < (2) By Proposition 2.4.

(1) & (3) Itisclear by [11, Lemma 1.11] and [5, Proposition 3.15].

(2) = (4) By [8, Proposition 3.14].

4) = (2) Clear. I

The sufficient condition to make the reverse of the note in [8] that states that “any generalized hollow module is
a sgrs@-module" true, is as follows:

Proposition 2.6. Let M be a uniform module with Rad,(M) # M. If M is a sgrs®-module, then M is generalized
hollow.

Proof. Suppose that N c M. Since M is a sgrs®-module and Rady,(M) € Rad,(M) + N, then there exist submodules
H and G of M such that M = Rad,(M) + N + H = H®G and (Rady,(M)+N)NH <, H. If N+ H =0, then
Rady,(M) = M, a contradiction. Therefore, 0 # N + H < M. Since M is a uniform module, [11, Lemma 1.11]
implies M is indecomposable. By [8, Proposition 2.12], Rad,(M) <, M, and since N + H 2 M, we include that
N+ H =M. Also, NNH < (Rady(M) + N) n H implies that N N H <, H. As M is indecomposable, so either H = 0
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or H=M.If H=0, then N = M, a contradiction. Thus, H = M. Form NN H K4 H, we have N K4 M. Hence M is

generalized hollow. "l

Corollary 2.7. Let M be a uniform module such that Rad, (M) # M. The next statements are equivalent.

(1) M is a hollow module.

(2) M is a generalized hollow module.

(3) M is a @-supplemented module.

(4) M is a @-g-supplemented module.

(5) M is a srs®-module.

(6) M is a sgrs®-module.

Proof. (1) = (2) Clear.

(2) = (1) Since M is a uniform module, then the proper subclasses small and g-small are coincide.

3) © (4) & (5) & (6) By Proposition 2.4.

(2) = (6) Let T be any submodule of M such that Rad,(M) S T.If T = M, then 0 is trivially a (direct summand)
g-supplement of M. Assume T # M, so T is a g-small submodule. Therefore, M =T + Mand T N M =T is g-small in
M, thatis M is a (direct summand) g-supplement of T. Therefore, M is  a sgrs®-module.

(6) = (2) By Proposition 2.6. |||||

Recall [9] that P which is an R-module is named projective if for any two R-module N, L and for any epimorphism
f:N - L and for any homomorphism g: P — L, there is a homomorphism h: P — N such that f c h = g.

Proposition 2.8. Let M be a uniform projective module. The next are equivalent.

(1) M is a hollow module.

(2) M is a generalized hollow module.

(3) M is a @-supplemented module.

(4) M is a @-g-supplemented module.

(5) M is a srs®-module.

(6) M is a sgrs®-module.

Proof. If M is simple, nothing to prove. Assume that M is a non-simple module. Since M # 0 is a projective module,
then M has a nonzero maximal submodule, say K, see [16, 22.3(1)]. Then we have that K 2 M, because M is
uniform, that means K is a maximal essential in M. Thus, Rady(M) # M. The result is obtained immediately by

Corollary 2.7. ||||

Corollary 2.9. Let R be a uniform ring. The following are equivalent.

(1) R is hollow.

(2) R is generalized hollow.

(3) R is @-supplemented.

(4) R is ©@-g-supplemented module.

(5) R is a srs®-R-module.

(6) R is a sgrs®-R-module.

Proof. Since R = (1), then R is a free R-module and so it is projective. So, the proof is clear by Proposition 2.8. ||||

Proposition 2.10. Let M be a module. If every submodule of M contains Rad(M) has a uniform @-g-supplement,
then M is a srs®-module.

Proof. Assume that N is a submodule of M where Rad(M) € N. If N = M, then N trivially has 0 as a direct
summand supplement of M. Let N # M. By hypothesis, there exist a uniform direct summand C of M with
M =N+ Cand N nC g-small in C. Assume (N N C) + K = C for some submodule K of C. If K =0, NN C = C then
CE NandsoN =N + C = M, a contradiction. So, K # 0. As K is essential in C and NN C Ky C, then K = C. Thus,

N N C is small in A. Therefore M is a srs®-module. |||||

Forany N < M since M/N is a finitely generated submodule, then N is a cofinite submodule of an R-module M.
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Proposition 2.11. Let M be a module such that any cofinite submodule has a (direct summand) g-supplement of
M. If Rady(M) is cofinite in M, then M is a sgrs®-module.

Proof. Suppose A is a submodule of M such that Rad,(M) € A. We have that (M /Rad,(M))/(A/Rady,(M)) = M/A.
Since Rad,(M) is a cofinite submodule of M, that implies M/Rad,(M) is a finitely generated module, and so
(M/Rady,(M))/(A/Rad,(M)) is finitely generated, hence M /A is finitely generated, i.e. A is a cofinite submodule of

M. By assumption, A has a g-supplement that is a direct summand of M. So, M is a sgrs®-module. |||||

A submodule A of M is known as a distributive submodule if AN (B+C)=(ANB)+(ANnC)orA+(BNC) =
(A+B) N (A+C) for all submodules B and C of M. A module M is called distributive if any submodule of M is
distributive [3]. Also, by [9], a module M is said to be Artinian if every nonempty set of submodules possesses with
respect to inclusion as ordering, a minimal element. However, a module M is said to have a descending chain
condition (for short, DCC) for submodules if, every descending chain of submodules of M is determine.
Proposition 2.12. Let M be a finitely generated distributive (or, projective) module satisfies DCC on g-small
submodules. If M is a sgrsEB-module, then M is Artinian.

Proof. Assume M is a distributive sgrs®-module. By [8, Theorem 3.31], M/Radg(M) is semisimple. Since M is
a finitely generated module, then M /Rad (M) is finitely generated, so that M/Rad,(M) is Artinian, see [16, 31.3].
Also, M satisfies DCC on g-small submodules implies that Radg (M) is Artinian, according to [13, Theorem 4]. Thus,

by [9, Theorem 6.1.2(I)] M is Artinian. By a similar way we can prove when M is projective. |||||

However, the following corollary is immediately.

Corollary 2.13. Let R be a ring satisfies DCC on g-small ideals. If R is a sgrs®-ring, then R is Artinian.
Proof. As R = (1), then R is a finitely generated free R-module and so it is finitely generated projective. So, the
result is obtained by Proposition 2.12. ||||

Recall [1] that the module M is have the SSP (summand sum property) if the sum of any two direct summands of
M is also a direct summand of M.

The next result gives case to make sgrs®-module and @-g-supplemented module are identical.

Proposition 2.14. Let M be a module has the SSP, and Rad, (M) a @-g-supplemented that is a direct summand. If
M is a sgrs®-module, then M is @®-g-supplemented.

Proof. Let U be a submodule of M. Since Rad,(M) € Rad,(M) + U, so by assumption, Rad,(M) + U has a g-
supplement, say X, that is a direct summand in M. Now, as Rad,(M) N (X + U) < Rad,(M) and Rad,(M) is &D-g-
supplemented, then Rad,(M) N (X + U) has a g-supplement, say Y, that is a direct summand in Rad,(M). Since
Rad,(M) <® M, then Y is a direct summand in M. As M has SSP, we have X + Y is a direct summand of M. By [13,

Lemma 6], X + Y is a g-supplement of U in M. Therefore M is a @-g-supplemented module. |||||
A module M is called semisimple if all its submodules are direct summand.

Finally, we came to the following conclusion at the end of this section:

Proposition 2.15. The following are equivalent for a projective R-module M.

(1) M is a sgrs®-module.

(2) For any X < M with Rad,(M) € X, there is a projective module T and an epimorphism p:T — M /X such that
Kerp g-smallin T.

Proof. (1) = (2) Suppose that M is a sgrs®-module. Assume that X < M with Rad,(M) € X. Thus, M = X + T and
XNT K, T for a direct summand T of M. From [9, Theorem 5.3.4(b)] T is a projective module. Define p : T - M /X
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by p(t) =t + X forall t € T. Obviously, p is an epimorphism. Also, Kerp = {t e T| p(t) =X} ={t eT|t + X =X} =
{t eT|t € X} = X nT. Therefore Kerp is g-small in T.
(2) = (1) Let X < M with Rad,(M) € X. By (2), there is a projective module T and an epimorphism p:T — M/X

such that Kerp g-small in T. Consider a canonical epimorphism map 7 : M — % As M is projective, there exists a
homomorphism h : M - T such that ph = 7. Thus, we have that% =n(M) = ph(M) = p(h(M)), then p~*(M/X) =
p~(p(h(M)), that implies T = h(M) + kerpy [9, Lemma 3.1.8]. Since kerp is g-small in T, by [18, Proposition 2.3]
there is a semisimple submodule Y of T with T = h(M)@Y. Hence h(M) is projective, by [9, Theorem 5.3.4(b)]. Thus,
kerh is a direct summand of M, i.e. M = kerh@®H for some H < M. Since kerh < kermr = X,then M = X + H. Clearly,
kerp N h(H) = h(X N H). M = kerh@®H implies that h(M) = h(H) is a direct summand of T. Since kerp <, T, then
kerp N h(H) <4 T and so h(X N H) is g-small in T. By [5, Lemma 2.12(i)] we get h(X N H) is g-small in h(H). As h
between H and h(H) is an isomorphism, h™" (kerp N h(H)) <, H, but X N H < h™'(kerp N h(H)), we get X N H is

g-small in H. Therefore H is a g-supplement of X in M. Hence, the proof is ends. |||||

Corollary 2.16. Let R be a ring. Then R is a sgrs®-ring if and only if, for each ideal ] of R with Rad,(R) < J, there
is aring R and an epimorphism 7: R — R/] such that Ker(t) g-small in R.
Proof. 1t follows directly by Proposition 2.15. ||||

Conclusion

We stated a number of relationships between sgrs®-module and other classes of modules. Future desire will
achieve deeper outcomes on issues raised in this work.
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