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In this article, we introduced and investigated some relations between the concept of strongly 

generalized ⨁-radical supplemented module (for short, sgrs⊕-module) and many other types 
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1. Introduction 

In this work, all modules are unitary left R-modules and R is an associative ring with identity. A submodule L ≤ M is 
said to be essential in M, denoted by L ⊴ M, if N ∩ L ≠ 0 for every nonzero submodule 𝑁 of 𝑀 [6]. A submodule 𝐿 of 
𝑀 is called small (g-small), denoted by 𝐿 ≪ 𝑀 (resp. 𝐿 ≪𝑔 𝑀), if for every (essential) submodule 𝑁 of 𝑀 with the 
property 𝑀 = 𝐿 + 𝑁 implies 𝑁 = 𝑀. Recall [18] that the authors renamed a g-small submodule as an e-small 
submodule. A submodule 𝑁 of 𝑀 is known as a generalized maximal submodule of 𝑀, if 𝑁 is an essential and 
maximal submodule of 𝑀. The intersection of all maximal submodules of 𝑀, equivalently, the sum of all small 
submodules of 𝑀 defined as the radical of a module 𝑀, denoted by 𝑅𝑎𝑑(𝑀). In [18], Zhou and Zhang defined the 
generalized radical of a module 𝑀 (or 𝑅𝑎𝑑𝑔(𝑀)) as the intersection of all generalized maximal submodules of 𝑀, 
equivalently, the sum of all g-small submodules of 𝑀. A nonzero module 𝑀 is called uniform if all its nonzero 
submodules are essential [6]. 𝑀 is called (generalized) hollow if any proper submodule of 𝑀 is (g-small) small inside 
𝑀 ([16], resp. [7]), in fact, Hadi and Aidi [7] named a generalized hollow module as an e-hollow module. Assume 𝐿 
and 𝑉 are two submodules of a module 𝑀. Recall [16] that 𝐿 is a supplement of 𝑉 in 𝑀 if it is minimal with respect to 
property 𝑀 = 𝑉 + 𝐿. Equivalently, 𝐿 is known as a supplement of  𝑉 in 𝑀 if 𝑀 = 𝑉 + 𝐿 and 𝑉 ∩ 𝐿 ≪ 𝐿. If every 
submodule of 𝑀 has a supplement inside 𝑀, then 𝑀 is known as a supplemented module. Moreover, 𝑀 is named as 
an ⨁-supplemented module if any submodule of 𝑀 has a supplement that is a direct summand in 𝑀. It is clear that 
every ⨁-supplemented module is supplemented. Recall ([10] and [16]) the authors defined a submodule 𝑉 of 𝑀 as a 
g-supplement of 𝐿 in 𝑀 if, 𝑀 = 𝑉 + 𝐿 and 𝑉 ∩ 𝐿 ≪𝑔 𝐿. A module 𝑀 is called to be  g-supplemented if every 
submodule of 𝑀 has a g-supplement in 𝑀. Recall [5] that a module 𝑀 is ⨁-g-supplemented if any submodule of 𝑀 
has a g-supplement that is a direct summand in 𝑀. Then 𝑀 is called a srs-module (srs⨁-module) if any submodule of 
𝑀 contains 𝑅𝑎𝑑(𝑀) has a supplement (⨁-supplement) ([2], resp. [15]). Buhphang and Das [4] defined that a 
module 𝑀 is strongly generalized radical supplemented (or, sgrs-modules for short) if any submodule of 𝑀 contains 
𝑅𝑎𝑑𝑔(𝑀) has a g-supplement inside 𝑀. Obviously, every srs-module is a sgrs-module, in fact 𝑅𝑎𝑑(𝑀) ⊆ 𝑅𝑎𝑑𝑔(𝑀). 
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However, a module 𝑀 is called strongly generalized ⨁-radical supplemented (or, sgrs⊕-module for short), if for any 
submodule 𝐿 of 𝑀 with 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝐿 has a direct summand  g-supplement of 𝑀, in other words, for any 𝐿 ≤ 𝑀 with 
𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝐿, there exists a direct summand 𝑁 of 𝑀 such that  𝑀 = 𝐿 + 𝑁 and 𝐿 ∩ 𝑁 is g-small in 𝑁 [8]. The main 
goal of the study is to present and investigate a number of outcomes that clarify the relations between the idea of 
sgrs⊕-modules and a number of other different kinds of modules, such as ⨁-g-supplemented modules,     g-
supplemented modules, sgrs-modules, … etc.  

               

 

2. 𝐒𝐠𝐫𝐬⊕-modules and related concepts  

 We will start with the following result. 

Proposition 2.1. The following are equivalent for a module 𝑀 such that 𝑅𝑎𝑑𝑔(𝑀) = 0.  

(1) 𝑀 is a ⨁-g-supplemented module. 

(2) 𝑀 is a ⨁-supplemented module.  

(3) 𝑀 is a g-supplemented module. 

(4) 𝑀 is a supplemented module. 

(5) 𝑀 is a sgrs⊕-module. 

(6) 𝑀 is a srs⊕-module. 

(7) 𝑀 is a sgrs-module. 

(8) 𝑀 is a srs-module. 

Proof. Clearly, by definitions (1) ⇒ (3) ⇒ (7) and (1) ⇒ (5) ⇒ (7). 

(7) ⇒ (1) Let 𝑁 be a submodule of 𝑀. Since 𝑅𝑎𝑑𝑔(𝑀) = 0 ⊆ 𝑁, so by assumption, there exists a submodule 𝐿 of 𝑀 

such that 𝑀 = 𝑁 + 𝐵 and 𝑁 ∩ 𝐵 ≪𝑔 𝐵, also in 𝑀. From 𝑁 ∩ 𝐵 ⊆ 𝑅𝑎𝑑𝑔(𝑀) implies 𝑁 ∩ 𝐵 = 0. Thus, 𝐵 ≤⨁ 𝑀 and 

hence (1) holds. 

(1) ⇒ (2) If 𝑁 ≤ 𝑀, by (1), there is a direct summand 𝐾 of 𝑀 such that  

𝑀 = 𝐾 + 𝐴 and 𝐾 ∩ 𝐴 ≪𝑔 𝐴. Therefore 𝐾 ∩ 𝐴 ⊆ 𝑅𝑎𝑑𝑔(𝑀) = 0, so that 𝐾 ∩ 𝐴 ≪ 𝐴. Therefore 𝑀 is a ⨁-supplemented 

module. 

(2) ⇒ (1) Clear. 

Now, since 𝑅𝑎𝑑(𝑀) ⊆ 𝑅𝑎𝑑𝑔(𝑀), we have that 𝑅𝑎𝑑(𝑀) = 0. However, by similar technical we can prove 

(2) ⟺ (4) ⟺ (6) ⟺ (8), as required.                                      

 

     Recall [17] that a module 𝑀 is said to be refinable if for all submodules 𝐿 and 𝑉 of 𝑀 with 𝑀 = 𝐿 + 𝑉, there exists 

a direct summand 𝑈 of 𝑀 such that 𝑈 ≤ 𝐿 and 𝑀 = 𝑈 + 𝑉.  

  

    In following, we will give a condition under which sgrs-modules are sgrs⊕-modules. 
  

Proposition 2.2. A refinable module 𝑀 is a sgrs-module if and only if 𝑀 is a sgrs⊕-module. 

Proof. The sufficiency is clear. Suppose 𝑀 is a sgrs-module. Let 𝑈 ≤ 𝑀 with 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑈. Then there exists              

a submodule 𝐻 of 𝑀 such that 𝑀 = 𝑈 + 𝐻 and 𝑈 ∩ 𝐻 ≪𝑔 𝐻. Since 𝑀 is refinable, 𝑀 = 𝑈 + 𝑁 for a direct summand 

𝑁 of 𝑀 with 𝑁 ≤ 𝐻. Clearly, 𝑈 ∩ 𝑁 ≪𝑔 𝑀, so by applying [5, Lemma 2.12(i)], 𝑈 ∩ 𝑁 ≪𝑔 𝑁. Thus 𝑈 has a g-supplement 

𝑁 that is a direct summand of 𝑀. Hence 𝑀 is   a sgrs⊕-module.       

 

Lemma 2.3. Let 𝑀 be a non-simple uniform module. If 𝑁 ≪𝑔 𝑀, then 𝐺 is a proper submodule of 𝑀. In particular, 

𝐺 ≪𝑔 𝑀 if and only if 𝐺 ≪ 𝑀. 

Proof. Suppose 𝑀 is a non-simple uniform module and 𝐺 ≪𝑔 𝑀. If 𝐺 = 𝑀, then 𝑀 = 𝐺 + 𝑁  for some proper 

essential submodule 𝑁 of 𝑀, a contradiction with 𝐺 ≪𝑔 𝑀. Thus 𝐺 ≠ 𝑀. Now, if  𝐺 ≪𝑔 𝑀. Assume that 𝐺 + 𝐾 = 𝑀 

for some 𝐾 ≤ 𝑀. If 𝐾 = 0, then 𝐺 = 𝑀, a contradiction. Since 𝑀 is a uniform module, then 0 ≠ 𝐾 ⊴ 𝑀. Also, 𝐾 = 𝑀 

and hence 𝐺 ≪ 𝑀. The converse is clear.    
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Proposition 2.4. Let 𝑀 be a uniform module with 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀. The following are equivalent. 

(1) 𝑀 is a ⨁-supplemented module. 

(2) 𝑀 is a ⨁-g-supplemented module. 

(3) 𝑀 is a srs⊕-module. 

(4) 𝑀 is a sgrs⊕-module. 

Proof. It is clear that (1) ⇒ (2) ⇒ (4)  and  (3) ⇒ (4).    

(4) ⇒ (3) If 𝑀 is simple, nothing to prove. Suppose that 𝑀 is a non-simple module. Let 𝑀 be  a sgrs⊕-module. If 

𝑈 ≤ 𝑀 with 𝑅𝑎𝑑(𝑀) ⊆ 𝑈. We claim that 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑅𝑎𝑑(𝑀). Assume 𝑚 ∈ 𝑅𝑎𝑑𝑔(𝑀), then by [14, Lemma 2.2] 

𝑚𝑅 ≪𝑔 𝑀 and hence 𝑚𝑅 ≪ 𝑀, by Lemma 2.3. Thus, 𝑚 ∈ 𝑅𝑎𝑑(𝑀) and so 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑈. By hypothesis, there exist 

submodules 𝑉, 𝑁 of 𝑀 such that 𝑀 = 𝑈 + 𝑉 = 𝑉⨁𝑁 and 𝑈 ∩ 𝑉 ≪𝑔 𝑉, so in 𝑀. Again, by Lemma 2.3, we deduce that 

𝑈 ∩ 𝑉 ≪ 𝑀. Since 𝑈 ∩ 𝑉 ≤ 𝑉 ≤⊕ 𝑀, we get 𝑈 ∩ 𝑉 ≪ 𝑉 by [16, 19.3(5)]. Therefore 𝑀 is a srs⊕-module. 

(4) ⇒ (2) Assume 𝐺 ≤ 𝑀. Since 𝑀 is a sgrs⊕-module and 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑅𝑎𝑑𝑔(𝑀) + 𝐺, then there exist submodules 

𝐴, 𝐾 of 𝑀 such that 𝑀 = 𝑅𝑎𝑑𝑔(𝑀) + 𝐺 + 𝐴 = 𝐴⨁𝐾  and (𝑅𝑎𝑑𝑔(𝑀) + 𝐺) ∩ 𝐴 ≪𝑔 𝐴. If 𝐺 + 𝐴 = 0, then 𝑅𝑎𝑑𝑔(𝑀) =

𝑀, which is a contradiction. Thus, 0 ≠ 𝐺 + 𝐴 ≤ 𝑀. Since 𝑀 is a uniform module, [11, Lemma 1.11] implies 𝑀 is 

indecomposable. By [8, Proposition 2.12], 𝑅𝑎𝑑𝑔(𝑀) ≪𝑔 𝑀, and since 𝐺 + 𝐴 ⊴ 𝑀, we deduce that 𝐺 + 𝐴 = 𝑀. Also, 

𝐺 ∩ 𝐴 ⊆ (𝑅𝑎𝑑𝑔(𝑀) + 𝐺) ∩ 𝐴 implies 𝐺 ∩ 𝐴 ≪𝑔 𝐴. Thus 𝐴 is a g-supplement of 𝐺 that is direct summand of 𝑀. Hence 

𝑀 is a ⨁-g-supplemented module. 

(2) ⇒ (1) If 𝑀 is simple, nothing to prove. Suppose that 𝑀 is a non-simple module. Let  𝑉 ≤ 𝑀, by (2), there exist     

a direct summand 𝐾 of 𝑀 such that 𝑀 = 𝑉 + 𝐾 and 𝑉 ∩ 𝐾 ≪𝑔 𝐾, also in 𝑀. By Lemma 2.3 and [16, 19.3(5)] 

𝑉 ∩ 𝐾 ≪ 𝐾, this ends the proof.    
 

     If 𝑀 is an 𝑅-module, then the submodule 𝑈 of 𝑀 is called fully invariant if 𝑓(𝑈) ⊆ 𝑈 for all nonzero 𝑓 ∈ 𝐸𝑛𝑑(𝑀). 

In state that any direct summand submodule of 𝑀 is fully invariant, then 𝑀 called  a weak duo module [12]. 
 

    However, we have the following:   
 

Proposition 2.5. Let 𝑀 be a weak duo and uniform module such that 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀. Then the following are 

equivalent. 

(1) 𝑀 is a ⨁-g-supplemented module. 

(2) 𝑀 is a sgrs⊕-module. 

(3) Every direct summand of 𝑀 is a ⨁-g-supplemented module. 

(4) Every direct summand of 𝑀 is a sgrs⊕-module. 

Proof. (1) ⟺ (2) By Proposition 2.4. 

(1) ⟺ (3) It is clear by [11, Lemma 1.11] and [5, Proposition 3.15]. 

(2) ⟹ (4) By [8, Proposition 3.14]. 

(4) ⟹ (2) Clear.    

 

     The sufficient condition to make the reverse of the note in [8] that states that “any generalized hollow module is    

a sgrs⊕-module” true, is as follows: 
 

Proposition 2.6. Let 𝑀 be a uniform module with 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀. If 𝑀 is a sgrs⊕-module, then 𝑀 is generalized 

hollow. 

Proof. Suppose that 𝑁 ⊂ 𝑀. Since 𝑀 is a sgrs⊕-module and 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑅𝑎𝑑𝑔(𝑀) + 𝑁, then there exist submodules 

𝐻 and  𝐺 of 𝑀 such that 𝑀 = 𝑅𝑎𝑑𝑔(𝑀) + 𝑁 + 𝐻 = 𝐻⨁𝐺 and (𝑅𝑎𝑑𝑔(𝑀) + 𝑁) ∩ 𝐻 ≪𝑔 𝐻. If 𝑁 + 𝐻 = 0, then 

𝑅𝑎𝑑𝑔(𝑀) = 𝑀, a contradiction. Therefore, 0 ≠ 𝑁 + 𝐻 ≤ 𝑀. Since 𝑀 is      a uniform module, [11, Lemma 1.11] 

implies 𝑀 is indecomposable. By [8, Proposition 2.12], 𝑅𝑎𝑑𝑔(𝑀) ≪𝑔 𝑀, and since 𝑁 + 𝐻 ⊴ 𝑀, we include that 

𝑁 + 𝐻 = 𝑀. Also, 𝑁 ∩ 𝐻 ⊆ (𝑅𝑎𝑑𝑔(𝑀) + 𝑁) ∩ 𝐻 implies that 𝑁 ∩ 𝐻 ≪𝑔 𝐻. As 𝑀 is indecomposable, so either 𝐻 = 0 
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or 𝐻 = 𝑀. If 𝐻 = 0, then 𝑁 = 𝑀, a contradiction. Thus, 𝐻 = 𝑀. Form 𝑁 ∩ 𝐻 ≪𝑔 𝐻, we have 𝑁 ≪𝑔 𝑀. Hence 𝑀 is 

generalized hollow.    

Corollary 2.7. Let 𝑀 be a uniform module such that 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀. The next statements are equivalent. 

(1) 𝑀 is a hollow module. 

(2) 𝑀 is a generalized hollow module. 

(3) 𝑀 is a ⨁-supplemented module. 

(4) 𝑀 is a ⨁-g-supplemented module. 

(5) 𝑀 is a srs⊕-module. 

(6) 𝑀 is a sgrs⊕-module. 

Proof. (1) ⇒ (2) Clear. 

(2) ⇒ (1) Since 𝑀 is a uniform module, then the proper subclasses small and g-small are coincide. 

(3) ⟺ (4) ⟺ (5) ⟺ (6) By Proposition 2.4.   

(2) ⇒ (6) Let 𝑇 be any submodule of 𝑀 such that 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑇. If 𝑇 = 𝑀, then 0 is trivially a (direct summand)      

g-supplement of 𝑀. Assume 𝑇 ≠ 𝑀, so 𝑇 is a g-small submodule. Therefore, 𝑀 = 𝑇 + 𝑀 and 𝑇 ∩ 𝑀 = 𝑇 is g-small in 

𝑀, that is 𝑀 is a (direct summand) g-supplement of 𝑇. Therefore, 𝑀 is      a sgrs⊕-module. 

(6) ⇒ (2) By Proposition 2.6.    

 

    Recall [9] that 𝑃 which is an 𝑅-module is named projective if for any two 𝑅-module 𝑁, 𝐿 and for any epimorphism 

𝑓: 𝑁 → 𝐿 and for any homomorphism 𝑔: 𝑃 → 𝐿, there is a homomorphism ℎ: 𝑃 → 𝑁 such that 𝑓 ∘ ℎ = 𝑔. 

 

Proposition 2.8. Let 𝑀 be a uniform projective module. The next are equivalent. 

(1) 𝑀 is a hollow module. 

(2) 𝑀 is a generalized hollow module. 

(3) 𝑀 is a ⨁-supplemented module. 

(4) 𝑀 is a ⨁-g-supplemented module. 

(5) 𝑀 is a srs⊕-module. 

(6) 𝑀 is a sgrs⊕-module. 

Proof. If 𝑀 is simple, nothing to prove. Assume that 𝑀 is a non-simple module. Since 𝑀 ≠ 0 is a projective module, 

then 𝑀 has a nonzero maximal submodule, say 𝐾, see [16, 22.3(1)]. Then we have that 𝐾 ⊴ 𝑀, because 𝑀 is 

uniform, that means 𝐾 is a maximal essential in 𝑀. Thus, 𝑅𝑎𝑑𝑔(𝑀) ≠ 𝑀. The result is obtained immediately by 

Corollary 2.7.     

 

Corollary 2.9. Let 𝑅 be a uniform ring. The following are equivalent. 

(1) 𝑅 is hollow. 

(2) 𝑅 is generalized hollow. 

(3) 𝑅 is ⨁-supplemented. 

(4) 𝑅 is ⨁-g-supplemented module. 

(5) 𝑅 is a srs⊕-𝑅-module. 

(6) 𝑅 is a sgrs⊕-𝑅-module. 

Proof. Since 𝑅 = 〈1〉, then 𝑅 is a free 𝑅-module and so it is projective. So, the proof is clear by Proposition 2.8.       

 

Proposition 2.10. Let 𝑀 be a module. If every submodule of 𝑀 contains 𝑅𝑎𝑑(𝑀) has a uniform ⨁-g-supplement, 

then 𝑀 is a srs⊕-module. 

Proof. Assume that 𝑁 is a submodule of 𝑀 where 𝑅𝑎𝑑(𝑀) ⊆ 𝑁. If 𝑁 = 𝑀, then 𝑁 trivially has 0 as a direct 

summand supplement of 𝑀. Let 𝑁 ≠ 𝑀. By hypothesis, there exist a uniform direct summand 𝐶 of 𝑀 with 

𝑀 = 𝑁 + 𝐶 and 𝑁 ∩ 𝐶 g-small in 𝐶. Assume (𝑁 ∩ 𝐶) + 𝐾 = 𝐶 for some submodule 𝐾 of 𝐶.   If 𝐾 = 0, 𝑁 ∩ 𝐶 = 𝐶 then 

𝐶 ⊆ 𝑁 and so 𝑁 = 𝑁 + 𝐶 = 𝑀, a contradiction. So, 𝐾 ≠ 0. As 𝐾 is essential in 𝐶 and 𝑁 ∩ 𝐶 ≪𝑔 𝐶, then 𝐾 = 𝐶. Thus, 

𝑁 ∩ 𝐶 is small in 𝐴. Therefore 𝑀 is a srs⊕-module.    

 

     For any 𝑁 ≤ 𝑀 since 𝑀/𝑁 is a finitely generated submodule, then 𝑁 is a cofinite submodule of an 𝑅-module 𝑀. 
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Proposition 2.11. Let 𝑀 be a module such that any cofinite submodule has a (direct summand) g-supplement of 

𝑀. If 𝑅𝑎𝑑𝑔(𝑀) is cofinite in 𝑀, then 𝑀 is a sgrs⊕-module.  

Proof. Suppose 𝐴 is a submodule of 𝑀 such that 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝐴. We have that (𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ ) (𝐴 𝑅𝑎𝑑𝑔(𝑀)⁄ ) ≅ 𝑀 𝐴⁄⁄ . 

Since 𝑅𝑎𝑑𝑔(𝑀) is a cofinite submodule of 𝑀, that implies 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is a finitely generated module, and so 

(𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄ ) (𝐴 𝑅𝑎𝑑𝑔(𝑀)⁄ )⁄  is finitely generated, hence 𝑀 𝐴⁄  is finitely generated, i.e. 𝐴 is a cofinite submodule of 

𝑀. By assumption,  𝐴 has a g-supplement that is a direct summand of 𝑀. So, 𝑀 is a sgrs⊕-module.            

 

     A submodule 𝐴 of 𝑀 is known as a distributive submodule if 𝐴 ∩ (𝐵 + 𝐶) = (𝐴 ∩ 𝐵) + (𝐴 ∩ 𝐶) or 𝐴 + (𝐵 ∩ 𝐶) =

(𝐴 + 𝐵) ∩ (𝐴 + 𝐶) for all submodules 𝐵 and 𝐶 of 𝑀. A module 𝑀 is called distributive if any submodule of 𝑀 is 

distributive [3]. Also, by [9], a module 𝑀 is said to be Artinian if every nonempty set of submodules possesses with 

respect to inclusion as ordering, a minimal element. However, a module 𝑀 is said to have a descending chain 

condition (for short, DCC) for submodules if, every descending chain of submodules of 𝑀 is determine.    

Proposition 2.12. Let 𝑀 be a finitely generated distributive (or, projective) module satisfies DCC on g-small 

submodules. If 𝑀 is a sgrs⊕-module, then 𝑀 is Artinian.  

Proof. Assume 𝑀 is a distributive sgrs⊕-module. By [8, Theorem 3.31], 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is semisimple. Since 𝑀 is           

a finitely generated module, then 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is finitely generated, so that 𝑀 𝑅𝑎𝑑𝑔(𝑀)⁄  is Artinian, see [16, 31.3]. 

Also, 𝑀 satisfies DCC on g-small submodules implies that 𝑅𝑎𝑑𝑔(𝑀) is Artinian, according to [13, Theorem 4]. Thus, 

by [9, Theorem 6.1.2(I)] 𝑀 is Artinian. By a similar way we can prove when 𝑀 is projective.    
 

     However, the following corollary is immediately.  
 

Corollary 2.13. Let 𝑅 be a ring satisfies DCC on g-small ideals. If 𝑅 is a sgrs⊕-ring, then 𝑅 is Artinian. 

Proof. As 𝑅 = 〈1〉, then 𝑅 is a finitely generated free 𝑅-module and so it is finitely generated projective. So, the 

result is obtained by Proposition 2.12.          

                                                                                                                    

     Recall [1] that the module 𝑀 is have the SSP (summand sum property) if  the sum of any two direct summands of 

𝑀 is also a direct summand of 𝑀. 
 

    The next result gives case to make sgrs⊕-module and ⨁-g-supplemented module are identical. 
                                                                                                                                                       

Proposition 2.14. Let 𝑀 be a module has the SSP, and 𝑅𝑎𝑑𝑔(𝑀) a ⨁-g-supplemented that is a direct summand. If 

𝑀 is a sgrs⊕-module, then 𝑀 is ⨁-g-supplemented. 

Proof. Let 𝑈 be a submodule of 𝑀. Since 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑅𝑎𝑑𝑔(𝑀) + 𝑈, so by assumption, 𝑅𝑎𝑑𝑔(𝑀) + 𝑈 has a g-

supplement, say 𝑋, that is a direct summand in 𝑀. Now, as 𝑅𝑎𝑑𝑔(𝑀) ∩ (𝑋 + 𝑈) ≤ 𝑅𝑎𝑑𝑔(𝑀) and 𝑅𝑎𝑑𝑔(𝑀) is ⨁-g-

supplemented, then 𝑅𝑎𝑑𝑔(𝑀) ∩ (𝑋 + 𝑈) has a g-supplement, say 𝑌, that is a direct summand in 𝑅𝑎𝑑𝑔(𝑀). Since 

𝑅𝑎𝑑𝑔(𝑀) ≤⊕ 𝑀, then 𝑌 is a direct summand in 𝑀. As 𝑀 has SSP, we have 𝑋 + 𝑌 is a direct summand of 𝑀. By [13, 

Lemma 6], 𝑋 + 𝑌 is a g-supplement of 𝑈 in 𝑀. Therefore 𝑀 is a ⨁-g-supplemented module.                                                                  
 

    A module 𝑀 is called semisimple if all its submodules are direct summand.  
   
    Finally, we came to the following conclusion at the end of this section: 
 

Proposition 2.15. The following are equivalent for a projective 𝑅-module 𝑀. 

(1) 𝑀 is a sgrs⊕-module. 

(2) For any 𝑋 ≤ 𝑀 with 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑋, there is a projective module 𝑇 and an epimorphism  𝜌: 𝑇 ⟶ 𝑀 𝑋⁄  such that 

𝐾𝑒𝑟𝜌 g-small in 𝑇. 

Proof. (1) ⟹ (2) Suppose that 𝑀 is a sgrs⊕-module. Assume that 𝑋 ≤ 𝑀 with 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑋. Thus, 𝑀 = 𝑋 + 𝑇 and 

𝑋 ∩ 𝑇 ≪𝑔 𝑇 for a direct summand 𝑇 of 𝑀. From [9, Theorem 5.3.4(b)] 𝑇 is a projective module. Define 𝜌 ∶ 𝑇 → 𝑀/𝑋 
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by 𝜌(𝑡) = 𝑡 + 𝑋 for all 𝑡 ∈ 𝑇. Obviously, 𝜌 is an epimorphism. Also, 𝐾𝑒𝑟𝜌 = {𝑡 ∈ 𝑇| 𝜌(𝑡) = 𝑋} = {𝑡 ∈ 𝑇| 𝑡 + 𝑋 = 𝑋} =

{𝑡 ∈ 𝑇| 𝑡 ∈ 𝑋} = 𝑋 ∩ 𝑇. Therefore 𝐾𝑒𝑟𝜌 is g-small in 𝑇. 

(2) ⟹ (1) Let 𝑋 ≤ 𝑀 with 𝑅𝑎𝑑𝑔(𝑀) ⊆ 𝑋. By (2), there is a projective module 𝑇 and an epimorphism  𝜌: 𝑇 ⟶ 𝑀 𝑋⁄  

such that 𝐾𝑒𝑟𝜌 g-small in 𝑇. Consider a canonical epimorphism map 𝜋 ∶ 𝑀 →
𝑀

𝑋
. As 𝑀 is projective, there exists a 

homomorphism ℎ ∶ 𝑀 → 𝑇 such that 𝜌ℎ =  𝜋. Thus, we have that 
𝑀

𝑋
= 𝜋(𝑀) = 𝜌ℎ(𝑀) = 𝜌(ℎ(𝑀)), then 𝜌−1(𝑀/𝑋) =

𝜌−1(𝜌(ℎ(𝑀)), that implies 𝑇 = ℎ(𝑀) + 𝑘𝑒𝑟𝜌y [9, Lemma 3.1.8]. Since 𝑘𝑒𝑟𝜌 is g-small in 𝑇, by [18, Proposition 2.3] 

there is a semisimple submodule 𝑌 of 𝑇 with 𝑇 = ℎ(𝑀)⨁𝑌. Hence ℎ(𝑀) is projective, by [9, Theorem 5.3.4(b)]. Thus, 

𝑘𝑒𝑟ℎ is a direct summand of 𝑀, i.e. 𝑀 = 𝑘𝑒𝑟ℎ⨁𝐻 for some 𝐻 ≤ 𝑀. Since 𝑘𝑒𝑟ℎ ≤ 𝑘𝑒𝑟𝜋 = 𝑋, then 𝑀 = 𝑋 + 𝐻. Clearly, 

𝑘𝑒𝑟𝜌 ∩ ℎ(𝐻) = ℎ(𝑋 ∩ 𝐻). 𝑀 = 𝑘𝑒𝑟ℎ⨁𝐻 implies that ℎ(𝑀) = ℎ(𝐻) is a direct summand of 𝑇. Since 𝑘𝑒𝑟𝜌 ≪𝑔 𝑇, then 

𝑘𝑒𝑟𝜌 ∩ ℎ(𝐻) ≪𝑔 𝑇 and so ℎ(𝑋 ∩ 𝐻) is g-small in 𝑇. By [5, Lemma 2.12(i)] we get ℎ(𝑋 ∩ 𝐻) is g-small in ℎ(𝐻). As ℎ 

between 𝐻 and ℎ(𝐻) is an isomorphism, ℎ−1(𝑘𝑒𝑟𝜌 ∩ ℎ(𝐻)) ≪𝑔 𝐻, but 𝑋 ∩ 𝐻 ≤  ℎ−1(𝑘𝑒𝑟𝜌 ∩ ℎ(𝐻)), we get 𝑋 ∩ 𝐻 is 

g-small in 𝐻. Therefore 𝐻 is a g-supplement of 𝑋 in 𝑀. Hence, the proof is ends.    
 

Corollary 2.16. Let 𝑅 be a ring. Then 𝑅 is a sgrs⊕-ring if and only if, for each ideal  𝐽 of  𝑅 with 𝑅𝑎𝑑𝑔(𝑅) ⊆ 𝐽, there 

is a ring �̀� and an epimorphism  𝜏: �̀� ⟶ 𝑅 𝐽⁄  such that 𝐾𝑒𝑟(𝜏) g-small in �̀�.  

Proof. It follows directly by Proposition 2.15.    

Conclusion 

We stated a number of relationships between sgrs⊕-module and other classes of modules. Future desire will 
achieve deeper outcomes on issues raised in this work. 
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