

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)



# Some connections about sgrs⊕-modules

# Narjis Mujtabah Kamil<sup>a</sup>, Thaar Younis Ghawi<sup>b</sup>

aAl-Samawah Education Directorate, Iraqi Ministry of Education, Iraq, E-mail: edu-math.post18@qu.edu.iq

<sup>b</sup>Department of Mathematics, College of Education, University of Al-Qadisiyah, Iraq, E-mail: thar.younis@qu.edu.iq

#### ARTICLEINFO

Article history: Received: 08/03/2022 Rrevised form: 23/03/2022 Accepted: 11/04/2022 Available online: 22 /04/2022

Keywords:

g-small submdules ⊕-g-supplemented modules sgrs<sup>⊕</sup>-modules

#### ABSTRACT

In this article, we introduced and investigated some relations between the concept of strongly generalized  $\oplus$ -radical supplemented module (for short, sgrs<sup> $\oplus$ </sup>-module) and many other types of modules.

MSC. 16D10, 16D70, 16D99

https://doi.org/10.29304/jqcm.2022.14.1.907

## 1. Introduction

In this work, all modules are unitary left R-modules and R is an associative ring with identity. A submodule  $L \leq M$  is said to be essential in M, denoted by  $L \trianglelefteq M$ , if  $N \cap L \ne 0$  for every nonzero submodule N of M [6]. A submodule L of *M* is called small (g-small), denoted by  $L \ll M$  (resp.  $L \ll_q M$ ), if for every (essential) submodule N of M with the property M = L + N implies N = M. Recall [18] that the authors renamed a g-small submodule as an e-small submodule. A submodule N of M is known as a generalized maximal submodule of M, if N is an essential and maximal submodule of M. The intersection of all maximal submodules of M, equivalently, the sum of all small submodules of M defined as the radical of a module M, denoted by Rad(M). In [18], Zhou and Zhang defined the generalized radical of a module M (or  $Rad_q(M)$ ) as the intersection of all generalized maximal submodules of M, equivalently, the sum of all g-small submodules of M. A nonzero module M is called uniform if all its nonzero submodules are essential [6]. M is called (generalized) hollow if any proper submodule of M is (g-small) small inside M ([16], resp. [7]), in fact, Hadi and Aidi [7] named a generalized hollow module as an e-hollow module. Assume L and V are two submodules of a module M. Recall [16] that L is a supplement of V in M if it is minimal with respect to property M = V + L. Equivalently, L is known as a supplement of V in M if M = V + L and  $V \cap L \ll L$ . If every submodule of *M* has a supplement inside *M*, then *M* is known as a supplemented module. Moreover, *M* is named as an  $\oplus$ -supplemented module if any submodule of M has a supplement that is a direct summand in M. It is clear that every  $\oplus$ -supplemented module is supplemented. Recall ([10] and [16]) the authors defined a submodule V of M as a g-supplement of L in M if, M = V + L and  $V \cap L \ll_g L$ . A module M is called to be g-supplemented if every submodule of M has a g-supplement in M. Recall [5] that a module M is  $\oplus$ -g-supplemented if any submodule of M has a g-supplement that is a direct summand in M. Then M is called a srs-module (srs $^{\oplus}$ -module) if any submodule of *M* contains Rad(M) has a supplement ( $\oplus$ -supplement) ([2], resp. [15]). Buhphang and Das [4] defined that a module M is strongly generalized radical supplemented (or, sgrs-modules for short) if any submodule of M contains  $Rad_{a}(M)$  has a g-supplement inside M. Obviously, every srs-module is a sgrs-module, in fact  $Rad(M) \subseteq Rad_{a}(M)$ .

<sup>\*</sup>Corresponding author: Narjis Mujtabah Kamil

Email addresses: edu-math.post18@qu.edu.iq

However, a module M is called strongly generalized  $\oplus$ -radical supplemented (or, sgrs<sup> $\oplus$ </sup>-module for short), if for any submodule L of M with  $Rad_g(M) \subseteq L$  has a direct summand g-supplement of M, in other words, for any  $L \leq M$  with  $Rad_g(M) \subseteq L$ , there exists a direct summand N of M such that M = L + N and  $L \cap N$  is g-small in N [8]. The main goal of the study is to present and investigate a number of outcomes that clarify the relations between the idea of sgrs<sup> $\oplus$ </sup>-modules and a number of other different kinds of modules, such as  $\oplus$ -g-supplemented modules, g-supplemented modules, ... etc.

## 2. Sgrs⊕-modules and related concepts

We will start with the following result.

**Proposition 2.1.** The following are equivalent for a module M such that  $Rad_a(M) = 0$ .

(1) *M* is a  $\oplus$ -g-supplemented module.

(2) *M* is a  $\oplus$ -supplemented module.

(3) *M* is a g-supplemented module.

(4) *M* is a supplemented module.

(5) *M* is a sgrs<sup> $\oplus$ </sup>-module.

(6) *M* is a srs<sup> $\oplus$ </sup>-module.

(7) *M* is a sgrs-module.

(8) *M* is a srs-module.

**Proof.** Clearly, by definitions  $(1) \Rightarrow (3) \Rightarrow (7)$  and  $(1) \Rightarrow (5) \Rightarrow (7)$ .

 $(7) \Rightarrow (1)$  Let *N* be a submodule of *M*. Since  $Rad_g(M) = 0 \subseteq N$ , so by assumption, there exists a submodule *L* of *M* such that M = N + B and  $N \cap B \ll_g B$ , also in *M*. From  $N \cap B \subseteq Rad_g(M)$  implies  $N \cap B = 0$ . Thus,  $B \leq^{\oplus} M$  and hence (1) holds.

(1)  $\Rightarrow$  (2) If  $N \leq M$ , by (1), there is a direct summand K of M such that

M = K + A and  $K \cap A \ll_g A$ . Therefore  $K \cap A \subseteq Rad_g(M) = 0$ , so that  $K \cap A \ll A$ . Therefore M is a  $\oplus$ -supplemented module.

 $(2) \Rightarrow (1)$  Clear.

Now, since  $Rad(M) \subseteq Rad_g(M)$ , we have that Rad(M) = 0. However, by similar technical we can prove  $(2) \Leftrightarrow (4) \Leftrightarrow (6) \Leftrightarrow (8)$ , as required.

Recall [17] that a module *M* is said to be refinable if for all submodules *L* and *V* of *M* with M = L + V, there exists a direct summand *U* of *M* such that  $U \le L$  and M = U + V.

In following, we will give a condition under which sgrs-modules are sgrs ^ $\oplus$ -modules.

**Proposition 2.2.** A refinable module *M* is a sgrs-module if and only if *M* is a sgrs<sup> $\oplus$ </sup>-module.

**Proof.** The sufficiency is clear. Suppose M is a sgrs-module. Let  $U \le M$  with  $Rad_g(M) \subseteq U$ . Then there exists a submodule H of M such that M = U + H and  $U \cap H \ll_g H$ . Since M is refinable, M = U + N for a direct summand N of M with  $N \le H$ . Clearly,  $U \cap N \ll_g M$ , so by applying [5, Lemma 2.12(i)],  $U \cap N \ll_g N$ . Thus U has a g-supplement N that is a direct summand of M. Hence M is a sgrs<sup> $\oplus$ </sup>-module.

**Lemma 2.3.** Let *M* be a non-simple uniform module. If  $N \ll_g M$ , then *G* is a proper submodule of *M*. In particular,  $G \ll_g M$  if and only if  $G \ll M$ .

**Proof.** Suppose *M* is a non-simple uniform module and  $G \ll_g M$ . If G = M, then M = G + N for some proper essential submodule *N* of *M*, a contradiction with  $G \ll_g M$ . Thus  $G \neq M$ . Now, if  $G \ll_g M$ . Assume that G + K = M for some  $K \leq M$ . If K = 0, then G = M, a contradiction. Since *M* is a uniform module, then  $0 \neq K \leq M$ . Also, K = M and hence  $G \ll M$ . The converse is clear.

**Proposition 2.4.** Let *M* be a uniform module with  $Rad_q(M) \neq M$ . The following are equivalent.

(1) *M* is a  $\oplus$ -supplemented module.

(2) *M* is a  $\oplus$ -g-supplemented module.

(3) *M* is a srs<sup> $\oplus$ </sup>-module.

(4) *M* is a sgrs<sup> $\oplus$ </sup>-module.

**Proof.** It is clear that  $(1) \Rightarrow (2) \Rightarrow (4)$  and  $(3) \Rightarrow (4)$ .

 $(4) \Rightarrow (3)$  If *M* is simple, nothing to prove. Suppose that *M* is a non-simple module. Let *M* be a sgrs<sup> $\oplus$ </sup>-module. If  $U \leq M$  with  $Rad(M) \subseteq U$ . We claim that  $Rad_g(M) \subseteq Rad(M)$ . Assume  $m \in Rad_g(M)$ , then by [14, Lemma 2.2]  $mR \ll_g M$  and hence  $mR \ll M$ , by Lemma 2.3. Thus,  $m \in Rad(M)$  and so  $Rad_g(M) \subseteq U$ . By hypothesis, there exist submodules *V*, *N* of *M* such that  $M = U + V = V \oplus N$  and  $U \cap V \ll_g V$ , so in *M*. Again, by Lemma 2.3, we deduce that  $U \cap V \ll M$ . Since  $U \cap V \leq V \leq^{\oplus} M$ , we get  $U \cap V \ll V$  by [16, 19.3(5)]. Therefore *M* is a srs<sup> $\oplus$ </sup>-module.

(4)  $\Rightarrow$  (2) Assume  $G \leq M$ . Since M is a sgrs<sup> $\oplus$ </sup>-module and  $Rad_g(M) \subseteq Rad_g(M) + G$ , then there exist submodules A, K of M such that  $M = Rad_g(M) + G + A = A \oplus K$  and  $(Rad_g(M) + G) \cap A \ll_g A$ . If G + A = 0, then  $Rad_g(M) = M$ , which is a contradiction. Thus,  $0 \neq G + A \leq M$ . Since M is a uniform module, [11, Lemma 1.11] implies M is indecomposable. By [8, Proposition 2.12],  $Rad_g(M) \ll_g M$ , and since  $G + A \leq M$ , we deduce that G + A = M. Also,  $G \cap A \subseteq (Rad_g(M) + G) \cap A$  implies  $G \cap A \ll_g A$ . Thus A is a g-supplement of G that is direct summand of M. Hence M is a  $\oplus$ -g-supplemented module.

(2)  $\Rightarrow$  (1) If *M* is simple, nothing to prove. Suppose that *M* is a non-simple module. Let  $V \leq M$ , by (2), there exist a direct summand *K* of *M* such that M = V + K and  $V \cap K \ll_g K$ , also in *M*. By Lemma 2.3 and [16, 19.3(5)]  $V \cap K \ll K$ , this ends the proof.

If *M* is an *R*-module, then the submodule *U* of *M* is called fully invariant if  $f(U) \subseteq U$  for all nonzero  $f \in End(M)$ . In state that any direct summand submodule of *M* is fully invariant, then *M* called a weak duo module [12].

However, we have the following:

**Proposition 2.5.** Let *M* be a weak duo and uniform module such that  $Rad_g(M) \neq M$ . Then the following are equivalent.

(1) *M* is a  $\oplus$ -g-supplemented module.

(2) *M* is a sgrs<sup> $\oplus$ </sup>-module.

(3) Every direct summand of *M* is a  $\oplus$ -g-supplemented module.

(4) Every direct summand of *M* is a sgrs<sup> $\oplus$ </sup>-module.

**Proof.** (1)  $\Leftrightarrow$  (2) By Proposition 2.4.

(1)  $\Leftrightarrow$  (3) It is clear by [11, Lemma 1.11] and [5, Proposition 3.15].

(2)  $\Rightarrow$  (4) By [8, Proposition 3.14].

 $(4) \Rightarrow (2)$  Clear.

The sufficient condition to make the reverse of the note in [8] that states that "any generalized hollow module is a sgrs $^{\oplus}$ -module" true, is as follows:

**Proposition 2.6.** Let *M* be a uniform module with  $Rad_g(M) \neq M$ . If *M* is a sgrs<sup> $\oplus$ </sup>-module, then *M* is generalized hollow.

**Proof.** Suppose that  $N \subset M$ . Since M is a sgrs<sup> $\oplus$ </sup>-module and  $Rad_g(M) \subseteq Rad_g(M) + N$ , then there exist submodules H and G of M such that  $M = Rad_g(M) + N + H = H \oplus G$  and  $(Rad_g(M) + N) \cap H \ll_g H$ . If N + H = 0, then  $Rad_g(M) = M$ , a contradiction. Therefore,  $0 \neq N + H \leq M$ . Since M is a uniform module, [11, Lemma 1.11] implies M is indecomposable. By [8, Proposition 2.12],  $Rad_g(M) \ll_g M$ , and since  $N + H \leq M$ , we include that N + H = M. Also,  $N \cap H \subseteq (Rad_g(M) + N) \cap H$  implies that  $N \cap H \ll_g H$ . As M is indecomposable, so either H = 0

or H = M. If H = 0, then N = M, a contradiction. Thus, H = M. Form  $N \cap H \ll_g H$ , we have  $N \ll_g M$ . Hence M is generalized hollow.

**Corollary 2.7.** Let *M* be a uniform module such that  $Rad_{q}(M) \neq M$ . The next statements are equivalent.

- (1) *M* is a hollow module.
- (2) *M* is a generalized hollow module.
- (3) *M* is a  $\oplus$ -supplemented module.
- (4) *M* is a  $\oplus$ -g-supplemented module.
- (5) *M* is a srs<sup> $\oplus$ </sup>-module.
- (6) *M* is a sgrs<sup> $\oplus$ </sup>-module.
- **Proof.** (1)  $\Rightarrow$  (2) Clear.
- $(2) \Rightarrow (1)$  Since *M* is a uniform module, then the proper subclasses small and g-small are coincide.
- $(3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$  By Proposition 2.4.

(2)  $\Rightarrow$  (6) Let *T* be any submodule of *M* such that  $Rad_g(M) \subseteq T$ . If T = M, then 0 is trivially a (direct summand) g-supplement of *M*. Assume  $T \neq M$ , so *T* is a g-small submodule. Therefore, M = T + M and  $T \cap M = T$  is g-small in *M*, that is *M* is a (direct summand) g-supplement of *T*. Therefore, *M* is a sgrs<sup> $\oplus$ </sup>-module.

(6)  $\Rightarrow$  (2) By Proposition 2.6.

Recall [9] that *P* which is an *R*-module is named projective if for any two *R*-module *N*, *L* and for any epimorphism  $f: N \to L$  and for any homomorphism  $g: P \to L$ , there is a homomorphism  $h: P \to N$  such that  $f \circ h = g$ .

**Proposition 2.8.** Let *M* be a uniform projective module. The next are equivalent.

- (1) *M* is a hollow module.
- (2) *M* is a generalized hollow module.
- (3) *M* is a  $\oplus$ -supplemented module.
- (4) *M* is a  $\oplus$ -g-supplemented module.
- (5) *M* is a srs<sup> $\oplus$ </sup>-module.

(6) *M* is a sgrs<sup> $\oplus$ </sup>-module.

**Proof.** If *M* is simple, nothing to prove. Assume that *M* is a non-simple module. Since  $M \neq 0$  is a projective module, then *M* has a nonzero maximal submodule, say *K*, see [16, 22.3(1)]. Then we have that  $K \trianglelefteq M$ , because *M* is uniform, that means *K* is a maximal essential in *M*. Thus,  $Rad_g(M) \neq M$ . The result is obtained immediately by Corollary 2.7.

*Corollary 2.9.* Let *R* be a uniform ring. The following are equivalent.

- (1) *R* is hollow.
- (2) *R* is generalized hollow.
- (3) *R* is  $\oplus$ -supplemented.
- (4) R is  $\oplus$ -g-supplemented module.
- (5) *R* is a srs<sup> $\oplus$ </sup>-*R*-module.
- (6) *R* is a sgrs<sup> $\oplus$ </sup>-*R*-module.

**Proof.** Since  $R = \langle 1 \rangle$ , then R is a free R-module and so it is projective. So, the proof is clear by Proposition 2.8.

**Proposition 2.10.** Let *M* be a module. If every submodule of *M* contains Rad(M) has a uniform  $\oplus$ -g-supplement, then *M* is a srs<sup> $\oplus$ </sup>-module.

**Proof.** Assume that *N* is a submodule of *M* where  $Rad(M) \subseteq N$ . If N = M, then *N* trivially has 0 as a direct summand supplement of *M*. Let  $N \neq M$ . By hypothesis, there exist a uniform direct summand *C* of *M* with M = N + C and  $N \cap C$  g-small in *C*. Assume  $(N \cap C) + K = C$  for some submodule *K* of *C*. If  $K = 0, N \cap C = C$  then  $C \subseteq N$  and so N = N + C = M, a contradiction. So,  $K \neq 0$ . As *K* is essential in *C* and  $N \cap C \ll_g C$ , then K = C. Thus,  $N \cap C$  is small in *A*. Therefore *M* is a srs<sup>⊕</sup>-module.

For any  $N \le M$  since M/N is a finitely generated submodule, then N is a cofinite submodule of an *R*-module *M*.

**Proposition 2.11.** Let *M* be a module such that any cofinite submodule has a (direct summand) g-supplement of *M*. If  $Rad_q(M)$  is cofinite in *M*, then *M* is a sgrs<sup> $\oplus$ </sup>-module.

**Proof.** Suppose *A* is a submodule of *M* such that  $Rad_g(M) \subseteq A$ . We have that  $(M/Rad_g(M))/(A/Rad_g(M)) \cong M/A$ . Since  $Rad_g(M)$  is a cofinite submodule of *M*, that implies  $M/Rad_g(M)$  is a finitely generated module, and so  $(M/Rad_g(M))/(A/Rad_g(M))$  is finitely generated, hence M/A is finitely generated, i.e. *A* is a cofinite submodule of *M*. By assumption, *A* has a g-supplement that is a direct summand of *M*. So, *M* is a sgrs<sup>⊕</sup>-module.

A submodule *A* of *M* is known as a distributive submodule if  $A \cap (B + C) = (A \cap B) + (A \cap C)$  or  $A + (B \cap C) = (A + B) \cap (A + C)$  for all submodules *B* and *C* of *M*. A module *M* is called distributive if any submodule of *M* is distributive [3]. Also, by [9], a module *M* is said to be Artinian if every nonempty set of submodules possesses with respect to inclusion as ordering, a minimal element. However, a module *M* is said to have a descending chain condition (for short, DCC) for submodules if, every descending chain of submodules of *M* is determine.

**Proposition 2.12.** Let *M* be a finitely generated distributive (or, projective) module satisfies DCC on g-small submodules. If *M* is a sgrs<sup> $\oplus$ </sup>-module, then *M* is Artinian.

**Proof.** Assume *M* is a distributive sgrs<sup> $\oplus$ </sup>-module. By [8, Theorem 3.31], *M*/*Rad*<sub>*g*</sub>(*M*) is semisimple. Since *M* is a finitely generated module, then *M*/*Rad*<sub>*g*</sub>(*M*) is finitely generated, so that *M*/*Rad*<sub>*g*</sub>(*M*) is Artinian, see [16, 31.3]. Also, *M* satisfies DCC on g-small submodules implies that *Rad*<sub>*g*</sub>(*M*) is Artinian, according to [13, Theorem 4]. Thus, by [9, Theorem 6.1.2(I)] *M* is Artinian. By a similar way we can prove when *M* is projective.

However, the following corollary is immediately.

**Corollary 2.13.** Let *R* be a ring satisfies DCC on g-small ideals. If *R* is a sgrs<sup> $\oplus$ </sup>-ring, then *R* is Artinian. **Proof.** As  $R = \langle 1 \rangle$ , then *R* is a finitely generated free *R*-module and so it is finitely generated projective. So, the result is obtained by Proposition 2.12.

Recall [1] that the module *M* is have the SSP (summand sum property) if the sum of any two direct summands of *M* is also a direct summand of *M*.

The next result gives case to make sgrs<sup> $\oplus$ </sup>-module and  $\oplus$ -g-supplemented module are identical.

**Proposition 2.14.** Let *M* be a module has the SSP, and  $Rad_g(M)$  a  $\oplus$ -g-supplemented that is a direct summand. If *M* is a sgrs<sup> $\oplus$ </sup>-module, then *M* is  $\oplus$ -g-supplemented.

**Proof.** Let *U* be a submodule of *M*. Since  $Rad_g(M) \subseteq Rad_g(M) + U$ , so by assumption,  $Rad_g(M) + U$  has a g-supplement, say *X*, that is a direct summand in *M*. Now, as  $Rad_g(M) \cap (X + U) \leq Rad_g(M)$  and  $Rad_g(M)$  is  $\oplus$ -g-supplemented, then  $Rad_g(M) \cap (X + U)$  has a g-supplement, say *Y*, that is a direct summand in  $Rad_g(M)$ . Since  $Rad_g(M) \leq \oplus M$ , then *Y* is a direct summand in *M*. As *M* has SSP, we have X + Y is a direct summand of *M*. By [13, Lemma 6], X + Y is a g-supplement of *U* in *M*. Therefore *M* is a  $\oplus$ -g-supplemented module.

A module *M* is called semisimple if all its submodules are direct summand.

Finally, we came to the following conclusion at the end of this section:

**Proposition 2.15.** The following are equivalent for a projective *R*-module *M*.

(1) *M* is a sgrs<sup> $\oplus$ </sup>-module.

(2) For any  $X \leq M$  with  $Rad_g(M) \subseteq X$ , there is a projective module T and an epimorphism  $\rho: T \to M/X$  such that  $Ker\rho$  g-small in T.

**Proof.** (1)  $\Rightarrow$  (2) Suppose that *M* is a sgrs<sup> $\oplus$ </sup>-module. Assume that  $X \leq M$  with  $Rad_g(M) \subseteq X$ . Thus, M = X + T and  $X \cap T \ll_q T$  for a direct summand *T* of *M*. From [9, Theorem 5.3.4(b)] *T* is a projective module. Define  $\rho : T \to M/X$ 

by  $\rho(t) = t + X$  for all  $t \in T$ . Obviously,  $\rho$  is an epimorphism. Also,  $Ker\rho = \{t \in T \mid \rho(t) = X\} = \{t \in T \mid t + X = X\} = \{t \in T \mid t \in X\} = X \cap T$ . Therefore  $Ker\rho$  is g-small in T.

(2)  $\Rightarrow$  (1) Let  $X \leq M$  with  $Rad_g(M) \subseteq X$ . By (2), there is a projective module T and an epimorphism  $\rho: T \to M/X$  such that  $Ker\rho$  g-small in T. Consider a canonical epimorphism map  $\pi: M \to \frac{M}{X}$ . As M is projective, there exists a homomorphism  $h: M \to T$  such that  $\rho h = \pi$ . Thus, we have that  $\frac{M}{X} = \pi(M) = \rho h(M) = \rho(h(M))$ , then  $\rho^{-1}(M/X) = \rho^{-1}(\rho(h(M)))$ , that implies  $T = h(M) + ker\rho y$  [9, Lemma 3.1.8]. Since  $ker\rho$  is g-small in T, by [18, Proposition 2.3] there is a semisimple submodule Y of T with  $T = h(M) \oplus Y$ . Hence h(M) is projective, by [9, Theorem 5.3.4(b)]. Thus, kerh is a direct summand of M, i.e.  $M = kerh \oplus H$  for some  $H \leq M$ . Since  $ker\pi = X$ , then M = X + H. Clearly,  $ker\rho \cap h(H) = h(X \cap H)$ .  $M = kerh \oplus H$  implies that h(M) = h(H) is a direct summand of T. Since  $ker\rho \ll_g T$ , then  $ker\rho \cap h(H) \ll_g T$  and so  $h(X \cap H)$  is g-small in T. By [5, Lemma 2.12(i)] we get  $h(X \cap H)$  is g-small in h(H). As h between H and h(H) is an isomorphism,  $h^{-1}(ker\rho \cap h(H)) \ll_g H$ , but  $X \cap H \leq h^{-1}(ker\rho \cap h(H))$ , we get  $X \cap H$  is g-small in H. Therefore H is a g-supplement of X in M. Hence, the proof is ends.

**Corollary 2.16.** Let *R* be a ring. Then *R* is a sgrs<sup> $\oplus$ </sup>-ring if and only if, for each ideal *J* of *R* with  $Rad_g(R) \subseteq J$ , there is a ring  $\hat{R}$  and an epimorphism  $\tau: \hat{R} \to R/J$  such that  $Ker(\tau)$  g-small in  $\hat{R}$ . **Proof.** It follows directly by Proposition 2.15.

### Conclusion

We stated a number of relationships between sgrs $^{\oplus}$ -module and other classes of modules. Future desire will achieve deeper outcomes on issues raised in this work.

#### References

- [1] M. Alkan and A. Harmanci, On summand summand intersection property of modules, Turk. J. Math. 26(2002), 131-147.
- [2] E. Buyükasik and E. Türkmen, Strongly radical supplemented modules, Ukrainian Mathematical Journal, 63(8)(2012), 1306-1313.
- [3] V. Camillo, Distributive modules, J. of Algebra, 36(1975), 16-25.
- [4] S. Das and A. M. Buhphang, Strongly generalized radical supplemented module, General Algebra and Applications, 40(2020), 63-74.
- [5] T. Y. Ghawi, Some Generalizations of g-lifting Modules, Quasigroups and Related Systems, 2022, unpublished.
- [6] K. R. Goodearl, Ring theory, Nonsingular Rings and Modules, Dekker, Newyork, (1976).
- [7] Hadi I. M-A and Aidi S.H., e-Hollow modules, Int. J. of Advanced Sci. and Technical Research, issue 5, 3(2015), 453-461.
- & Cryptography, 2022, unpublished. [9] F. Kasch, *Modules and rings*, Academic press, New York, (1982).
- [10] B. Koşar, C. Nebiyev and N. Sökmez, G-supplemented modules, Ukrainian Mathematical Journal, 67 (2015), 861-864.
- [11] M. M. Obaid and T. Y. Ghawi, Principally g-supplemented modules, 9th International Scientific Conference of Iraqi Al-Khwarizmi Society, 2022, unpublished.
- [12] A. C. Ozcan, A. Harmanci, Duo modules, Glasgow Math. J., 48 (2006), 533-545.
- [13] T. C. Quynh and P. H. Tin, Some properties of e-supplemented and e-lifting modules, Vietnam J. Math., 41 (3) (2013), 303-312.
- [14] L. V. Thuyet and P. H. Tin, Some characterization of modules via Essential small submodules, Kyungpook Math. J., 56(2016), 1069-1083
- [15] B. N. Türkmen and A. Pancar, Generalizations of ⊕-supplemented modules, Ukrainian Mathematical Journal, 65(4)(2013), 612-622.
- [16] R. Wisbauer, Foundations of module and ring theory, University of Dusseldorf, (1991).
- [17] R. Wisbauer, Modules and algebras: bimodule structure and group actions on algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics, 81, Longman, Harlow, MR1396313 (97i:16002), (1996).
- [18] D.X. Zhou and X.R. Zhang, Small-Essential submodules and Morita Duality, Southeast Asian Bulletin of Mathematics, 35(2011), 1051-1062.