

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Some connections about ⊕**-modules**

Narjis Mujtabah Kamila, Thaar Younis Ghawi^b

^aAl-Samawah Education Directorate, Iraqi Ministry of Education, Iraq, E-mail: edu-math.post18@qu.edu.iq

^bDepartment of Mathematics, College of Education, University of Al-Qadisiyah, Iraq, E-mail[: thar.younis@qu.edu.iq](mailto:thar.younis@qu.edu.iq)

ARTICLE INFO

Article history: Received: 08/03/2022 Rrevised form: 23/03/2022 Accepted: 11/04/2022 Available online: 22 /04/2022

Keywords:

g-small submdules ⨁-g-supplemented modules sgrs[⊕]-modules

A B S T R A C T

In this article, we introduced and investigated some relations between the concept of strongly generalized \oplus -radical supplemented module (for short, sgrs \oplus -module) and many other types of modules.

MSC. 16D10, 16D70, 16D99

https://doi.org/10.29304/jqcm.2022.14.1.907

1. Introduction

In this work, all modules are unitary left R-modules and R is an associative ring with identity. A submodule $L \leq M$ is said to be essential in M, denoted by L \leq M, if N \cap L \neq 0 for every nonzero submodule N of M [6]. A submodule L of M is called small (g-small), denoted by $L \ll M$ (resp. $L \ll_g M$), if for every (essential) submodule N of M with the property $M = L + N$ implies $N = M$. Recall [18] that the authors renamed a g-small submodule as an e-small submodule. A submodule N of M is known as a generalized maximal submodule of M, if N is an essential and maximal submodule of M . The intersection of all maximal submodules of M , equivalently, the sum of all small submodules of M defined as the radical of a module M, denoted by $Rad(M)$. In [18], Zhou and Zhang defined the generalized radical of a module M (or $Rad_{q}(M)$) as the intersection of all generalized maximal submodules of M, equivalently, the sum of all g-small submodules of M . A nonzero module M is called uniform if all its nonzero submodules are essential [6]. M is called (generalized) hollow if any proper submodule of M is (g-small) small inside M ([16], resp. [7]), in fact, Hadi and Aidi [7] named a generalized hollow module as an e-hollow module. Assume L and V are two submodules of a module M. Recall [16] that L is a supplement of V in M if it is minimal with respect to property $M = V + L$. Equivalently, L is known as a supplement of V in M if $M = V + L$ and $V \cap L \ll L$. If every submodule of M has a supplement inside M , then M is known as a supplemented module. Moreover, M is named as an \bigoplus -supplemented module if any submodule of M has a supplement that is a direct summand in M. It is clear that every \bigoplus -supplemented module is supplemented. Recall ([10] and [16]) the authors defined a submodule *V* of *M* as a g-supplement of L in M if, $M = V + L$ and $V \cap L \ll_g L$. A module M is called to be g-supplemented if every submodule of M has a g-supplement in M. Recall [5] that a module M is \bigoplus -g-supplemented if any submodule of M has a g-supplement that is a direct summand in M. Then M is called a srs-module (Srs^{\oplus} -module) if any submodule of M contains $Rad(M)$ has a supplement (\bigoplus -supplement) ([2], resp. [15]). Buhphang and Das [4] defined that a module M is strongly generalized radical supplemented (or, sgrs-modules for short) if any submodule of M contains $Rad_{q}(M)$ has a g-supplement inside M. Obviously, every srs-module is a sgrs-module, in fact $Rad(M) \subseteq Rad_{q}(M)$.

[∗]Corresponding author: Narjis Mujtabah Kamil

Email addresses: edu-math.post18@qu.edu.iq

However, a module M is called strongly generalized \bigoplus -radical supplemented (or, sgrs \bigoplus -module for short), if for any submodule L of M with $Rad_g(M) \subseteq L$ has a direct summand g-supplement of M, in other words, for any $L \leq M$ with $Rad_a(M) \subseteq L$, there exists a direct summand N of M such that $M = L + N$ and $L \cap N$ is g-small in N [8]. The main goal of the study is to present and investigate a number of outcomes that clarify the relations between the idea of sgrs⊕-modules and a number of other different kinds of modules, such as \bigoplus -g-supplemented modules, gsupplemented modules, sgrs-modules, … etc.

2. ⊕**-modules and related concepts**

We will start with the following result.

Proposition 2.1. The following are equivalent for a module *M* such that $Rad_{q}(M) = 0$.

(1) *M* is a \bigoplus -g-supplemented module.

(2) *M* is a \bigoplus -supplemented module.

(3) M is a g-supplemented module.

(4) M is a supplemented module.

(5) *M* is a sgrs \oplus -module.

(6) *M* is a srs[⊕]-module.

(7) M is a sgrs-module.

(8) M is a srs-module.

Proof. Clearly, by definitions $(1) \Rightarrow (3) \Rightarrow (7)$ and $(1) \Rightarrow (5) \Rightarrow (7)$.

(7) \Rightarrow (1) Let N be a submodule of M. Since Rad_a(M) = 0 ⊆ N, so by assumption, there exists a submodule *L* of M such that $M = N + B$ and $N \cap B \ll_a B$, also in M. From $N \cap B \subseteq Rad_g(M)$ implies $N \cap B = 0$. Thus, $B \leq^{\oplus} M$ and hence (1) holds.

 $(1) \Rightarrow (2)$ If $N \leq M$, by (1), there is a direct summand K of M such that

 $M = K + A$ and $K \cap A \ll_g A$. Therefore $K \cap A \subseteq Rad_g(M)=0$, so that $K \cap A \ll A$. Therefore M is a \oplus -supplemented module.

 $(2) \Rightarrow (1)$ Clear.

Now, since $Rad(M) \subseteq Rad_{a}(M)$, we have that $Rad(M) = 0$. However, by similar technical we can prove $(2) \Leftrightarrow (4) \Leftrightarrow (6) \Leftrightarrow (8)$, as required.

Recall [17] that a module *M* is said to be refinable if for all submodules *L* and *V* of *M* with $M = L + V$, there exists a direct summand *U* of *M* such that $U \leq L$ and $M = U + V$.

In following, we will give a condition under which sgrs-modules are sgrs \oplus -modules.

Proposition 2.2. A refinable module *M* is a sgrs-module if and only if *M* is a sgrs \oplus -module.

Proof. The sufficiency is clear. Suppose M is a sgrs-module. Let $U \leq M$ with $Rad_{g}(M) \subseteq U$. Then there exists a submodule *H* of *M* such that $M = U + H$ and $U \cap H \ll_q H$. Since *M* is refinable, $M = U + N$ for a direct summand N of M with $N \leq H$. Clearly, $U \cap N \ll_q M$, so by applying [5, Lemma 2.12(i)], $U \cap N \ll_q N$. Thus U has a g-supplement *N* that is a direct summand of *M*. Hence *M* is a sgrs[⊕]-module. ■

Lemma 2.3. Let *M* be a non-simple uniform module. If $N \ll_a M$, then G is a proper submodule of M. In particular, $G \ll_a M$ if and only if $G \ll M$.

Proof. Suppose *M* is a non-simple uniform module and $G \ll_g M$. If $G = M$, then $M = G + N$ for some proper essential submodule N of M, a contradiction with $G \ll_q M$. Thus $G \neq M$. Now, if $G \ll_q M$. Assume that $G + K = M$ for some $K \leq M$. If $K = 0$, then $G = M$, a contradiction. Since M is a uniform module, then $0 \neq K \leq M$. Also, $K = M$ and hence $G \ll M$. The converse is clear. \blacksquare

Proposition 2.4. Let M be a uniform module with $Rad_{g}(M) \neq M.$ The following are equivalent.

(1) M is a \bigoplus -supplemented module.

(2) M is a \bigoplus -g-supplemented module.

(3) *M* is a srs \oplus -module.

(4) *M* is a sgrs^{\oplus}-module.

Proof. It is clear that $(1) \Rightarrow (2) \Rightarrow (4)$ and $(3) \Rightarrow (4)$.

(4) \Rightarrow (3) If *M* is simple, nothing to prove. Suppose that *M* is a non-simple module. Let *M* be a sgrs⊕-module. If $U \le M$ with $Rad(M) \subseteq U$. We claim that $Rad_{g}(M) \subseteq Rad(M)$. Assume $m \in Rad_{g}(M)$, then by [14, Lemma 2.2] $mR\ll_g M$ and hence $mR\ll M$, by Lemma 2.3. Thus, $m\in Rad(M)$ and so $Rad_g(M)\subseteq U.$ By hypothesis, there exist submodules V, N of M such that $M = U + V = V \oplus N$ and $U \cap V \ll_q V$, so in M. Again, by Lemma 2.3, we deduce that *U* ∩ *V* ≪ *M*. Since *U* ∩ *V* \le *V* \le [⊕] *M*, we get *U* ∩ *V* ≪ *V* by [16, 19.3(5)]. Therefore *M* is a srs[⊕]-module.

(4) ⇒ (2) Assume $G \leq M$. Since M is a sgrs[⊕]-module and $Rad_g(M) \subseteq Rad_g(M) + G$, then there exist submodules A, K of M such that $M = Rad_{g}(M) + G + A = A\oplus K$ and $(Rad_{g}(M) + G) \cap A \ll_{g} A$. If $G + A = 0$, then $Rad_{g}(M) =$ M, which is a contradiction. Thus, $0 \neq G + A \leq M$. Since M is a uniform module, [11, Lemma 1.11] implies M is indecomposable. By [8, Proposition 2.12], $Rad_{g}(M) \ll_{g} M$, and since $G + A \trianglelefteq M$, we deduce that $G + A = M$. Also, G ∩ A ⊆ (Ra $d_g(M)$ + G) ∩ A implies G ∩ A $\ll_g A$. Thus A is a g-supplement of G that is direct summand of M. Hence M is a \bigoplus -g-supplemented module.

(2) ⇒ (1) If *M* is simple, nothing to prove. Suppose that *M* is a non-simple module. Let $V \le M$, by (2), there exist a direct summand K of M such that $M = V + K$ and $V \cap K \ll_a K$, also in M. By Lemma 2.3 and [16, 19.3(5)] $V \cap K \ll K$, this ends the proof.

If M is an R-module, then the submodule U of M is called fully invariant if $f(U) \subseteq U$ for all nonzero $f \in End(M)$. In state that any direct summand submodule of M is fully invariant, then M called a weak duo module [12].

However, we have the following:

Proposition 2.5. Let M be a weak duo and uniform module such that $Rad_{g}(M) \neq M$. Then the following are equivalent.

(1) M is a \bigoplus -g-supplemented module.

(2) *M* is a sgrs \oplus -module.

(3) Every direct summand of M is a \bigoplus -g-supplemented module.

(4) Every direct summand of *M* is a sgrs \oplus -module.

Proof. (1) \Leftrightarrow (2) By Proposition 2.4.

 $(1) \Leftrightarrow (3)$ It is clear by [11, Lemma 1.11] and [5, Proposition 3.15].

 $(2) \Rightarrow (4)$ By [8, Proposition 3.14].

 $(4) \Rightarrow (2)$ Clear.

 The sufficient condition to make the reverse of the note in [8] that states that "any generalized hollow module is a sgrs \oplus -module" true, is as follows:

Proposition 2.6. Let M be a uniform module with $Rad_{g}(M) \neq M$. If M is a sgrs \oplus -module, then M is generalized hollow.

Proof. Suppose that $N ⊂ M$. Since M is a sgrs \oplus -module and $Rad_{g}(M) ⊆ Rad_{g}(M) + N$, then there exist submodules H and G of M such that $M = Rad_g(M) + N + H = H \oplus G$ and $(Rad_g(M) + N) \cap H \ll_g H$. If $N + H = 0$, then $Rad_{g}(M) = M$, a contradiction. Therefore, $0 \neq N + H \leq M$. Since M is a uniform module, [11, Lemma 1.11] implies M is indecomposable. By [8, Proposition 2.12], $Rad_{g}(M) \ll_{g} M$, and since $N + H \trianglelefteq M$, we include that $N+H=M$. Also, $N\cap H\subseteq (Rad_{g}(M)+N)\cap H$ implies that $N\cap H\ll_{g}H$. As M is indecomposable, so either $H=0$

or $H = M$. If $H = 0$, then $N = M$, a contradiction. Thus, $H = M$. Form $N \cap H \ll_{a} H$, we have $N \ll_{a} M$. Hence M is generalized hollow.

 $\emph{Corollary 2.7}.$ Let M be a uniform module such that $\emph{Rad}_{g}(M)\neq M.$ The next statements are equivalent.

- (1) M is a hollow module.
- (2) M is a generalized hollow module.
- (3) M is a \bigoplus -supplemented module.
- (4) M is a \bigoplus -g-supplemented module.
- (5) *M* is a srs[⊕]-module.
- (6) *M* is a sgrs^{\oplus}-module.
- *Proof.* (1) \Rightarrow (2) Clear.
- $(2) \Rightarrow (1)$ Since *M* is a uniform module, then the proper subclasses small and g-small are coincide.
- $(3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6)$ By Proposition 2.4.

(2) ⇒ (6) Let T be any submodule of M such that $Rad_{g}(M) \subseteq T$. If $T = M$, then 0 is trivially a (direct summand) g-supplement of M. Assume $T \neq M$, so T is a g-small submodule. Therefore, $M = T + M$ and $T \cap M = T$ is g-small in M, that is M is a (direct summand) g-supplement of T. Therefore, M is a sgrs Θ -module.

 $(6) \Rightarrow (2)$ By Proposition 2.6.

Recall [9] that P which is an R-module is named projective if for any two R-module N, L and for any epimorphism $f: N \to L$ and for any homomorphism $g: P \to L$, there is a homomorphism $h: P \to N$ such that $f \circ h = g$.

Proposition 2.8. Let *M* be a uniform projective module. The next are equivalent.

- (1) M is a hollow module.
- (2) M is a generalized hollow module.
- (3) M is a \bigoplus -supplemented module.
- (4) M is a \bigoplus -g-supplemented module.
- (5) *M* is a srs[⊕]-module.

(6) *M* is a sgrs^{\oplus}-module.

Proof. If *M* is simple, nothing to prove. Assume that *M* is a non-simple module. Since $M \neq 0$ is a projective module, then *M* has a nonzero maximal submodule, say K, see [16, 22.3(1)]. Then we have that $K \le M$, because M is uniform, that means K is a maximal essential in M. Thus, $Rad_a(M) \neq M$. The result is obtained immediately by

Corollary 2.7.

Corollary 2.9. Let *R* be a uniform ring. The following are equivalent.

 (1) R is hollow.

- (2) R is generalized hollow.
- (3) R is \bigoplus -supplemented.
- (4) R is \bigoplus -g-supplemented module.
- (5) *R* is a srs \oplus -*R*-module.

(6) *R* is a sgrs \oplus -*R*-module.

Proof. Since $R = \{1\}$, then R is a free R-module and so it is projective. So, the proof is clear by Proposition 2.8. **II**

Proposition 2.10. Let *M* be a module. If every submodule of *M* contains $Rad(M)$ has a uniform \bigoplus -g-supplement, then *M* is a srs[⊕]-module.

Proof. Assume that N is a submodule of M where $Rad(M) \subseteq N$. If $N = M$, then N trivially has 0 as a direct summand supplement of M. Let $N \neq M$. By hypothesis, there exist a uniform direct summand C of M with $M = N + C$ and $N \cap C$ g-small in C. Assume $(N \cap C) + K = C$ for some submodule K of C. If $K = 0$, $N \cap C = C$ then $C \subseteq N$ and so $N = N + C = M$, a contradiction. So, $K \neq 0$. As K is essential in C and $N \cap C \ll_{a} C$, then $K = C$. Thus, *N* ∩ *C* is small in A. Therefore *M* is a srs \oplus -module. \blacksquare

For any $N \le M$ since M/N is a finitely generated submodule, then N is a cofinite submodule of an R-module M.

Proposition 2.11. Let *M* be a module such that any cofinite submodule has a (direct summand) g-supplement of M. If $Rad_{g}(M)$ is cofinite in M , then M is a sgrs \oplus -module.

Proof. Suppose A is a submodule of M such that $Rad_{g}(M) \subseteq A$. We have that $(M/Rad_{g}(M))/(A/Rad_{g}(M)) \cong M/A$. Since Ra $d_g(M)$ is a cofinite submodule of M , that implies $M/Rad_g(M)$ is a finitely generated module, and so $(M/Rad_a(M))/(A/Rad_a(M))$ is finitely generated, hence M/A is finitely generated, i.e. A is a cofinite submodule of M. By assumption, A has a g-supplement that is a direct summand of M. So, M is a sgrs \oplus -module.

A submodule A of M is known as a distributive submodule if $A \cap (B + C) = (A \cap B) + (A \cap C)$ or $A + (B \cap C) =$ $(A + B) \cap (A + C)$ for all submodules B and C of M. A module M is called distributive if any submodule of M is distributive [3]. Also, by [9], a module M is said to be Artinian if every nonempty set of submodules possesses with respect to inclusion as ordering, a minimal element. However, a module M is said to have a descending chain condition (for short, DCC) for submodules if, every descending chain of submodules of M is determine.

Proposition 2.12. Let M be a finitely generated distributive (or, projective) module satisfies DCC on g-small submodules. If M is a sgrs \oplus -module, then M is Artinian.

Proof. Assume M is a distributive sgrs \oplus -module. By [8, Theorem 3.31], $M/Rad_g(M)$ is semisimple. Since M is a finitely generated module, then $M/Rad_{q}(M)$ is finitely generated, so that $M/Rad_{q}(M)$ is Artinian, see [16, 31.3]. Also, *M* satisfies DCC on g-small submodules implies that $Rad_{q}(M)$ is Artinian, according to [13, Theorem 4]. Thus, by [9, Theorem 6.1.2(I)] M is Artinian. By a similar way we can prove when M is projective.

However, the following corollary is immediately.

Corollary 2.13. Let R be a ring satisfies DCC on g-small ideals. If R is a sgrs \oplus -ring, then R is Artinian.

Proof. As $R = \{1\}$, then R is a finitely generated free R-module and so it is finitely generated projective. So, the result is obtained by Proposition 2.12.

Recall $[1]$ that the module *M* is have the SSP (summand sum property) if the sum of any two direct summands of M is also a direct summand of M .

The next result gives case to make sgrs \oplus -module and \oplus -g-supplemented module are identical.

Proposition 2.14. Let *M* be a module has the SSP, and $Rad_{q}(M)$ a \bigoplus -g-supplemented that is a direct summand. If M is a sgrs Θ -module, then M is Θ -g-supplemented.

Proof. Let *U* be a submodule of *M*. Since $Rad_{g}(M) \subseteq Rad_{g}(M) + U$, so by assumption, $Rad_{g}(M) + U$ has a gsupplement, say X, that is a direct summand in M. Now, as $Rad_{q}(M) \cap (X + U) \leq Rad_{q}(M)$ and $Rad_{q}(M)$ is \bigoplus -gsupplemented, then $Rad_{a}(M) \cap (X + U)$ has a g-supplement, say Y, that is a direct summand in $Rad_{a}(M)$. Since $Rad_{a}(M) \leq^{(\theta)} M$, then Y is a direct summand in M. As M has SSP, we have $X + Y$ is a direct summand of M. By [13, Lemma 6], $X + Y$ is a g-supplement of U in M. Therefore M is a \bigoplus -g-supplemented module.

A module M is called semisimple if all its submodules are direct summand.

Finally, we came to the following conclusion at the end of this section:

Proposition 2.15. The following are equivalent for a projective R -module M .

(1) *M* is a sgrs^{\oplus}-module.

(2) For any $X \le M$ with $Rad_g(M) \subseteq X$, there is a projective module T and an epimorphism $\rho: T \to M/X$ such that $Ker \rho$ g-small in T.

Proof. (1) \Rightarrow (2) Suppose that M is a sgrs \oplus -module. Assume that $X \leq M$ with $Rad_g(M) \subseteq X$. Thus, $M = X + T$ and X ∩ T $\ll_q T$ for a direct summand T of M. From [9, Theorem 5.3.4(b)] T is a projective module. Define $\rho: T \to M/X$

by $\rho(t) = t + X$ for all $t \in T$. Obviously, ρ is an epimorphism. Also, $Ker \rho = \{t \in T | \rho(t) = X\} = \{t \in T | t + X = X\}$ $\{t \in T \mid t \in X\} = X \cap T$. Therefore $Ker \rho$ is g-small in T.

 $(2) \Rightarrow (1)$ Let $X \leq M$ with $Rad_{g}(M) \subseteq X$. By (2), there is a projective module T and an epimorphism $\rho: T \to M/X$ such that $Ker \rho$ g-small in T. Consider a canonical epimorphism map $\pi : M \to \frac{M}{\nu}$ $\frac{m}{x}$. As *M* is projective, there exists a homomorphism $h : M \to T$ such that $\rho h = \pi$. Thus, we have that $\frac{M}{X} = \pi(M) = \rho(h(M)) = \rho(h(M))$, then $\rho^{-1}(M/X) =$ $\rho^{-1}(\rho(h(M)))$, that implies $T = h(M) + ker\rho y$ [9, Lemma 3.1.8]. Since $ker\rho$ is g-small in T, by [18, Proposition 2.3] there is a semisimple submodule Y of T with $T = h(M)\oplus Y$. Hence $h(M)$ is projective, by [9, Theorem 5.3.4(b)]. Thus, kerh is a direct summand of M, i.e. $M = kerh \bigoplus H$ for some $H \leq M$. Since $ker h \leq ker \pi = X$, then $M = X + H$. Clearly, $ker \rho \cap h(H) = h(X \cap H)$. $M = kerh \bigoplus H$ implies that $h(M) = h(H)$ is a direct summand of T. Since $ker \rho \ll_a T$, then $ker \rho \cap h(H) \ll_g T$ and so $h(X \cap H)$ is g-small in T. By [5, Lemma 2.12(i)] we get $h(X \cap H)$ is g-small in $h(H)$. As h between H and $h(H)$ is an isomorphism, $h^{-1}(ker \rho \cap h(H)) \ll_g H$, but $X \cap H \leq h^{-1}(ker \rho \cap h(H))$, we get $X \cap H$ is g-small in H. Therefore H is a g-supplement of X in M. Hence, the proof is ends. \blacksquare

Corollary 2.16. Let R be a ring. Then R is a sgrs \oplus -ring if and only if, for each ideal *J* of R with $Rad_{g}(R) \subseteq J$, there is a ring \hat{R} and an epimorphism $\tau: \hat{R} \longrightarrow R/J$ such that $Ker(\tau)$ g-small in \hat{R} . *Proof.* It follows directly by Proposition 2.15.

Conclusion

We stated a number of relationships between sgrs[⊕]-module and other classes of modules. Future desire will achieve deeper outcomes on issues raised in this work.

References

- [1] M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, Turk. J. Math. 26(2002), 131-147.
- [2] E. Buyükasik and E. Türkmen, Strongly radical supplemented modules, Ukrainian Mathematical Journal,63(8)(2012), 1306-1313.
- [3] V. Camillo, Distributive modules, J. of Algebra, 36(1975), 16-25.
- [4] S. Das and A. M. Buhphang, Strongly generalized radical supplemented module, General Algebra and Applications,40(2020),63-74.
- [5] T. Y. Ghawi, Some Generalizations of g-lifting Modules, Quasigroups and Related Systems, 2022, unpublished.
- [6] K. R. Goodearl, Ring theory, *Nonsingular Rings and Modules*, Dekker, Newyork, (1976).
- [7] Hadi I. M-A and Aidi S.H., *e*-Hollow modules, Int. J. of Advanced Sci. and Technical Research, issue 5, 3(2015), 453-461.
- [8] N. M. Kamil and T. Y. Ghawi, Strongly generalized ⨁-radical supplemented modules, Journal of Discrete Mathematical Sciences & Cryptography, 2022, unpublished.
- [9] F. Kasch, *Modules and rings*, Academic press, New York, (1982).
- [10] B. Koşar, C. Nebiyev and N. Sӧkmez, G-supplemented modules, Ukrainian Mathematical Journal, 67 (2015), 861-864.
- [11] M. M. Obaid and T. Y. Ghawi, Principally g-supplemented modules, 9th International Scientific Conference of Iraqi Al- Khwarizmi Society, 2022, unpublished.
- [12] A. C. Ozcan, A. Harmanci, Duo modules, Glasgow Math. J., 48 (2006), 533-545.
- [13] T. C. Quynh and P. H. Tin, Some properties of *e*-supplemented and *e*-lifting modules, Vietnam J. Math., 41 (3) (2013), 303-312.
- [14] L. V. Thuyet and P. H. Tin, Some characterization of modules via Essential small submodules, Kyungpook Math. J., 56(2016), 1069-1083.
- [15] B. N. Türkmen and A. Pancar, Generalizations of ⨁-supplemented modules, Ukrainian Mathematical Journal, 65(4)(2013), 612- 622.
- [16] R. Wisbauer, *Foundations of module and ring theory*, University of Dusseldorf, (1991).
- [17] R. Wisbauer, *Modules and algebras: bimodule structure and group actions on algebras*, Pitman Monographs and Surveys in Pure and Applied Mathematics, 81, Longman, Harlow, MR1396313 (97i:16002), (1996).
- [18] D.X. Zhou and X.R. Zhang, Small-Essential submodules and Morita Duality, Southeast Asian Bulletin of Mathematics, 35(2011), 1051-1062.