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A B S T R A C T 

Our goals in this paper are to introduce many results of a WNQP submodules such as triple 
zero of WNQP submodules. Moreover, several characterization of WNQP Submodule in some 
types of modules such as (multiplication, content, and finitely generated) modules. 
Furthermore WNQP radical of submodule are discuses. 
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1. Introduction 

In this paper, unless otherwise established, all rings are commutative with identity, and all modules are unitary left 
modules. Let R be a ring and 𝔍 be an R-module. The concept of WNQP submodule was introduced recently in [1], 
where a proper submodule E of an R- module 𝔍 is said to be WNQP submodule if for all 0≠abt∈E, for a, b∈R, t∈𝔍, 
implies that either at∈E+J(𝔍) or bt∈E+J(𝔍), and an ideal I of a ring R is WNQP ideal if I is WNQP R-submodule for an 
R-module R [1], where J(𝔍) is the Jacobson radical for 𝔍 defined to be the intersection of all maximal submodules of 
𝔍 [2], as new generalization of prime submodule, where a proper submodule E of an R- module 𝔍 is said to be prime 
submodule if for all at∈E, for a∈R, t∈𝔍, implies that either t∈E or a∈[E:R𝔍] [3]. The residual of E by 𝔍 denoted by 
[E:R𝔍] = { r ∈ R: r𝔍 ⊆ E} which is an ideal of R [4], in particular the ideal [0:R𝔍] is called annihilator of 𝔍 and is 
denoted by AnnR(𝔍) [5]. An R-module 𝔍 is called a multiplication module provided that for every submodule E of 𝔍 
there exists an ideal I of R so that E=I𝔍 [6], equivalently E=[E:R𝔍]𝔍 [7]. For each submodule E, B of a multiplication 
R- module 𝔍 with E = I1𝔍, B = I2𝔍 for some ideals I1, I2 in R define EB= I1I2𝔍 and EB=I1B.  In  particular E𝔍=I1𝔍𝔍=I1𝔍=E 
[8]. If 𝔍 is a multiplication R-module and t1, t2∈𝔍, by t1t2 means the product of two submodules Rt1, Rt2 that is 
t1t2=Rt1Rt2 is a submodule of 𝔍 [9]. Recall that an R-module 𝔍 is content module if (⋂ Eii∈I ) 𝔍 = ⋂ Eii∈I 𝔍 for each 
family of ideals Ei in R [10]. A submodule E of 𝔍 is called completely irreducible if for each submodules K, L of 𝔍 with 
K∩L⊆E then either K⊆E or L⊆E [11]. 
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2. Triple zero of WNQP Submodules 

In this part we introduced the definition of triple zero of WNQP submodules, with some properties. 

Definition 2.1 Let E be a WNQP submodule for an R-modules 𝔍 and r, s∈R, t∈𝔍 with rst=0 and rt ∉E+J(𝔍) and 
st∉E+J(𝔍), then we say that (r , s , t) is nearly quasi triple zero of E. 

Proposition 2.2 Let E be WNQP submodule for 𝔍 with rsk ⊆ E for some r, s∈ R , and some submodule k of 𝔍. If (r , s , 
t) is not nearly quasi triple zero of E for every t∈𝔍, then rk ⊆ E + J(𝔍) or sk ⊆ E + J(𝔍). 

Proof  For some r, s ∈ R, t ∈ 𝔍, let  (r , s , t) is not nearly quasi triple zero of E for any t ∈ K , and assume rK ⊈ E + J(𝔍)  
and  sK ⊊ E + J(𝔍), it follows that rt1 ∉ E + J(𝔍) and  st2 ∉ E + J(𝔍)  for some t1, t2 ∈ K. If 0≠ rst1∈E with rt1∉E+ J(𝔍) 
and E is a WNQP submodule for 𝔍 then sm1∈ E + J(𝔍). Since (r , s , t) is not nearly quasi triple zero of E, then st∈E + 
J(𝔍). In similar way since (r , s , t) is not nearly quasi triple zero of E and st2∈E + J(𝔍) then rt2∈E + J(𝔍), thus rs(t1 + 
t2)∈E and (r, s, t1 + t2) is not nearly quasi triple zero of E, then either r(t1 + t2) ∈ E + J(𝔍) or s(t1 + t2) ∈E + J(𝔍). If r(t1 
+t2)=rt1 + rt2∈E + J(𝔍) and since    rt2∈E + J(𝔍) we have rt1 ∈E + J(𝔍) which is a contradiction. If s(t1 + t2)=st1 + st2∈E 
+ J(𝔍)  and  since st1∈E + J(𝔍), then st2∈E + J(𝔍) which is a contradiction. Thus rK⊆E + J(𝔍)  or sK⊆E + J( 𝔍( . 

Definition 2.3 Let E be a WNQP submodule of 𝔍 with IJK ⊆ E for some ideals I, J in R and some submodule K for 𝔍, 
we say that E is a free nearly quasi triple zero with respect to IJK. If (r , s , t) is not nearly quasi triple zero of E for 
any r, s ∈ R  and  t ∈ K, that is either rt ∈ E + J(𝔍) or st ∈ E + J(𝔍). 

Proposition 2.4 Let A be a WNQP submodule for 𝔍 with IJK⊆E for some ideals I, J in R and some submodule K for 𝔍. 
If E is a free nearly quasi triple zero with respect IJK, then either IK ⊆ E + J(𝔍) or JK ⊆ E + J(𝔍). 

Proof Suppose that E is a free nearly quasi triple zero with respect to IJK and IK⊈E + J(𝔍)  and  JK ⊈E + J(𝔍), implies 
that rK⊈E + J(𝔍) and sK ⊈E + J(𝔍) for some r ∈ I, s ∈ J. Since rsK ⊆ E and E is a free nearly quasi triple zero with 
respect to IJK, then  rK⊆ E + J(𝔍) or sK⊆ E + J(𝔍) which is a contradiction. Thus IK ⊆ E + J(𝔍) or JK ⊆ E + J(𝔍). 

The following propositions give some properties of nearly quasi triple zero. 

Proposition 2.5 Let E be a WNQP submodule for 𝔍 with (r , s , t) is a nearly quasi triple zero of E for some  r, s ∈ R,  t 
∈ 𝔍. Then rsE=(0). 

Proof Suppose that rsE ≠ (0), then rsa ≠ 0 for some a∈E. But (r , s , t) is a nearly quasi triple zero of E, implies that rst 
= 0, rt ∉ E + J(𝔍) and st ∉ E + J(𝔍). But 0 ≠ rsa ∈ E and E is a WNQP submodule for 𝔍, then either ra ∈ E + J(𝔍) or sa ∈ 
E + J(𝔍). Since 0≠rs(t + a)=rst + rsa =rsa∈E, implies that  r(t + a) = rt+ ra∈ E + J(𝔍) or s(t + a) = st + sa ∈ E + J(𝔍). If rt 
+ ra∈ E + J(𝔍)  and ra∈ E + J(𝔍) then rt ∈ E + J(𝔍) which is  a contradiction. If sm + sa ∈ E + J(𝔍)  and  sa ∈ E + J(𝔍), 
then st ∈ E + J(𝔍) which is a contradiction. Hence  rsA  = (0). 

Proposition 2.6 Let E be WNQP submodule for 𝔍 with (r , s , t) is a nearly quasi triple zero of E for some r, s ∈ R, t ∈ 
𝔍. Then r[E:R𝔍]t = (0). 

Proof Suppose that r[E:R𝔍]t  ≠ (0), it follows that   rct ≠ 0 for some c ∈ [E:R𝔍]. But (r , s , t) is a nearly quasi triple zero 
of E and rst = 0, rt ∉ E + J(𝔍)  and  st ∉ E + J(𝔍). Since 0 ≠ rct ∈ E and E is a WNQP submodule for 𝔍, then either   rt ∈ 
E + J(𝔍)   or ct ∈ E + J(𝔍). Now 0 ≠ r(s + c)t = rst + rct ∈E, implies that either   rt ∈ E + J(𝔍)   or  (s + c)t = st + ct ∈ E + 
J(𝔍). But ct ∈ E + J(𝔍), implies that  st ∈E+ J(𝔍) which is a contradiction. Thus r[E:R𝔍]t = (0). 

Proposition 2.7 Let E be a WNQP submodule for 𝔍 such that (r , s , t) is a nearly quasi triple zero of E for some r, s ∈ 
R, t ∈ 𝔍. Then s[E:R𝔍]t = (0). 

Proof Similar way of propasition 2.6. 
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Proposition 2.8 Let E be a WNQP submodule for 𝔍 such that (r , s , t) is a nearly quasi triple zero of E for some r, s ∈ 
R, t ∈ 𝔍. Then [E:R𝔍][E:R𝔍]t = (0). 

Proof Assume that [E:R𝔍] [E:R𝔍]t ≠ (0), then there exists r1, r2 ∈ [E:R𝔍] such that r1r2t ≠ 0, then by proposition (2.6) 
and proposition (2.7) we have (r+r1)(s+r2)t=rst+r r2t + r1st + r1r2t = r1r2t ≠ 0 , implies that 0 ≠ (r + r1)(s + r2)t ∈E. 
Since E is a WNQP submodule of 𝔍, it follows that either (r + r1)t ∈ E + J(𝔍) or (s +r2)t ∈ E + J(𝔍). Thus rt ∈ E + J(𝔍) or 
st ∈ E + J(𝔍) which is a contradiction. Thus [E:R𝔍] [E:R𝔍]t = (0). 

Corollary 2.9 Let E be a WNQP submodule for 𝔍 such that (r , s , t) is a nearly quasi triple zero of E for some r, s ∈ R, 
t ∈ 𝔍. Then r[E:R𝔍] E = (0) 

Proof Follows by propositions 2.5 and 2.6. 

Corollary 2.10 Let E be a WNQP submodule for 𝔍 such that (r , s , t) is a nearly quasi triple zero of E for some r, s ∈ 
R, t ∈ 𝔍. Then s[E:R𝔍]E = (0). 

Proof Follows by propositions 2.5 and 2.6. 

3. Characterizations of WNQP Submodule in Multiplication Modules. 

In this part we introduced some characterizations of WNQP submodule in class of multiplication modules. 

Proposition 3.1 Let 𝔍 be multiplication R- module and E⊊ 𝔍. Then A is a WNQP for 𝔍 if and only if for all (0) ≠ BCD 
⊆ E, for some submodules B, C and D  in 𝔍 , implies that either BD ⊆ E + J(𝔍)   or   CD ⊆ E + J(𝔍). 

Proof (⟹) Suppose (0)≠BCD⊆E, for some submodules B, C and D in 𝔍. Since 𝔍 is a multiplication, then  B = I1𝔍  ,  C = 
I2𝔍  ,  D = I3𝔍   for some ideals  I1 , I2 , and  I3 in R, hence  (0)≠ I1 I2  I3 𝔍 ⊆ E. But E is WNQP submodule for 𝔍 then by 
[1,prop. (2.8)], we have either I1 I3 𝔍 ⊆E + J(𝔍) or I2 I3 𝔍 ⊆E + J(𝔍), hence either   BD ⊆ E + J(𝔍)    or  CD ⊆ E + J(𝔍). 

(⟸) Assume (0) ≠ I1 I2 L ⊆ E, for some ideals I1 ,I2 in R, and L is a submodule of 𝔍. But 𝔍 is a multiplication, so  L = I3 
𝔍  for some ideal I3 for R, that is  (0) ≠ I1 I2 I3 𝔍 ⊆ E implies that   BCL ⊆ E  for   B = I1 𝔍 ,   C = I2 𝔍   by hypothesis  
either BL ⊆ E + J(𝔍) or CL ⊆ E + J(𝔍), that is I1 L ⊆ E + J(𝔍) or I2 L ⊆ E + J(𝔍). Hence by [1, prop. 2.8] E is a WNQP 
submodule for 𝔍. 

As a direct application of proposition 3.1 we have these results. 

Corollary 3.2 Let 𝔍 be multiplication R- module and E⊊ 𝔍. Then E is a WNQP if and only if for all   (0) ≠ BCt ⊆ E, for 
some submodules B , C in 𝔍,  and  t ∈ 𝔍, implies that either Bt ⊆ E + J(𝔍) or Ct ⊆ E + J(𝔍). 

Corollary 3.3 Let 𝔍 be a multiplication R- module and E⊊ 𝔍. Then E is a WNQP submodule of 𝔍 if and only if for all 
(0) ≠ t1 B t2 ⊆ E, for some t1, t2 ∈ 𝔍, and B is a submodule for 𝔍 implies that either t1t2 ⊆ E + J(𝔍) or Bt2 ⊆ E + J(𝔍). 

Corollary 3.4 Let 𝔍 be a multiplication R- module and E⊊ 𝔍. Then E is a WNQP submodule of 𝔍 if and only if 
whenever t1t2t3 ⊆ E + J(𝔍) for t1 , t2 , t3 of  𝔍 , implies that either t1t3 ⊆ E + J(𝔍)  or  t2t3 ⊆ E + J(𝔍). 

We need to recall this lemma 

Lemma 3.5 [12, prop. 1.11] If   be content module then J(𝔍) = J(R) 𝔍. 

Proposition 3.6 Let 𝔍 be a multiplication R- module and E ⊊𝔍. Then E is a WNQP submodule for 𝔍 if and only if [E:R 

𝔍] is a WNQP for R. 

Proof (⟹) Suppose (0) ≠ I1 I2 I3 ⊆ [E:R 𝔍]  for  I1, I2, I3 are ideals in R, implies that  (0) ≠ I1 I2 (I , 𝔍) ⊆ E. But 𝔍 is a 
multiplication, then (0) ≠ BCD ⊆ E, Where  B = I1 𝔍, C = I2 𝔍 and D = I3 𝔍. Since E is a WNQP then by proposition (3.1) 
either    BD ⊆ E + J(𝔍) or  CD ⊆ E + J(𝔍), that is either I1I3𝔍 ⊆ E + J(𝔍) or I2I3𝔍⊆ E + J(𝔍). But 𝔍 is contain and 
multiplication, then by lemma (3.5) J(𝔍) = J(R) 𝔍  and  E = [E :R 𝔍] 𝔍. Thus either   I1 I3 𝔍 ⊆ [E :R 𝔍] 𝔍 + J(R) 𝔍  or  I2I3𝔍 
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⊆ [E :R 𝔍] 𝔍 + J(R) 𝔍,  it follows that  I1 I3 ⊆ [E:R 𝔍] + J(R) or I2 I3 ⊆ [E :R 𝔍] + J(R). Hence by  [1, prop. (2.8)] [E :R 𝔍] is a 
WNQP ideal for R.  

(⟸) Assume (0) ≠ rsB ⊆ E, for r, s ∈ R, and B is a submodule for 𝔍. Since 𝔍 is a multiplication so B = I for some ideal I 
for R, hence (0) ≠ rsI𝔍 ⊆ E, it follows that rsI ⊆ [E:R 𝔍]. Since [E:R 𝔍] is a WNQP  then by [1 , prop. (2.7)] either rI ⊆ 
[E:R 𝔍] + J(R) or sI ⊆ [E :R 𝔍] + J(R) implies that either rI𝔍 ⊆ [E:R 𝔍] 𝔍 + J(R) 𝔍 or sI𝔍 ⊆ [E:R 𝔍] 𝔍 + J(R) 𝔍. But 𝔍 is 
content and multiplication, then J(R) 𝔍 = J(𝔍)  and [E :R 𝔍] 𝔍 = E. Thus either rB ⊆ E + J(𝔍) or sB ⊆ E +J(𝔍). Hence by 
[1, prop. 2.7] E is a WNQP submodule for 𝔍. 

Lemma 3.7 [13, Coro. of Theo. 9] “Let 𝔍 be a finitely generated multiplication R-module and I, J are ideals in R. 
Then I 𝔍 ⊆J 𝔍 if and only if I⊆ J+annR(𝔍)”. 

Proposition 3.8 Let 𝔍 be a finitely generated multiplication content R-module and I is a proper ideal of R with 
annR(𝔍) ⊆ I. Then I is a WNQP ideal of R if and only if  I𝔍  is a WNQP submodule of 𝔍. 

Proof (⟹) Suppose (0) ≠ rst ∈ I𝔍, for r, s ∈ R,  t ∈ 𝔍. Since 𝔍 is a multiplication, so t = Rt=At for some ideal A in R, 
hence (0) ≠ rsA𝔍 ⊆ I𝔍, implies that by lemma (2.7) (0) ≠ rsA ⊆ I + annR(𝔍). But annR(𝔍) ⊆ I, so I + annR(𝔍) = I, that is 
(0) ≠ rsA ⊆ A. Since I is a WNQP ideal for R, then by [1 , prop.2.2] either rA⊆ I + J(R) or sA ⊆ I + J(R), imples that 
either rA𝔍 ⊆ I 𝔍 + J(R) 𝔍 or sA𝔍 ⊆ I 𝔍 + J(R) 𝔍. But is content module, then by lemma (3.5) J(R) 𝔍 = J(𝔍). Thus, either 
rt ∈ I𝔍 + J(𝔍)  or   st ∈ I𝔍 + J(𝔍). 

(⟸)  Assume 0 ≠ rsL ⊆ I   for  r, s ∈ R, L is an ideal for R, then 0 ≠ rsL𝔍 ⊆ I 𝔍. Since I is WNQP submodule for 𝔍, hence 
by [1, prop. (2.7)] either rL𝔍 ⊆ L 𝔍 + J(𝔍) or sL𝔍 ⊆ L 𝔍 + J(𝔍). But  𝔍 is content module, then   J(𝔍) = J(R) 𝔍, it follows 
that   either  rL𝔍 ⊆ L 𝔍 + J(R) 𝔍   or  sL𝔍 ⊆ L 𝔍 + J(R) 𝔍, that is   either    rL ⊆ I + J(R)  or  sL ⊆ I + J(R). Thus  I is a 
WNQP ideal for R. 

    It is well known that cyclic module is multiplication [14], and cyclic module is finitely generated [2]  we get the 
following result. 

Corollary 3.9 Let 𝔍 be a cyclic content R- module and I is a proper ideal of R with annR(𝔍) ⊆ I. Then I is a WNQP 
ideal of R if and only if   I𝔍 is a WNQP submodule of 𝔍. 

“Recall that an 𝑅-module 𝔍 is finitely generated if 𝔍 = 𝑅𝑥1 + 𝑅𝑥2 +⋯+ 𝑅𝑥𝑛 where 𝑥1, 𝑥2,….., 𝑥𝑛 ∈ 𝔍” [15]. 

From proposition 2.6 and proposition 2.8 we get the following results. 

Corollary 3.10 Let 𝔍 be a finitely generated multiplication content R-module and E⊊𝔍. Then the following 
statements are equivalent: 

1- E is a WNQP submodule of 𝔍. 

2- [E : 𝔍] is WNQP ideal of R. 

3- E = I for some WNQP ideal I of R with annR(𝔍)⊆I. 

Corollary 3.11 Let 𝔍 be cyclic content R- module and E⊊𝔍. Then the following statements are equivalent: 

1- E is a WNQP submodule of 𝔍. 

2- [E : 𝔍] is WNQP ideal of R. 

3- E = I for some WNQP ideal I of R with annR(𝔍)⊆I. 

4. WNQP Radical Submodules. 

Definition 4.1 Let 𝔍 be an R-module and E be a submodule for 𝔍. If there is a WNQP submodule for 𝔍 which contain 
E, then the intersection of all WNQP submodules for   which containing E is called WNQP radical for E, denoted by 
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WNQP rad(E). If there is no WNQP submodule for 𝔍 containing E, then WNQP rad(E) = 𝔍. If 𝔍=R and I is an ideal in 
R, then WNQP rad(I) is the intersection of all WNQP ideals for R containing I. 

The following proposition gives basic properties of WNQP radical of submodule. 

Proposition 4.2 Let E, B be submodule of 𝔍. Then the following are satisfy 

1- E ⊆ WNQP rad(E). 

2- If E ⊆ B, then WNQP rad(E) ⊆ WNQP rad(B). 

3- WNQP rad(WNQP rad(E)) = WNQP rad(E). 

4- WNQP rad(E + B) = WNQP rad(WNQP rad(E) + WNQP rad(B)). 

Proof (1) Hold from definition of WNQP rad(E). 

(2) Suppose that E⊆B and K be a WNQP submodule of 𝔍 with B⊆K, then E⊆B⊆K implies that E⊆K. Thus WNQP 
rad(E) ⊆ WNQP rad(B). 

(3) From part (1) and part (2) we have WNQP rad(E) ⊆ WNQP rad(WNQP rad(E)). But from definition of WNQP 
rad(E)  we have WNQP rad(WNQP rad(E)) is the intersection of all WNQP submodule K of 𝔍  with WNQP rad(E) ⊆ K. 
Again by part (1) E ⊆ WNQP rad(E), implies that WNQP rad(WNQP rad(E)) ⊆ WNQP rad(E). Thus WNQP rad(WNQP 
rad(E)) = WNQP rad(E). 

(4) Since E + B ⊆ WNQP rad(E) + WNQP rad(B). Hence by part (2) we have WNQP rad(E + B) ⊆ WNQP rad(WNQP 
rad(E) + WNQP rad(B). Let K be a WNQP submodule of 𝔍 with E + B ⊆ K. We must show that WNQP rad(E) + WNQP 
rad(B) ⊆ K. Since E + B ⊆ K and E ⊆ E + B,  B ⊆ E + B then E⊆K, B⊆K and WNQP rad(E)⊆K and WNQP rad(B)⊆K and 
WNQP rad(B) ⊆ B, so WNQP rad(E)+WNQP rad(B) ⊆ K,  thus we have  WNQP rad ( WNQP rad(E)+WNQP rad(B) ) ⊆ 
WNQP rad(E+B). Hence WNQP rad(WNQP rad(E)+ WNQP rad(B)) ⊆ WNQP rad(E + B). 

Proposition 4.3 Let E, B be submodule of 𝔍 with every WNQP submodule of 𝔍 which contain E∩B is completely 
irreducible submodule of 𝔍. Then WNQP rad(E ∩ B) =WNQP rad(E) ∩ WNQP rad(B). 

Proof Since E ∩ B ⊆ B,  and E ∩ B ⊆B,  then by part (2) of proposition 4.2 we have  WNQP rad(E ∩ B) ⊆ WNQP 
rad(E) and WNQP rad(E∩B) ⊆ WNQP rad(B) , implies that   WNQP rad(E ∩ B) ⊆   (WNQP rad(E) + WNQP rad(B)). If  
WNQP rad(E ∩ B) = 𝔍,  then WNQP rad(B) = WNQP rad(E) = 𝔍 , implies that WNQP rad(E ∩ B) = WNQP rad(E) ∩ 
WNQP rad(B). If WNQP rad(E ∩ B) ≠ 𝔍, then there exists  a WNQP submodule K of 𝔍 such that E ∩ B ⊆ K , implies 
that either E ⊆ K or B ⊆ K, that is either  WNQP rad(E) ⊆ K or WNQP rad(B) ⊆ K. But every  WNQP submodule of 𝔍 
containing E∩B is  completely  irreducible, then either WNQP rad(E) ⊆ WNQP rad(E ∩ B) or WNQP rad(B) ⊆ WNQP 
rad(E ∩ B). Hence WNQP rad(E) ∩ WNQP rad(B) ⊆ WNQP rad(E ∩ B), that is WNQP rad(E ∩ B) = WNQP rad(E) ∩ 
WNQP rad(B). 

“Recall that a submodule E of R-module 𝔍 is called maximal submodule if E⊊K, then K=R; K is submodule of 𝔍 [16]”. 

Proposition 4.4 Let 𝔍 be finitely generated R-module and E is a submodule for 𝔍. Then WNQP rad(E) = 𝔍  if and 
only if  E = 𝔍. 

Proof (⟹) Assume E ≠ 𝔍, and for 𝔍 is finitely generated , then there is maximal submodule L for 𝔍 such that E ⊆ L, it 
follows that L is a WNQP submodule of 𝔍. Thus WNQP rad(E)⊆L which is a contradiction. Thus E = 𝔍.  

(⟸) If E = 𝔍, implies that WNQP rad(E) = WNQP rad(𝔍) = 𝔍.    

“Recall that a proper ideal I of a ring R is called a prime ideal, if whenever ab∈I, for a, b∈R implies that either a∈I or 
b∈I [17]”. 
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Proposition 4.5 Let 𝔍 be multiplication R-module with annR(𝔍) is a prime ideal for R and E, B are submodule for 𝔍. 
Then E + B = 𝔍 if and only if  WNQP rad(E) + WNQP rad(B) = 𝔍. 

Proof (⟹)  Since 𝔍 is a multiplication with annR(𝔍) is a prime ideal then by [18, Coro. 3.6] 𝔍 is finitely generated. 
Thus by proposition 4.4 WNQP rad(E + B)=𝔍, it follows by proposition 4.2(4) WNQP rad(WNQP rad(E) + WNQP 
rad(B)) = 𝔍. Again by proposition 4.4 we get WNQP rad(E)+WNQP rad(B)= 𝔍. 

(⟸)  Since WNQP rad(E) + WNQP rad(B) = 𝔍, then by proposition 4.4 we get WNQP rad(WNQP rad(E + WNQP 
rad(B))=𝔍, that is by proposition 4.2(4) we get WNQP rad(E + B) = 𝔍. Thus E + B =𝔍. 

Proposition 4.6 If WNQP rad(E) = 𝔍 then WNQP rad([E:R 𝔍] 𝔍) ⊆ WNQP rad(E). Now, let B be a WNQP submodule 
for 𝔍 contain E, then [E:R 𝔍] ⊆ [B:R 𝔍]. But B is WNQP submodule for 𝔍 with J(𝔍) ⊆ B, we prove that [B :R 𝔍] is a 
WNQP ideal for R. Let 0 ≠ abt ∈ [B:R 𝔍], for a, b∈R implies that (0) ≠ ab(t𝔍) ⊆ B. Since B is a WNQP then either at𝔍 ⊆ 
B + J(𝔍) or bt𝔍 ⊆ B + J(𝔍). But J(𝔍) ⊆ B, implies that  B + J(𝔍) = B. Thus either at𝔍 ⊆ B or bt𝔍 ⊆ B, then  either at ∈ [B: 
R 𝔍] ⊆ [B:R 𝔍] + J(R) or bt ∈ [B:R 𝔍] ⊆ [B:R 𝔍] + J(R) . Hence [B:R 𝔍] is a WNQP ideal of R. Therefore WNQP rad([E:R 𝔍] 
𝔍) ⊆ [B:R 𝔍] 𝔍 ⊆ B. That is WNQP rad([E:R 𝔍] 𝔍) ⊆ WNQP rad(E). 
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