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A B S T R A C T 

 

       In this paper we introduce some fixed point theorems type 

contractions on generalized Banach space and we introduce a class of 

enriched Chatterjea  mapping, enriched Kannan contraction mappings, 

This section is repeated enriched Chatterjea contraction mapping and 

enriched Kannan and enriched Chatterjea contraction mapping. And we 

show that these mappings must have unique fixed points in generalized 

Banach space. 
 

MSC.. 47H10, 54J25. 
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1. Introduction: 
       We introduce enriched contractions, a big class of contractive mappings, a section 

that involves and several others contractive mappings, nonexpansive mappings and 

Picard–Banach contractions. We showed that each there is an unique fixed point in 

enriched contraction that can be approximated. using a Krasnoselskij iterative approach 

that is adequate, in the theory of fixed points proven to be either corollaries or 

ramifications of the primary findings of the most important outcomes of this section . 
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The Picard–Banach fixed point theorem, throughout the last nine decades a substantial 

body of work has emerged. See, for example, the monographs [4,13,17], as well as the 

references to them, furthermore, the picard Banach fixed point theorems and several of 

it's expansions have shown to be extremely useful and adaptable in the solution of a 

variety of nonlinear problems: integral equations, differential equations, integro-

differental equations, variational inequalities, optimization problems, etc, see [4,17,20] 

and [21]. 

Following that, Fixed points of enriched Banach contractions are studied for their 

existence and uniqueness, for the Kransnoselskij iteration, as well as a strong 

convergence theorem, It is used to find the fixed points of enriched Banach 

contractions, is proved. A local iteration of the Picard–Banach fixed point theorem is 

also discussed, after which apply the key findings to Banach contractions with 

asymptotic enriched. 

Definition 1.1[16] :If M nonempty  is a linear space having s ≥ 1, let ‖. ‖ dnotes a 

functon from linear space M into R that satisfies the following axioms: 

1. for all 𝑥 ∈  𝛭  ‖𝑥 ‖ ≥  0,  ‖𝑥 ‖ =  0   if and only if 𝑥 =  0; 

2. for all 𝑥 , 𝑦 ∈  𝛭  , ‖𝑥 + 𝑦 ‖  ≤  𝑠 [‖𝑥 ‖  + ‖𝑦 ‖]; 

3. for all 𝑥 ∈  𝛭 , 𝛼 ∈  𝑅 , ‖𝛼𝑥 ‖  ≤  |𝛼|‖𝑥 ‖;  

 (M, ‖. ‖ )is called generalized normed linear space. If for s = 1, it reduces to standard 

normed linear space.  

Definition 1.2[16] :A Banach space (M, ‖. ‖ ) is a normed vector space such that M is 

complete under the metric induced by the ‖. ‖. 

Definition 1.3[16] :A linear generalized normed space in which every Cauchy sequence 

is convergent is called generalized Banach space.  

Definition 1.4[16] Let (M, ‖. ‖ ) be a generalized normed space then the sequence {𝑥n} 

in M is called  

1. Cauchy sequence iff for each ε > 0, there exist n(ε) ∈ Ν such that for all m,n ≥ 

n(ε) we have  ‖𝑥𝑛 − 𝑥𝑚 ‖ < 𝜀.  

2. Convergent sequence iff there exist x ∈ M such that for all ε > 0, there exist n(ε) 

∈ Ν such that for every n ≥ n(ε) we have ‖𝑥𝑛 −  𝑥 ‖ < 𝜀.  
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Lemma 1.1 [10]. Let (H,‖. ‖) be a generalized Banach space with a real number s ≥ 1 , 

and F self-mapping on  H, suppose that {un} is a sequence in H  induced by un+1 = Fun   

if 

    ‖𝑢𝑛−𝑢𝑛+1‖ ≤ 𝛼 ‖𝑢𝑛−1 − 𝑢𝑛‖, for all,  n ∈  ℕ,                       (1.1) 

where α ∈ [ 0 , 1 ). Then {un} is a Cauchy sequence.  

Definition 1.5[7]. Let (H, ‖.‖  ) be a linear normed space. A mapping F: H → H is said to 

be a (k , α )-enriched contraction if there exist k∈[0 ,+∞)  and α ∈ [0 , k+1) such that,  

‖𝑘(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ α‖𝑥 − 𝑦‖,    for  all x , y ∈ H,                         (1.2) 

See [6,7,8] and [9], proved that (k , 𝛼 )-enriched contraction and (k , 𝑏 )-enriched 

Kannan mapping have a unique fixed point.  

See [9] Considering a self-mapping T on  𝑋, then for any 𝜆 ∈ (0,1], the so-called 

averaged mapping  T𝜆 given by  

  𝑇𝜆x = (1 – 𝜆)x + 𝜆Tx, for all x ∈ 𝐻,                                (1.3) 

has the property  that Fix(T𝜆) = Fix(T).  

2. Enriched contraction conditions in generalized Banach space 

Definition (2.1): Let (𝛨,‖. ‖) be a generalized Banach space and, s ≥ 1. A mapping F : 

𝛨 → 𝛨 is said to be an enriched Chatterjea  mapping  or call it (k , 𝛽, s)-enriched 

Chatterjea  mapping, such that, 

‖𝑘(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝛽[‖(𝑘 + 1)(𝑥 − 𝑦) + 𝑦 − 𝐹𝑦‖ 

+ ‖(𝑘 + 1)(𝑦 − 𝑥) + 𝑥 − 𝐹𝑥‖], for all  x , y ∈ 𝛨  (2.1) 

where 𝛽 ∈ [0 , 
  1 

2
),  ( 𝛽s <  

1

 2  
 ) and  𝑘 ≥ 0. 

Theorem (2.1): Let (𝛨,‖. ‖) be a generalized Banach space, and, F : 𝛨 → 𝛨  a (k , 𝛽, s)-

enriched Chatterjea  mapping. Then F has a unique fixed point, and there exists 𝜆 ∈ 

(0,1] such that, 

un+1 = (1 - 𝜆)un + 𝜆Fun,   n ≥ 0,                                           (2.2) 

where {u𝑛} Converges to  u*, for any u0 ∈ Η, n= 0,1,2,3,… 
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Proof: Consider the averaged F𝜆 defined by (1.3)  for 𝜆 =
1

𝑘+1
 , 0 < 𝜆 < 1  

we show that in this case k= 
 1

 𝜆 
− 1 and the contractive condition (2.1) 

‖(
 1

 𝜆 
− 1 )(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝛽[‖(𝑘 + 1)(𝑥 − 𝑦) + 𝑦 − 𝐹𝑦‖  

+‖(𝑘 + 1)(𝑦 − 𝑥) + 𝑥 − 𝐹𝑥‖], 

which can be written in the same way as,  

‖𝐹𝜆𝑥 − 𝐹𝜆𝑦‖ ≤ 𝛽( ‖𝑥 − 𝐹𝜆𝑦‖+ ‖𝑦 − 𝐹𝜆𝑥‖),    for all x , y ∈ 𝛨,             (1.3) 

we show that F𝜆 is a Chatterjea  mapping. 

as stated by (9), the iterative {u𝑛}n=0
∞  define by (1.2) is the Picard iteration in relation 

to F𝜆, that is, 

un+1  = 𝐹𝜆𝑢𝑛, n ≥ 0. 

let x = un   and   y = xn – 1  in  (1.3) to get  

 

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤ 𝛽( ‖𝑢𝑛 − 𝑢𝑛‖+ ‖𝑢𝑛−1 − 𝑢𝑛+1‖ )   

 ‖𝑢𝑛+1 − 𝑢𝑛 ‖   ≤  𝛽s( ‖𝑢𝑛−1 − 𝑢𝑛‖ + ‖𝑢𝑛 − 𝑢𝑛+1‖ ), 

we get,  

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤  
 𝛽𝑠

1− 𝛽𝑠 
 ‖𝑢𝑛−1 − 𝑢𝑛‖  , where  𝜇 = 

 𝛽𝑠

1− 𝛽𝑠 
 < 1   ( 𝛽𝑠 <  

1

 2  
 ) 

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤  𝜇 ‖𝑢𝑛−1 − 𝑢𝑛‖ 

By Lemma  ( 1.1 ) we can say that {un} is a Cauchy sequence in (Η,‖. ‖). 

Since (𝛨,‖. ‖) is a generalized Banach space, {un} is a converges to some 

 u* ∈ 𝛨 as n→ +∞. 

We will show  that u* is the fixed point of F. 

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝑢𝑛+1 − 𝐹𝜆𝑢∗‖ ] 

                   = s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝐹𝜆𝑢𝑛 − 𝐹𝜆𝑢∗‖ ] 

                   ≤ s  ‖𝑢∗ − 𝑢𝑛+1‖ +s[ 𝛽( ‖𝑢𝑛 − 𝐹𝜆𝑢∗‖+ ‖𝑢∗ − 𝐹𝜆𝑢𝑛‖ ) ] 

                   = s  ‖𝑢∗ − 𝑢𝑛+1‖ +s[ 𝛽( ‖𝑢𝑛 − 𝐹𝜆𝑢∗‖+ ‖𝑢∗ − 𝑢𝑛+1‖ ) ] 

By taking lim
𝑛→∞

we get, 

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ s𝛽 ‖𝑢∗ − 𝐹𝜆𝑢∗‖    ⟹ ‖𝑢∗ − 𝐹𝜆𝑢∗‖ = 0  i.e. 𝐹𝜆𝑢∗ = 𝑢∗ 

we prove 𝑢∗ is the fixed point of  F𝜆. 

Now, we have to show that 𝑢∗ is unique fixed point of F𝜆. 
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Assume that v* is deferent fixed point of F𝜆 then 𝐹𝜆v* = v*,  

and ‖𝑢∗ − 𝑣∗‖ =‖𝐹𝜆𝑢∗ − 𝐹𝜆𝑣∗‖ ≤ 𝛽( ‖𝑢∗ − 𝐹𝜆𝑣∗‖+ ‖𝑣∗ − 𝐹𝜆𝑢∗‖ ) 

‖𝑢∗ − 𝑣∗‖ ≤ 2𝛽 ‖𝑢∗ − 𝑣∗‖, since   𝛽 <  
1 

2
 . 

Which is a contradiction   ‖𝑢∗ − 𝑣∗‖ = 0  ⟹   𝑢∗ = 𝑣∗ 

As a result, 𝑢∗ is the unique fixed point. 

Definition (2.2): Let (𝛨,‖. ‖) be a generalized Banach space and s ≥ 1. A mapping F : 

𝛨 → 𝛨 is said to be an enriched Kannan contraction mapping  or call it (k , 𝜃 , 𝛼, s )-

enriched Kannan contraction mapping, such that,  

‖𝑘(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝜃‖𝑥 − 𝑦‖ + 𝛼( ‖𝑥 − 𝐹𝑥‖+ ‖𝑦 − 𝐹𝑦‖ ),               (2.1) 

for  all x, y ∈ 𝛨, 

where 𝛼 ∈ [0 , 
  1 

2
), 𝜃 ∈ [0 , 1), ( 𝜃 + 2 𝛼 <  1 ), 𝛼s <  

 1 

2
 and    𝑘 ≥ 0. 

Theorem (2.2): Let (Η,‖. ‖) be a Banach space, and F : 𝛨 → 𝛨  a (k , 𝜃 , 𝛼 , s)-enriched 

Kannan contraction mapping. Then F has a unique fixed point, and there exists 𝜆 ∈ (0,1] 

such that, 

un+1 = (1 - 𝜆)un + 𝜆Fun, n ≥ 0,                                                             (2.2) 

where {𝑢𝑛} Converges to u*, for any u0 ∈ Η, n= 0,1,2,3,…, 

Proof: Consider the averaged F𝜆 defined by (1.3)  for 𝜆 =
1

𝑘+1
 , 0 < 𝜆 < 1  

we show that in this case k= 
 1

 𝜆 
− 1 and the contractive condition (2.2), 

‖(
 1

 𝜆 
− 1 )(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝜃‖𝑥 − 𝑦‖ + 𝛼( ‖𝑥 − 𝐹𝑥‖+ ‖𝑦 − 𝐹𝑦‖ ) 

which can be written in the same way as,  

‖𝐹𝜆𝑥 − 𝐹𝜆𝑦‖ ≤  𝜃𝜆‖𝑥 − 𝑦‖ +  𝛼( ‖𝑥 − 𝐹𝜆𝑥‖+ ‖𝑦 − 𝐹𝜆𝑦‖ ),  

for all x, y ∈ 𝛨,  since 𝜃𝜆 < 𝜃,   

we show that, 

‖𝐹𝜆𝑥 − 𝐹𝜆𝑦‖ ≤  𝜃‖𝑥 − 𝑦‖ +  𝛽( ‖𝑥 − 𝐹𝜆𝑥‖+ ‖𝑦 − 𝐹𝜆𝑦‖ ),                         (2.3) 

for all x , y ∈ Η,             

We show that F𝜆 is a Kannan contraction mapping. 
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as stated by (1.3) , the iterative {𝑢𝑛} defined by (2.2) is the Picard iteration associated 

to F𝜆, that is un+1  = 𝐹𝜆𝑢𝑛 , n ≥ 0. 

let x = un   and   y = xn – 1  in  (2.3) to get,  

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤ ‖𝐹𝜆𝑢𝑛 − 𝐹𝜆𝑢𝑛−1 ‖ 

                   = 𝜃‖𝑢𝑛 − 𝑢𝑛−1 ‖ + 𝛼(‖𝑢𝑛 − 𝑢𝑛+1‖+ ‖𝑢𝑛−1 − 𝑢𝑛 ‖ )   

Now we get, 

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤  
𝜃+ 𝛼

1− 𝛼 
 ‖𝑢𝑛−1 − 𝑢𝑛‖  , where  𝜇 = 

𝜃+ 𝛼

1− 𝛼 
 < 1   ( 𝜃 + 2 𝛼 <  1 ) 

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤  𝜇 ‖𝑢𝑛−1 − 𝑢𝑛‖. 

 

By Lemma  ( 1.1 ) we can say that {un} is a Cauchy sequence in (𝛨,‖. ‖). 

Since (𝛨,‖. ‖) is a generalized Banach space, {un} is a converges to some u* ∈ 𝛨 as n→

∞. 

We will show that u* is the fixed point of F . 

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝑢𝑛+1 − 𝐹𝜆𝑢∗‖ ] 

                   = s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝐹𝜆𝑢𝑛 − 𝐹𝜆𝑢∗‖ ] 

             ≤ s  ‖𝑢∗ − 𝑢𝑛+1‖ +s[𝜃‖𝑢𝑛 − 𝑢∗‖ + 𝛼 ( ‖𝑢𝑛 − 𝐹𝜆𝑢𝑛‖+ ‖𝑢∗ − 𝐹𝜆𝑢∗‖ )] 

             = s  ‖𝑢∗ − 𝑢𝑛+1‖ +s[𝜃‖𝑢𝑛 − 𝑢∗‖ + 𝛼 ( ‖𝑢𝑛 − 𝑢𝑛+1‖+ ‖𝑢∗ − 𝐹𝜆𝑢∗‖ )] 

By taking lim
𝑛→∞

we get, 

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ 𝛼s ‖𝑢∗ − 𝐹𝜆𝑢∗‖, 𝛼𝑠 <  
 1 

2
, 

   ⟹ ‖𝑢∗ − 𝐹𝜆𝑢∗‖ = 0  i.e. 𝐹𝜆𝑢∗ = 𝑢∗ 

we prove 𝑢∗ is the fixed point of  F𝜆. 

Now, we have to showed that 𝑢∗ is unique fixed point of F𝜆. 

Assume  that v* is deferent fixed point of F𝜆 then, 

𝐹𝜆v* = v*  and ‖𝑢∗ − 𝑣∗‖ =‖𝐹𝜆𝑢∗ − 𝐹𝜆𝑣∗‖ ≤  𝜃‖𝑢∗ − 𝑣∗‖ + 𝛼 (‖𝑢∗ − 𝐹𝜆𝑢∗‖ 

+ ‖𝑣∗ − 𝐹𝜆𝑣∗‖) 

‖𝑢∗ − 𝑣∗‖ ≤ 𝜃   ‖𝑢∗ − 𝑣∗‖, since    𝜃  <  1  

Which is a contradiction  ‖𝑢∗ − 𝑦∗‖ = 0  ⟹   𝑢∗ = 𝑦∗ 

As a result, 𝑢∗ is the unique fixed point. 
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Definition (2.3): Let (𝛨,‖. ‖) be a generalized Banach space and s ≥ 1. A mapping F : 

𝛨 → 𝛨 is said to be an enriched Chatterjea contraction mapping  or call it (k , 𝜃 , 𝛽, s )-

enriched Chatterjea contraction mapping, such that, 

‖𝑘(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝜃‖𝑥 − 𝑦‖ + 𝛽[‖(𝑘 + 1)(𝑥 − 𝑦) + 𝑦 − 𝐹𝑦‖ 

+ ‖(𝑘 + 1)(𝑦 − 𝑥) + 𝑥 − 𝐹𝑥‖],                (3.1) 

for  all x , y ∈ 𝛨,   

where 𝛽 ∈ [0 , 
  1 

2
), 𝜃 ∈ [0 , 1), ( 𝜃 + 2 𝛽s <  1 ) and    𝑘 ≥ 0. 

Theorem (2.3). Let (𝛨,‖. ‖) be a Banach space, and F : 𝛨 → 𝛨  a (k , 𝜃 , 𝛽 , s)-enriched 

Chatterjea contraction mapping. Then F has a unique fixed point, and there exists 𝜆 ∈ 

(0,1] such that,  

un+1 = (1 - 𝜆)un + 𝜆Fun,   n ≥ 0                                          (3.2) 

Where {u𝑛} Converges to  u*, for all u0 ∈ Η, 

Proof: Consider the averaged F𝜆 defined by (1.3)  for 𝜆 =
1

𝑘+1
 , 0 < 𝜆 < 1  

we showed that in this case k= 
 1

 𝜆 
− 1 and the contractive condition (3.1) 

‖(
1

 𝜆 
− 1 ) (𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝜃‖𝑥 − 𝑦‖ 

+𝛽[‖(𝑘 + 1)(𝑥 − 𝑦) + 𝑦 − 𝐹𝑦‖+ ‖(𝑘 + 1)(𝑦 − 𝑥) + 𝑥 − 𝐹𝑥‖],  

which can be written in the same way as, 

‖𝐹𝜆𝑥 − 𝐹𝜆𝑦‖ ≤  𝜃𝜆‖𝑥 − 𝑦‖ +  𝛽( ‖𝑥 − 𝐹𝜆𝑦‖+ ‖𝑦 − 𝐹𝜆𝑥‖ ),  

for all x , y ∈ 𝛨,  since 𝜃𝜆 < 𝜃,   

we show that, 

‖𝐹𝜆𝑥 − 𝐹𝜆𝑦‖ ≤  𝜃‖𝑥 − 𝑦‖ +  𝛽( ‖𝑥 − 𝐹𝜆𝑦‖+ ‖𝑦 − 𝐹𝜆𝑥‖ ),                       (3.3) 

for all x , y ∈ 𝛨,              

We show that F𝜆 is a Chatterjea contraction mapping. 

as stated by (1.3), the iterative {u𝑛}n=0
∞  defined by (3.2) is the Picard iteration associated 

to F𝜆, that is, 

un+1  = 𝐹𝜆𝑢𝑛, n ≥ 0. 

let x = un   and   y = xn – 1  in  (3.3) to get,  

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤ ‖𝐹𝜆𝑢𝑛 − 𝐹𝜆𝑢𝑛−1 ‖ 

                   = 𝜃‖𝑢𝑛 − 𝑢𝑛−1 ‖ + 𝛽( ‖𝑢𝑛 − 𝑢𝑛‖+ ‖𝑢𝑛−1 − 𝑢𝑛+1‖ )   
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‖𝑢𝑛+1 − 𝑢𝑛 ‖  ≤ 𝜃‖𝑢𝑛 − 𝑢𝑛−1 ‖ +  𝛽 s[ ‖𝑢𝑛−1 − 𝑢𝑛‖ + ‖𝑢𝑛 − 𝑢𝑛+1‖ ] 

we obtain    

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤  
𝜃+ 𝛽𝑠

1− 𝛽𝑠 
 ‖𝑢𝑛−1 − 𝑢𝑛‖, where  𝜇 = 

 𝜃+ 𝛽𝑠

1− 𝛽𝑠 
 < 1   ( 𝜃 + 2 𝛽s <  1 ) 

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤  𝜇 ‖𝑢𝑛−1 − 𝑢𝑛‖. 

By Lemma  ( 1.1 ) we can say that {un} is a Cauchy sequence in (𝛨,‖. ‖) . 

Since (𝛨,‖. ‖) is a generalized Banach space, {un} is a converges to some 

 u* ∈ 𝛨 as n→ ∞. 

we will showed that u* is the fixed point of F. 

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝑢𝑛+1 − 𝐹𝜆𝑢∗‖ ] 

                   = s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝐹𝜆𝑢𝑛 − 𝐹𝜆𝑢∗‖ ] 

             ≤ s  ‖𝑢∗ − 𝑢𝑛+1‖ +s[𝜃‖𝑢𝑛 − 𝑢∗‖ + 𝛽( ‖𝑢𝑛 − 𝐹𝜆𝑢∗‖+ ‖𝑢∗ − 𝐹𝜆𝑢𝑛‖)] 

             = s  ‖𝑢∗ − 𝑢𝑛+1‖ +s[𝜃‖𝑢𝑛 − 𝑢∗‖ +  𝛽( ‖𝑢𝑛 − 𝐹𝜆𝑢∗‖+ ‖𝑢∗ − 𝑢𝑛+1‖)], 

by taking lim
𝑛→∞

we get,   

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ 𝛽s ‖𝑢∗ − 𝐹𝜆𝑢∗‖, 𝛽𝑠 <  
 1 

2
 

   ⟹ ‖𝑢∗ − 𝐹𝜆𝑢∗‖ = 0  i.e. 𝐹𝜆𝑢∗ = 𝑢∗. 

We showed that 𝑢∗ is the fixed point of  F𝜆. 

Now, we have to show that 𝑢∗ is unique fixed point of F𝜆. 

Assume  that v* is deferent fixed point of F𝜆 then, 

𝐹𝜆v* = v*  and ‖𝑢∗ − 𝑣∗‖ =‖𝐹𝜆𝑢∗ − 𝐹𝜆𝑣∗‖ ≤  𝜃‖𝑢∗ − 𝑣∗‖ + 𝛽( ‖𝑢∗ − 𝐹𝜆𝑣∗‖ 

+ ‖𝑣∗ − 𝐹𝜆𝑢∗‖ ) 

‖𝑢∗ − 𝑣∗‖ ≤ (𝜃  + 2𝛽) ‖𝑢∗ − 𝑣∗‖, since    𝜃  +  2𝛽 <  1, 

which is a contradiction   ‖𝑢∗ − 𝑦∗‖ = 0  ⟹   𝑢∗ = 𝑦∗. 

As a result,  𝑢∗ is the unique fixed point. 

Definition (2.4): Let (𝛨,‖. ‖) be a generalized Banach space and s ≥ 1. A mapping F : 

𝛨 → 𝛨 is said to be an enriched Kannan and Chatterjea contraction mapping  or call it 

(k , 𝛼 , 𝛽 ,s)-enriched contraction mapping, such that,  
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‖𝑘(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝛼(‖𝑥 − 𝐹𝑥‖+ ‖𝑦 − 𝐹𝑦‖) 

+𝛽[‖(𝑘 + 1)(𝑥 − 𝑦) + 𝑦 − 𝐹𝑦‖+ ‖(𝑘 + 1)(𝑦 − 𝑥) + 𝑥 − 𝐹𝑥‖],       (4.1) 

for  all x , y ∈ 𝛨,    

where 𝛽 ∈ [0 , 
  1 

2
)  , 𝛼 ∈ [0 , 1)  , (𝑠(𝛼 + 𝛽) <  

 1 

2
)  and    𝑘 ≥ 0. 

Theorem (2.4): Let (𝛨,‖. ‖) be a generalized Banach space, and, F : 𝛨 → 𝛨  a (k , 𝛼 , 𝛽 

,s)-enriched contraction mapping. Then F has a unique fixed point , and there exists 𝜆 ∈ 

(0,1] such that  

un+1 = (1 - 𝜆)un + 𝜆Fun,   n ≥ 0,                                                           (4.2) 

where {u𝑛} Converges to  u*, for all u0 ∈ 𝛨 , 

Proof: Consider the averaged F𝜆 defined by (1.3)  for 𝜆 =
1

𝑘+1
 , 0 < 𝜆 < 1 , 

we showed that in this case k = 
 1

 𝜆 
− 1 and the contractive condition (4.1) 

‖(
 1

 𝜆 
− 1 )(𝑥 − 𝑦) + 𝐹𝑥 − 𝐹𝑦‖ ≤ 𝛼(‖𝑥 − 𝐹𝑥‖+ ‖𝑦 − 𝐹𝑦‖ 

𝛽[‖(𝑘 + 1)(𝑥 − 𝑦) + 𝑦 − 𝐹𝑦‖+ ‖(𝑘 + 1)(𝑦 − 𝑥) + 𝑥 − 𝐹𝑥‖],  

which can be written in the same way as, 

‖𝐹𝜆𝑥 − 𝐹𝜆𝑦‖ ≤ 𝛼( ‖𝑥 − 𝐹𝜆𝑥‖+ ‖𝑦 − 𝐹𝜆𝑦‖ )+ 𝛽( ‖𝑥 − 𝐹𝜆𝑦‖+ ‖𝑦 − 𝐹𝜆𝑥‖), (4.3) 

for all x , y ∈ 𝛨,  

we showed that F𝜆 is a Kannan mapping. 

According to (1.3), the iterative {u𝑛}n=0
∞  defined by (4.2) is the Picard iteration 

associated to F𝜆, that is, 

𝑢𝑛+1  = 𝐹𝜆𝑢𝑛, n ≥ 0, 

let x = un   and   y = xn – 1  in  (4.3 ) to get, 

‖𝑢𝑛+1 − 𝑢𝑛 ‖ = ‖𝐹𝜆𝑢𝑛 − 𝐹𝜆𝑢𝑛−1 ‖ 

≤ 𝛼(‖𝑢𝑛 − 𝐹𝜆𝑢𝑛 ‖+‖𝑢𝑛−1 − 𝐹𝜆𝑢𝑛−1 ‖) +𝛽(‖𝑢𝑛 − 𝐹𝜆𝑢𝑛−1 ‖+‖𝑢𝑛−1 − 𝐹𝜆𝑢𝑛 ‖) 

=  𝛼 ( ‖𝑢𝑛 − 𝑢𝑛+1‖+ ‖𝑢𝑛−1 − 𝑢𝑛 ‖ ) + 𝛽( ‖𝑢𝑛 − 𝑢𝑛‖+ ‖𝑢𝑛−1 − 𝑢𝑛+1‖ ) 

≤  𝛼 ( ‖𝑢𝑛 − 𝑢𝑛+1‖+ ‖𝑢𝑛−1 − 𝑢𝑛 ‖ )+ 𝛽s( ‖𝑢𝑛−1 − 𝑢𝑛‖ + ‖𝑢𝑛 − 𝑢𝑛+1‖ ) 

now we get, 

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤ 
𝛼+𝛽𝑠

1−(𝛼+𝛽𝑠)  
‖𝑢𝑛−1 − 𝑢𝑛‖, where 𝜇 = 

𝛼+𝛽𝑠

1−(𝛼+𝛽𝑠)  
 < 1, 

(𝑠(𝛼 + 𝛽) <  
 1 

2
)  

‖𝑢𝑛+1 − 𝑢𝑛 ‖ ≤  𝜇 ‖𝑢𝑛−1 − 𝑢𝑛‖ 

By Lemma  ( 1.1 ) we can say that {un} is a Cauchy sequence in (𝛨,‖. ‖). 
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Since (𝛨,‖. ‖) is a generalized Banach space, {un} is a converges to some 

 u* ∈ 𝛨 as n→ ∞. 

we will show that u* is the fixed point of F. 

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝑢𝑛+1 − 𝐹𝜆𝑢∗‖ ] 

                   = s [ ‖𝑢∗ − 𝑢𝑛+1‖ + ‖𝐹𝜆𝑢𝑛 − 𝐹𝜆𝑢∗‖ ] 

         ≤ s  ‖𝑢∗ − 𝑢𝑛+1‖ +s[𝛼 ( ‖𝑢𝑛 − 𝐹𝜆𝑢𝑛‖+ ‖𝑢∗ − 𝐹𝜆𝑢∗‖ )+ 𝛽( ‖𝑢𝑛 − 𝐹𝜆𝑢∗‖ 

+ ‖𝑢∗ − 𝐹𝜆𝑢𝑛‖) ] 

= s  ‖𝑢∗ − 𝑢𝑛+1‖ + s[𝛼 ( ‖𝑢𝑛 − 𝑢𝑛+1‖+ ‖𝑢∗ − 𝐹𝜆𝑢∗‖) + 𝛽( ‖𝑢𝑛 − 𝐹𝜆𝑢∗‖ 

+ ‖𝑢∗ − 𝑢𝑛+1‖) ]. 

By taking lim
𝑛→∞

we get, 

‖𝑢∗ − 𝐹𝜆𝑢∗‖ ≤ 𝑠(𝛼 + 𝛽)  ‖𝑢∗ − 𝐹𝜆𝑢∗‖,  𝑠(𝛼 + 𝛽) <  
 1 

2
 

   ⟹ ‖𝑢∗ − 𝐹𝜆𝑢∗‖ = 0  i.e. 𝐹𝜆𝑢∗ = 𝑢∗ 

we proved, 𝑢∗ is the fixed point of  F𝜆. 

Now, we have to showed that 𝑢∗ is unique fixed point of F𝜆. 

Assume that, v* is deferent fixed point of F𝜆 ,then  F𝜆v* = v*.  

 ‖𝑢∗ − 𝑣∗‖ = ‖𝐹𝜆𝑢∗ − 𝐹𝜆𝑣∗‖ ≤  𝛼 (‖𝑢∗ − 𝐹𝜆𝑢∗‖+ ‖𝑣∗ − 𝐹𝜆𝑣∗‖ )  

                               + 𝛽 ( ‖𝑢∗ − 𝐹𝜆𝑣∗‖+ ‖𝑣∗ − 𝐹𝜆𝑢∗‖ ) 

‖𝑢∗ − 𝑦∗‖ ≤ 2𝛽 ‖𝑢∗ − 𝑦∗‖, since, 2𝛽 <  1, which is a contradiction    

‖𝑢∗ − 𝑦∗‖ = 0  ⟹   𝑢∗ = 𝑦∗ 

i.e. 𝑢∗ is the unique fixed point. 

Remark (2.1). By selecting: 

❖ s = 1 in definition (2.1), we get definition (1) of [6]. 

❖ s = 1and 𝜃 = 0 in definition (2.2), we get definition (2.1) of [5]. 

❖ s = 1and 𝛼 = 0 in definition (2.2), we get definition (2.1) of [7]. 

❖ s = 1 in definition (2.2), we get definition (2.3) of [9]. 
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❖ s = 1and 𝜃 = 0 in definition (2.3), we get definition (1) of [6].  

❖ s = 1and 𝛽 = 0 in definition (2.3), we get definition (2.1) of [7]. 

❖ s = 1 and 𝛽 = 0, in definition (2.4), we get definition (2.1) of [5].  

❖ s = 1 and 𝛼= 0  in definition (2.4), we get definition (1) of [6]. 

Conclusion:  

1. We have demonstrated that each enriched contraction has a single fixed point that may be 

approximated using Kransnoselskij iterations. Specifically, we get the traditional Banach 

contraction principle in the case of a Banach space using the fixed point techniques presented 

in this study. 

2. It's worth noting that enriched contractions retain a basic quality of Picard–Banach 

contractions, namely that each enriched contraction has a single fixed point and is continuous 

(as the definition shows). 
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