

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On *P***-Clean Rings**

Esraa H. Ramzi^b Akram S. Mohammed^a

^{ab}Tikrit University /College of Computer Science and Mathematics, Mathematics Department

asrhkmet@gmail.com akr_tel@tu.edu.iq

ARTICLEINFO

Article history: Received: 15 /04/2022 Rrevised form: 07 /06/2022 Accepted : 12 /06/2022 Available online: 14 /06/2022

Keywords: clean ring, r-clean ring , strongly r-clean ring

ABSTRACT

MSC..

If all the elements of a ring \mathcal{U} can be written as a sum of pure and idempotent elements", the ring is said to be \mathcal{P} -clean. In this paper, we introduce the \mathcal{P} -clean ring nation and look into some of its fundamental properties, examples, and relationship to the clean ring

Each keyword to start on a new line

https://doi.org/10.29304/jqcm.2022.14.2.949

1-Introduction:

" \mathcal{U} denotes an associative ring with identity throughout this paper, U(\mathcal{U}), D(\mathcal{U}), Pu(\mathcal{U}), and J(\mathcal{U}) denoting the units, idempotent, pure elements, and Jacobson radical of W ".

"An element t of a ring \mathcal{W} is called P-clean if t=d+u, where d $\in D(\mathcal{W})$ and u $\in U(\mathcal{W})$, if each element of \mathcal{W} is P-clean, then \mathcal{W} is named P-clean ring. Nicholson[6] was the first to introduce clean rings.

*Corresponding author

Email addresses: asrhkmet@gmail.com

Communicated by 'sub etitor'

Several mathematicians are interested in the topics of clean ring, r-clean ring, π -clean ring, and strongly r-clean" [1,2,3,4,5,7,8and9].

"If $b \in \mathcal{W}$ exists, an element $t \in \mathcal{W}$ "is said to be" pure. Such that t=tb, an element $d \in \mathcal{W}$ is called idempotent if $d^2 = d$, and an element $t \in \mathcal{W}$ is referred to as nilpotent if a positive integer m exists such that $a^m = 0$ ". [7]

"Obviously, every "clean ring" is a P-clean ring; however, We demonstrate a P-clean ring that is not a clean ring. In this work, we discuss the fundamental properties and applications of the P-clean ring ".

Definition 1. 1: If there are $d \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$ such that $t = d + \mathcal{P}$, "an element" $t \in \mathcal{U}$ is known as \mathcal{P} -clean.

Definition1. 2: Let \mathcal{U} represent a ring. If each elements in \mathcal{U} expresses "as the sum of an idempotent" and pure, then \mathcal{U} is called a \mathcal{P} - clean ring.

Examples 1.3:

- 1. The ring $(\mathcal{U}, +, .)$ is a \mathcal{P} -clean ring .
- 2. The ring (Z ,+ , .) is a \mathcal{P} -clean ring .
- 3. The ring $(Z_6, +_6, ._6)$ is a \mathcal{P} -clean ring.
- 4. every field is a \mathcal{P} -clean ring .

2. The main result

Proposition 2. 1: A clean ring *U* is a P – clean ring.

Proof : Allow \mathcal{U} to be a clean ring and $t \in \mathcal{U}$. Then t is equal to d + u. Where $d \in D(\mathcal{U})$ and $u \in U(\mathcal{U})$ are used. To demonstrate that t is a \mathcal{P} - clean element in \mathcal{U} , we need only show that u is a pure element, because $u \in U(\mathcal{U})$ implies that there is u^{-1} such that $u u^{-1} = 1$, and thus $u u^{-1} u = u$. Consider $w = u^{-1}u$, and then $w \in \mathcal{U}$. As a result of u = u w, u is a pure element, and t is a \mathcal{P} - clean element. As a result, \mathcal{U} is a \mathcal{P} -clean ring. The converse of above proposition is not true.

Example 2. 2: (Z, +, .) is a \mathbb{P} -clean ring. But it's not a clean ring.

Proposition 2.3: Let \mathcal{U} be a ring , then

- 1. Each pure element of a ring \mathcal{U} is a \mathcal{P} -clean element.
- **2.** Every idempotent ring \mathcal{U} element is a \mathcal{P} -clean.

Proof:

- 1. If p is any pure element of a ring \mathcal{U} , then p = 0 + p can be written. Where $0 \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$ are used.
- 2. Assume that d∈ *W* is such that d = d². Now d = (1 d) + (2d 1), and (1 d) is clearly an idempotent element because (1-d)² =1-d-d+d² = 1 d d + d =1 d. And (2d 1) is a pure element because (2 d 1) = (2d-1)(2d-1)² = (2d-1)(4d ²-4d+1)(4d +4d+1)=(2d-1)(1)=(2d-1). ■

Proposition 2.4: Assume \mathcal{W} is a \mathcal{P} -clean ring and \mathcal{W}' is a ring. If f: $\mathcal{W} \to \mathcal{W}'$ denotes epimorphism, then $f(\mathcal{W})$ denotes a \mathcal{P} -clean ring.

Proof: Let f: $\mathcal{U} \to \mathcal{U}'$ is an epimorphism of \mathcal{U}' into \mathcal{U}' , and let $f(t) \in f(\mathcal{U})$ be such that $t \in \mathcal{U}$ and y = f(t). Since \mathcal{U}' is a \mathcal{P} -clean ring, t = d + p, where $d \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$, so f(t) = f(d + p) = f(d) + f(p). Since $(f(d))^2 = f(d)$, f(d) is clearly an idempotent element. $(f(d))^2 = f(d)f(d) = f(d^2) = f(d)$, and f(p) = f(pw) = f(p). f(w) in order for f(p) to be a pure element in $f(\mathcal{U})$ As a result, y = f(t) = f(d) + f(p) implies that y is a \mathcal{P} - clean element in the ring $f(\mathcal{U})$. Hence $f(\mathcal{U})$ be a \mathcal{P} -clean ring . ■

Proposition 2.5 : Assume I is an ideal of a \mathcal{P} -clean ring \mathcal{U} . Then \mathcal{U}/I is a \mathcal{P} - clean ring.

Proof : Assume that t + I ∈ *W*/I, where t∈ *W*. Since *W* is a *P*− clean ring, t = d + p, where d ∈D(*W*) and p ∈Pu(*W*), now t + I = (d + p) + I = (d + I) + (p + I), and (d + I) is an idempotent element in *W*/I because $(d + I)^2 = (d + I) + (d + I) = (d^2 + I) = (d + I)$, and (p + I) is a pure element in *W*/I because (p + I) = (pw + I) = (p + I) (w + I), so t + I is a *P* − clean element in *W*/I, implying that *W*/I is a *P*− clean ring.

Proposition 2.6: Let \mathcal{U}_i be a \mathcal{P} -clean ring, (i = 1, 2, ..., n). Then $\prod_{i=1}^n W_i$ is a \mathcal{P} -clean ring.

Proof : Let $(t_1, t_2, ..., t_n) \in \prod_{i=1}^n Wi$. Then $t_i \in \mathcal{U}_i$, i = 1, 2, ..., n. Since \mathcal{R}_i is \mathcal{P}_- clean ring ,there exists $\oplus_i \in D(\mathcal{U}_i)$ and $p_i \in Pu(\mathcal{U}_i)$ such that $t_i = d_i + p_i$ $\forall i = 1, 2, ...$, n. Hence $t = (t_i) = (t_1, t_2, ..., t_n) = (d_1 + p_1, d_2 + p_2, ..., d_n + p_n) = (d_1, d_2, ..., d_n) + (p_1, p_2, ..., p_n)$, you see $(d_1, d_2, ..., d_n)$ is an idempotent element in $\prod_{i=1}^n Wi$ because $(d_1, d_2, ..., d_n)^2 = (d_1, d_2, ..., d_n) \cdot (d_1, d_2, ..., d_n) = (d_1^2, d_2^2, ..., d_n^2) = (d_1, d_2, ..., d_n)$ and $(p_1, p_2, ..., p_n)$ is a pure element in $\prod_{i=1}^n Wi$ because $(p_1, p_2, ..., p_n) = (p_1 w_1, p_2 w_2, ..., p_n w_n) = (p_1, p_2, ..., p_n) \cdot (w_1, w_2, ..., w_n)$, which implies that x is \mathcal{P} -clean in $\prod_{i=1}^n Wi$. Hence $\prod_{i=1}^n Wi$ is a \mathcal{P} -clean ring. ■

Definition 2.7: "If vt = tv for all $t \in \mathcal{U}$, an element $v \in \mathcal{U}$ is called the central element". [6]

Definition 2. 8: "If each idempotent element in \mathcal{U} is the central element, the ring \mathcal{U} is said to be an abelian ring". [6]

Proposition 2.9: Let \mathcal{U} be a central ring, $t \in \mathcal{U}$ be a \mathcal{P} -clean element, and d be an idempotent element in \mathcal{U} , if the element (-t) is a \mathcal{P} - clean element. Then (t + d) equals a \mathcal{P} - clean.

Proof : Assume that t is a \mathcal{P} - clean element in \mathcal{U} , and that we must prove that (1 - t) is a \mathcal{P} - clean element in \mathcal{U} , there exists an idempotent element $d \in \mathcal{U}$ and a pure element $p \in \mathcal{U}$ such that t = d + p and 1 - t = (1 - d) + (-p), where $(1 - d) \in D(\mathcal{U})$ and $(-p) \in Pu(\mathcal{U})$. Similarly, we can demonstrate that (-t) is a \mathcal{P} - clean if and only if (1 + t) is a \mathcal{P} - clean, implying that both a and (1 + t) are \mathcal{P} - clean in \mathcal{U} .

Let t = f + p, where $f \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$, also let 1 + t = g + q, where $g \in D(\mathcal{U})$ and $q \in Pu(\mathcal{U})$. Now t + d = t + t d - t d + d = t d + t (1 - d) + d = (t + 1) d + t(1 - d) = (g + q) d + (f + p) (1 - d) = g d + q d + f(1 - d) + p(1 - d) = g d + f(1 - d) + q d + p(1 - d), and we note that $g d + f(1 - d) \in D(\mathcal{U})$ since $[g d + f(1 - d)]^2 = (g d + f(1 - d))$. ($g d + f(1 - d)) = (g d)^2 + g d f(1 - d) + f(1 - d)g d + (f(1 - d))^2 = g d + g d f - g d^2 f + fg d - f d^2g + f(1 - d) = g d + g d f - g d f + fg d - fg d + f(1 - d) = g d + p(1 - d)$. Also $q d + p(1 - p) \in Pu(\mathcal{U})$ since $(q d + p(1 - d)) (q^{-1} d + P^{-1}(1 - d) (q d + p(1 - d)) = q d + p(1 - d)$

 $(q d + p(1 - d)) \cdot (d^2 + q^{-1} d p(1 - d) + p^{-1} (1 - d)q d + (1 - d)^2$

 $(q d + p(1 - d)) . (d^{2} + q^{-1} d p - q^{-1} d p + p^{-1} q d - p^{-1}q d + (1 - d)$

 $(qd + p(1 - d)) \cdot (d + 1 - d) = (qd + p(1 - d)) \cdot (1) = qd + p(1 - d)$ Therefore, (t + d) is a \mathcal{P} -clean in \mathcal{U} .

Proposition 2. 10: If \mathcal{W} is a ring, then $t \in \mathcal{W}$ is a \mathcal{P} -clean if and only if 1 - t is a \mathcal{P} -clean.

Proof: Allow t be \mathcal{P} -clean. Then write t = d + p, where $d \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$ are the variables. As a result, 1-t=(1-d)+(-p), and being $(1-d) \in D(\mathcal{R})$, because (1-d)2 = (1-d). Clearly, $-p \in Pu(\mathcal{U})$ because -p = -pw. As a result, 1-t is a \mathcal{P} -clean.

Conversely : If 1 - t is \mathcal{P} -clean, write 1 - t = d + p, where $d \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$ are constants. Thus, t=(1-d)+(-p), as in the previous parts $(1-d) \in D(\mathcal{U})$ and $-p \in Pu(\mathcal{U})$. As a result, t is a \mathcal{P} -clean.

....

Theorem 2.11 : Let I = d*W* denote an ideal generated by the idempotent element d of a \mathcal{P} - clean ring *W*. *W*/d*W* is thus a \mathcal{P} -clean ring.

Proof: Let t+d*W* ∈ *W*/d*W*. Then, for t∈ *W*, since *W* is a *P*-clean ring, $\exists d^* \in D(W)$ and p∈ Pu(*W*) such that t = d * + p. Now (t + d*W*) = (d* + p) + d*W* = (d* + d*W*) + (p + d*W*), because (d* + d*W*)² = (d* + d*W*) (d* + d*W*) = (d*2+ d*W*) = (d* + d*W*), thus (d* + d*W*) is idempotent and it remains to prove (p + d*W*) is a pure element in *W*/d*W*. Assume that q + d*W* ∈ *W*/d*W*, where q∈ *W* such that (p + d*W*) (q + d*W*) = pq + d*W*, and x + d*W* is a *P*-clean in *W*/d*W*. *W*/d*W* is thus a *P*-clean ring.

Theorem 2. 12: Assume \mathcal{W} is a commutative ring and $t \in \mathcal{W}$. \mathcal{W} is a \mathcal{P} -clean ring if $t\mathcal{W} = d\mathcal{W}$ and $d \in D(\mathcal{W})$.

Proof: If $t \in \mathcal{U}$, then $t \in t\mathcal{U} = d\mathcal{U}$, and thus t = dt, where $d \in D(\mathcal{U})$. Also, $d \in d\mathcal{U} = t\mathcal{U}$, resulting in d =ts for some $s \in \mathcal{U}$. (d - 1 + t) is now pure because (d - 1 + t) (d - 1 + ds) (d - 1 + t) = (d - 1 + t). As a result, $d - 1 + t = p \implies t = (1 - d) + p$, where $(1 - d) \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$. As a result, \mathcal{U} is a \mathcal{P} -clean ring.

Theorem 2.13: Let \mathcal{U} be a commutative \mathcal{P} -clean ring and $N = \{t \in \mathcal{U} : t^n = 0, n \in z^+\}$ be an ideal in \mathcal{U} . \mathcal{U}/N is therefore a \mathcal{P} -clean ring.

Proof : Let a + N ∈ \mathcal{U}/N , then a ∈ \mathcal{U}/P exists d ∈D(\mathcal{U}/P) and p∈ Pu(\mathcal{U}/P) such that a = d + p, and now a + N = (d + p) + N = (d + N) + (p + N), we must prove that (d + N) is an idempotent element in \mathcal{U}/N and (p + N) is a pure element in \mathcal{U}/N . Because (d +N)² =(d+N)(d+N) =(d²+N)=(d+N), (d + N) is an idempotent element in $\mathcal{U}//N$. Because p∈ Pu(\mathcal{U}/P , there is q∈ \mathcal{U}/P such that p = pq. Now p + N = pq +N =(p + N)(q + N), implying that p+N is a pure in \mathcal{U}/N , and thus a + N, is "the sum of an idempotent and" pure. Hence \mathcal{U}/N is a \mathcal{P} -clean ring.

Lemma 2.14: If \mathcal{W} is a ring and $t \in J(\mathcal{W})$, then t is a \mathcal{P} -clean.

Proof : If $t \in J(\mathcal{U})$, then (1 - t) is a unit element of \mathcal{U} , and thus (1 - t) is a pure element, because $(1 - t) u = d \Rightarrow (1 - t) u (1 - t) = (1 - t)$. As a result of (1 - t) being a

 \mathcal{P} - clean, t is also a \mathcal{P} - clean, according to proposition 2.10.

Theorem 2. 15: Assume \mathcal{U} is a ring. Then \mathcal{U} is a \mathcal{P} -clean ring if and only if each element $t \in \mathcal{U}$ can be written as t = p - d, where $p \in Pu(\mathcal{U})$ and $d \in D(\mathcal{U})$.

Proof : Let \mathscr{U} be a ring and $t \in \mathscr{U}$, then as \mathscr{U} is a \mathscr{P} - clean ring. So $-t \in \mathscr{U}$, thus -t = p + d, where $p \in Pu(\mathscr{U})$ and $d \in D(\mathscr{U})$. As a result, t = -p - d, where $(-p) \in Pu(\mathscr{U})$ and $d \in D(\mathscr{U})$

Conversely: Assume that every element $t \in \mathcal{U}$ can be written as t = p-d, where $p \in Pu(\mathcal{U})$ and $d \in D(\mathcal{U})$, so for every element $t \in \mathcal{U}$, we can write -t=p-d, where $p \in Pu(\mathcal{U})$ and $d \in D(\mathcal{U})$. As a result, t=-p+d, where $(-p)\in Pu(\mathcal{U})$ and $d \in D(\mathcal{U})$. As a result, t=-p+d, where $(-p)\in Pu(\mathcal{U})$ and $d \in D(\mathcal{U})$. As a result, \mathcal{U} is a \mathcal{P} - clean ring.

Proposition 2.16: Let \mathcal{U} be a \mathcal{P} -clean ring with d as a central idempotent element. Then there's d \mathcal{U} d, which is \mathcal{P} -clean as well.

Proof : Because \mathcal{U} is a \mathcal{P} -clean ring, then $\forall t \in \mathcal{U}$ can be written as t = d + p, where $d \in D(\mathcal{U})$ and $p \in Pu(\mathcal{U})$. And, because d is central, db = bd for all $b \in \mathcal{U}$, so $d\mathcal{U}/d$ is a homomorphic image of \mathcal{U} . As a result, (according to proposition 2.4), $d\mathcal{U}/d$ is a \mathcal{P} -clean.

References

[1] Andari, Ari. "The relationships between clean rings, r-clean rings, and f-clean rings." *AIP Conference Proceedings*. Vol. 2021. No. 1. AIP Publishing LLC, 2018.

[2] Ashrafi, Nahid, and Ebrahim Nasibi. "r-clean rings." arXiv preprint arXiv:1104.2167 (2011).

[3] Ashrafi, N. A. H. I. D., and E. B. R. A. H. I. M. Nasibi. "Rings in which elements are the sum of an idempotent and a regular element." *Bulletin of the Iranian Mathematical Society* 39.3 (2013): 579-588.

[4] Chen, Weixing. "Notes on Clean Rings and Clean elements." Southeast Asian Bulletin of Mathematics 2998.32: 00-6.

[5] Mohammed, Akram S., Ibrahim S. Ahmed, and Samah H. Asaad. "Study of the rings in which each element express as the sum of an idempotent and pure." *International Journal of Nonlinear Analysis and Applications* 12.2 (2021): 1719-1724.

[6] Nicholson .W.K., "Lifting idempotent and exchange rings", Trans. Amer. Math. Soc., 229(1977), 269-278.

[7] Sabet, SH A. Safari, M. Farmani, and M. Karami. " π -Clean and strongly π -clean rings." *Measurement* 109 (2017): 74-78.

[8] Sharma, Ajay, and Dhiren Kumar Basnet. "Weakly r-clean rings and weakly*-clean rings." *arXiv* preprint arXiv:1702.06734 (2017).

[9] Sharma, Garima, and Amit B. Singh. "Strongly r-clean Rings." *International Journal of Mathematics and Computer Science* 13 (2018): 207-214.