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A B S T R A C T 

   If all the elements of a ring W  can be written as a sum of pure 

and idempotent elements", the ring is said to be P-clean. In this 

paper, we introduce the P-clean ring nation and look into some of 

its fundamental properties, examples, and relationship to the clean 

ring  

 

 

MSC.. 

https://doi.org/10.29304/jqcm.2022.14.2.949 

 

1-Introduction: 

    " W denotes an associative ring with identity throughout this paper, U(W), D(W), Pu(W), and 

J(W) denoting the units, idempotent, pure elements, and Jacobson radical of W ". 

    "An element t of a ring W is called P-clean if t=d+u, where d∈D(W) and u∈U(W), if each element 

of W is P-clean, then W is named P-clean ring. Nicholson[6] was the first to introduce clean rings. 
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Several mathematicians are interested in the topics of clean ring, r-clean ring, π -clean ring, and 

strongly r-clean" [1,2,3,4,5,7,8and9]. 

     "If b∈ W exists, an element t∈ W "is said to be" pure. Such that t=tb, an element d∈ W is called 

idempotent if d2 = d, and an element t∈ W  is referred to as nilpotent if a positive integer m exists 

such that am = 0 ". [7]  

  "Obviously, every "clean ring" is a P-clean ring; however, We demonstrate a P-clean ring that is not a 
clean ring. In this work, we discuss the fundamental properties and applications of the P-clean ring ". 

Definition 1. 1: If there are d ∈D(W) and p∈Pu(W) such that t = d + P, "an element" 

t∈W is known as P –clean. 

Definition1. 2: Let W represent a ring. If each elements in W expresses "as the sum of 

an idempotent" and pure, then W is called a P – clean ring. 

Examples 1.3:   

1. The ring (W ,+ , . ) is a P –clean ring . 

2. The ring (Z ,+ , . ) is a P –clean ring . 

3. The ring (Z6 , +6 , .6 ) is a P –clean ring . 

4. every field is a P –clean ring . 

2. The main result 

Proposition 2. 1: A clean ring W is a P – clean ring. 

Proof : Allow W to be a clean ring and t∈ W. Then t is equal to d + u. Where d∈ D(W) 

and u∈ U(W) are used. To demonstrate that t is a P – clean element in W, we need only 

show that u is a pure element, because u∈ U(W) implies that there is u-1 such that u u-1 = 

1, and thus u u-1 u = u. Consider w =u-1u, and then w∈ W. As a result of u = u w, u is a 

pure element, and t is a P – clean element. As a result, W is a P –clean ring. The 

converse of above proposition is not true.             ∎                                            

Example 2. 2: (Z, +, .) is a P-clean ring. But it's not a clean ring. 

Proposition 2.3: Let W be a ring , then  

1. Each pure element of a ring W is a P –clean element. 

2. Every idempotent ring W element is a P –clean. 

Proof : 
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1. If p is any pure element of a ring W, then p = 0 + p can be written. Where 

0∈D(W) and p∈ Pu(W) are used. 

2. Assume that d∈ W is such that d = d 2. Now d = (1 – d) + (2d – 1), and      (1 – d) 

is clearly an idempotent element because (1– d)2 =1– d – d + d 2 = 1 – d – d + d =1 

– d. And (2d – 1) is a pure element because (2 d – 1) = (2d–1)(2d–1)2 =(2d–1)(4d 

2–4d+1)(4d +4d+1)=(2d–1)(1)=(2d–1).   ∎ 

Proposition 2.4: Assume W is a P –clean ring and W ' is a ring. If f: W → W ' denotes 

epimorphism, then f(W) denotes a P –clean ring. 

Proof:  Let f: W → W ' is an epimorphism of W into W ', and let f(t)∈ f(W) be such that 

t ∈ W and y = f (t). Since W is a P –clean ring, t = d + p, where d ∈ D(W) and 

p∈ Pu(W), so f(t) = f(d + p) = f(d) + f (p). Since (f(d))2 = f(d) , f(d) is clearly an 

idempotent element. (f(d))2 = f(d)f(d) = f(d 2) = f(d), and f(p) = f(pw) =f (p). f(w) in 

order for f(p) to be a pure element in f (W) As a result, y = f(t) = f(d) + f(p) implies that 

y is a P – clean element in the ring f(W). Hence  f(W) be a P –clean ring .                                  

∎                                                                                

Proposition 2.5 : Assume I is an ideal of a P –clean ring W. Then W /I is a P – clean 

ring. 

Proof : Assume that t + I ∈W /I, where t∈ W. Since W is a P – clean ring,           t = d + 

p, where d ∈D(W) and p ∈Pu(W) , now t + I = (d + p) + I = (d + I) + (p + I), and (d + I) 

is an idempotent element in W /I because (d + I )2 = (d + I ) + (d + I) = (d 2 + I ) = (d + I 

) , and (p + I) is a pure element in W /I because (p + I) = (pw + I) = (p + I) (w + I), so t 

+ I is a P – clean element in W /I, implying that W /I is a P– clean ring.                                        

∎                                                                

Proposition 2.6:  Let W i be a P –clean ring, ( i = 1 ,2 , … , n ). Then ∏ W in
i=1  is a P –

clean ring . 

Proof : Let  ( t1 , t2 , … , tn ) ∈ ∏ Win
i=1  . Then ti ∈ Wi , i = 1 ,2 , … , n . Since Ri is P – 

clean ring ,there exists  Ҽ i ∈D(Wi) and pi ∈ Pu(Wi) such that ti = d i + pi      ∀ i =1 , 2 , … 

, n . Hence t =( ti ) = (t1 , t2 , … , tn) = (d 1 + p1 , d 2 + p2 , … , d n + pn ) = (d 1 , d 2 , … , d 

n ) + ( p1 , p2 , … , pn ) , you see (d 1 , d 2 , … , d n ) is an idempotent element in ∏ Win
i=1  

because (d 1 , d 2 , … , d n )
2 =( d 1 , d 2 , … , d n ) . (d 1 , d 2 , … , d n )= (d 1

2, d 2
2 , … , d n

2 

) = (d 1 , d 2 , … , d n ) and ( p1 , p2 , … , pn ) is a pure element in ∏ Win
i=1   because (p1 ,p2 

, … , pn )=( p1w1 , p2w2 , … , pnwn) = (p1, p2 , … , pn).(w1,w2, … ,wn ) , which implies 

that x is P –clean in ∏ Win
i=1 . Hence ∏ Win

i=1  is a P–clean ring.  ∎                                                                              
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Definition 2.7: "If vt = tv for all t∈W, an element v∈W is called the central element". 

[6] 

Definition 2. 8: "If each idempotent element in W is the central element, the ring W is 

said to be an abelian ring". [6] 

Proposition 2.9: Let W be a central ring, t∈W  be a P –clean element, and d be an 

idempotent element in W, if the element (-t) is a P – clean element. Then (t + d) equals 

a P – clean. 

Proof : Assume that t is a P – clean element in W, and that we must prove that (1 – t) is 

a P – clean element in W, there exists an idempotent element d ∈W and a pure element 

p∈W such that t = d + p and 1–t =(1 – d) + (-p), where        (1 – d)∈ D(W) and (-

p)∈ Pu(W). Similarly, we can demonstrate that (-t) is a P – clean if and only if (1 + t) is 

a P – clean, implying that both a and (1 + t) are  P– clean in W. 

 Let t = f +  p ,where f ∈ D(W) and p ∈ Pu(W) , also let 1 + t = g + q , where g ∈ D(W) 

and q ∈ Pu(W). Now t + d = t + t d – t d + d = t d + t (1 – d ) + d = (t +1) d + t(1 – d) = 

(g + q) d + (f + p) (1- d) = g d + q d + f(1– d) + p(1– d) = g d + f( 1- d ) + q d + p(1 – d 

),  and we note that  g d + f( 1- d ) ∈ D(W) since [g d + f(1– d )] 2 =(g d + f(1 – d )) . (g 

d + f(1– d))=(g d)2 + g d f(1- d) + f(1– d )g d + (f( 1 – d ))2  = g d + g d f  - g d 2f +fg d – 

f d 2g + f( 1 – d ) = g d + g d f – g d f  + fgd – fgd + f(1–d)=gd +f(1– d) . Also q d + p(1–

p)∈Pu(W) since (q d + p(1– d)) (q-1 d +P-1(1– d) (q d +p(1– d)) = q d +p(1– d)  

( q d + p( 1 – d )) . (d 2 + q-1 d p( 1 – d ) + p-1 ( 1 – d )q d + ( 1 – d )2  

( q d + p( 1 – d )) . (d 2 + q-1
 d p – q-1

 d p + p-1 q d – p-1q d + ( 1 – d ) 

( q d + p( 1 – d )) . (d + 1 – d) = ( q d + p( 1 – d )) . (1) = q d + p( 1 – d )    Therefore , ( t 

+ d ) is a P –clean  in W .                                               ∎ 

Proposition 2. 10: If W is a ring, then t∈W is a P –clean if and only if 1 – t is a P –

clean. 

Proof :  Allow t be P–clean. Then write t = d + p, where d ∈D(W) and p∈ Pu(W) are 

the variables. As a result, 1–t=(1–d)+(-p), and being  (1– d )∈ D(R), because (1– d)2 = 

(1 – d ). Clearly, -p∈ Pu(W) because -p = -pw.  As a result, 1 – t is a P –clean. 

Conversely : If 1 – t is P –clean, write 1 – t = d + p, where d ∈ D(W) and p∈ Pu(W) are 

constants. Thus, t=(1–d)+(-p), as in the previous parts (1– d )∈ D(W) and           -p 

∈Pu(W). As a result, t is a P –clean.                            ∎  
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Theorem 2.11 : Let I = dW denote an ideal generated by the idempotent element d of a 

P – clean ring W. W / dW is thus a P –clean ring. 

Proof : Let t+dW ∈W /dW. Then, for t∈W, since W is a P –clean ring,  ∃d*∈ D(W) and 

p∈ Pu(W) such that t = d * + p. Now (t + dW) = (d* + p) + dW = (d* + dW) + (p + dW), 

because (d* + dW)2 = (d* + dW) (d* + dW) = (d*2+ dW) = (d* + dW), thus (d* + dW ) 

is idempotent  and it remains to prove (p + d W) is a pure element in W /dW. Assume 

that q + dW ∈W /dW, where q∈W such that (p + d W) (q + dW)= pq + dW, and x + dW 

is a P – clean in   W /dW. W /dW is thus a P –clean ring.∎ 

Theorem 2. 12: Assume W is a commutative ring and t∈W. W is a P–clean ring if tW = 

dW  and d ∈ D(W). 

Proof: If t∈W, then t∈ tW = dW, and thus t = dt, where d ∈ D(W). Also, d ∈dW = tW, 

resulting in d =ts for some s∈W. (d –1 + t) is now pure because (d –1+ t) (d –1+ ds) (d –

1+ t)=( d –1+ t). As a result, d –1+ t = p ⟹ t =(1– d) + p, where(1– d)∈D(W) and 

p∈ Pu(W). As a result, W is a P –clean ring. ∎                                                                     

Theorem 2.13: Let W be a commutative P –clean ring and N ={t∈W : tn = 0 , n∈z+} be 

an ideal in W. W /N is therefore a P –clean ring.  

Proof : Let a + N ∈ W /N, then a ∈W  exists d ∈D(W) and p∈ Pu(W) such that a = d + 

p, and now a + N = (d + p) + N = (d + N) + (p + N), we must prove that (d + N) is an 

idempotent element in W /N and (p + N) is a pure element in W /N. Because (d +N)2 

=(d+N)(d+N) =(d2+N)=(d+N), (d + N) is an idempotent element in W / N. Because 

p∈ Pu(W), there is q∈ W such that p = pq. Now p + N = pq +N =(p + N)(q + N), 

implying that p+N is a pure in W /N, and thus        a + N, is "the sum of an idempotent 

and" pure. Hence W /N is a P –clean ring. ∎                                                               

Lemma 2.14: If W is a ring and t∈ J(W), then t is a P –clean. 

Proof : If t∈ J(W), then (1 – t) is a unit element of W, and thus (1 – t) is a pure element, 

because (1 – t) u = d ⇒ (1 – t) u (1 – t) = (1 – t). As a result of (1 – t) being a 

 P – clean,  t is also a P – clean, according to proposition 2.10.∎ 

Theorem 2. 15:  Assume W is a ring. Then W is a P–clean ring if and only if each 

element t∈W can be written as t = p – d, where p∈ Pu(W) and d ∈D(W) . 
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Proof : Let W be a ring and t∈W, then as W is a P – clean ring. So -t∈W , thus  -t= p + 

d, where p∈Pu(W) and d ∈D(W).  As a result, t= -p– d, where  (-p)∈ Pu(W) and d 

∈D(W) 

Conversely: Assume that every element t∈W can be written as t = p– d, where 

p∈Pu(W) and d ∈D(W), so for every element t∈W, we can write –t=p– d, where 

p∈ Pu(W) and d ∈D(W). As a result, t=-p + d, where (-p)∈Pu(W) and d ∈D(W). As a 

result, W is a P – clean ring.∎                                                      

Proposition 2.16: Let W be a P –clean ring with d as a central idempotent element. 

Then there's dW d, which is P –clean as well. 

Proof : Because W is a P –clean ring, then ∀ t ∈W can be written as t = d + p, where d 

∈D(W) and p∈ Pu(W).  And, because d is central, db = bd for all b∈W, so dW d is a 

homomorphic image of W. As a result, (according to proposition 2.4), dW d is a P –

clean.    ∎ 
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