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A B S T R A C T 

This paper proposes an analytical technique for solving the Bagley-Torvik equation (BTE) in 
the Caputo sense. The main idea of this technique is based on reformulating the considered 
problem as a system of linear FDEs of half-order. Then the resulting system is transformed 
into a set of integer-order differential equations. In such a transformation, the singularity 
terms are removed from the FDE system. So, the solution of the BTE can be obtained via 
solving this system. Finally, two examples are given to demonstrate the efficiency of the 
proposed technique. 
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1. Introduction  

Fractional calculus (FC) is the branch of mathematics that studies the properties of non-integer order integrals and 

derivatives. Furthermore, the concepts and techniques of solving differential equations involving fractional 

derivatives of unknown functions are studied in-depth in this discipline. Differential equations with fractional 

derivatives are always called fractional differential equations (FDEs) and are widely used to model a variety of real-
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world problems, like viscoelastic polymers [16], Photovoltaic Cell [1], thermal modeling [17], signal processing [28], 

calculus of variations [13], control systems [20], fluid flow [31], diffusive transport [24], optics [3], networks [22], 

porous medium [38], rheology [25], electrochemistry [26], and many other applications. Moreover, FDEs are also an 

excellent tool for describing the hereditary characteristics of materials and processes, where the behavior of 

memory terms in such models not only brings into account the process’s history, but also its impact on the process’s 

present and future. FDEs are also considered as an alternative model to nonlinear differential equations [9]. As a 

result, the subject of FDEs is getting interesting, as several leading researchers have contributed to the theory of FC, 

including Holmgren, Abel, Riemann, Caputo, Fourier, Hadamard, Letnikov, Hardy, Grünwald, Heaviside, Laplace, 

Leibniz, Euler, Riesz, Lioville, Weyl, and etc (see e.g., [19] [29]). 

The Bagley-Torvik equation (BTE) has recently become one of the most widely used mathematical models in the in 

various branches of Applied Mathematics and Mechanics. In their work in 1984 [37], R.L.Bagley and P.J.Torvik 

proposed modeling the viscoelastic behavior of geologic minerals, glasses, and strata using FDE, demonstrating that 

this approach can be used to describe structures with viscoelastic behavior. In addition, many scholars have 

attempted to solve this problem analytically and numerically since then. In  1999 Podlubny [29] proposed a 

numerical technique for the inhomogeneous BTE, as well as a fractional 3( )G t  function to solve the constant 

coefficient of the BTE analytically. Afterward, many authors worked on the numerical solution of the BTE. Because 

analytical solutions to the FC are difficult and quite cumbersome, a lot of numerical approaches have been 

developed to solve this equation since its appearance. For example, Legendre-collocation [14], hybridizable 

discontinuous Galerkin [18], the generalized Taylor collocation [12], Adomian decomposition [33], Haar wavelet 

[32], homotopic perturbation [2], the Bessel collocation [40], hybrid of block-pulse functions [23], Gegenbauer 

wavelet [36], and also many other remarkable works in the following papers (see e.g., [4], [5], [6], [7], [34], [35], 

[39]). The motions of real physical systems such as an immersed plate in a Newtonian fluid and a gas in a fluid are 

described by this equation with a 3 / 2 -order or 1/ 2 -order derivative. 

In this work, a different technique for solving BTE is proposed. Its exact solution is found by solving the system of 

integer-order differential equations using the Laplace transform. 

 

2. Elementary definitions and concepts 

In this section, we give a brief overview of some fundamental FC definitions and properties that will be used in this 

study. 

Definition 2.1 [19] Let   be a continuous function for all  , then the fractional integral of a type left-sided Riemann-

Liouville (R-L) for  is defined as follows:                                                                
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here and in the following the Euler gamma function is denoted by ( )  . 

The features of Riemann-Liouville integral [27], [29] 
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for the constant 1 2,   and  .  

Definition 2.2 [10] Let :[0, ) R  →  be a continuous and differentiable  function for all 0t  , then the 

fractional derivative of a type Caputo for  is defined as follows: 
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 Here, and in the following [ ]  is the integer part of  , and [ ] 1n N= +  . The Caputo derivative is the most 

common definition of physical problems because the initial-value conditions for FDEs in the Caputo sense are the 

same as for an integer-order differential equation. These initial-value conditions have clear physical meanings in 

applications. Also, the following are some of the major Caputo derivative features that will be used in this article [8]. 

 

    (i) ( )0, 1 2 0, 1 0, 2( ) ( ) ( ) ( )C t C t C tt t t t   + =  + D D D ; 

    (ii) 0, 0 ( ) ( )C t tI t t  = D ;  
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    (iv) 0, 0C t

  =D , where   is constant.  

  

Definition 2.3 [11] For the power function ( ) , ,t t R  =   in the sense of Caputo, the fractional derivative is 

obtained as:  
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 Of this definition, it is easy to observe that if  ( )t t  = , 
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Where   and  are all rational numbers. 

 

Definition 2.4 [27] The Laplace transform is defined as follows: 
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 If (5) is a convergent integral, the Laplace transform of the function ( )y t is said to exist, whereas one last necessary 

property of the Laplace transform of a derivative of the integer-order n  of a function ( )t  
as follows: 
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Lemma 2.1 Let ( ) [0, )nt C    and ( 1, )n n  − , then  

  

 1 2 1 2

0, 0, 0,( ) ( )C tC t C tt t   + = D D D  (8) 

 under the assumption that ( )t  is differentiable in order 1 2 + . 

 

 Theorem 2.1 [21] If 
1( ) [0, )t C   , then  

  

 1 2 2 1 2 1

0, 0, 0, 0, 0,( ) ( ) ( ),C t C t C t C t C tt t t     + =  = D D D D D  (9) 

 where 1 2,  + and 1 2 (0,1] +  . 
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Theorem 2.2 [21] If ( ) [0, )nt C   , then  
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3. The technique of solution Bagley-Torvik equation 

In this section, a technique for solving BTE will be constructed, and it has the general form: 

                  

 1 0, 2( ) ( ) ( ) ( ),c tAy t B y t B y t f t + + =D                                                           (11) 

 subject to initial-value conditions (ICs): 

 0 1(0) , (0) ,y y y y= =  (12) 

 Here, ( )f t  is a continuous real-valued function, 
2 (0, )y C  , and the constants 1 2,B B , and A R . 

Now, we find it convenient to rewrite the original BTE (11) when 3 / 2 = as a system of FDE of 1/ 2 -order as 

follows: 
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 Here, F [0, , ( )]Tkf t=   is vector function of dimension 4 , and also M  is a square matrix with a dimension 4 4

that is given as:  

 

0 1 0 0

0 0 1 0
M

0 0 0 1

0 0kC kB

 
 
 =
 
 
− − 

 (16) 

 

 In the following sense, we show that the BTE (11) equipped with ICs (12) is equivalent to the system of Linear FDEs 

(13) with ICs (15): 

    (i) If 
T  with 

2 (0, )y C   is a solution of the system (14) with ICs (15), then ( )y t  solves the BTE     (11) and 

satisfies its corresponding  ICs (12).  

    (ii)  If 
2 (0, )y C  is a solution of the BTE (11), with ICs (12), the column vector 

T satisfies the system (14) 

with ICs (15).  

 

Repeating the same procedure can be done above when 1/ 2 =   On the other hand, to deduce an integer-order 

differential equation from equations (14)-(15), we must eliminate the singularity terms in (14) by using the 

properties of the Caputo derivative and the following transformation: 

  

 

1

2( ) ( )t t t =  −  (17) 

 

Further, 1 4[ , , ]T Tz z =   and we can obtain (0) (0) =  . 

First, by multiplying the differential operator 

1

2
0,C tD  on both sides of (17) and taking (14) into account, one can get 

the following  

 

1 1 1 1

2 2 2 2
0, 0,( ) M ( ) F( ) M C t C tt t t t t  =  + + −D D  (18) 

 

 Then, under the assumption that there is no singularity of  RHS of (18) to zero at 0t = , we seek to compute the 

constant   and the following is from (19): 

 
2

[M (0) F(0)]
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 Once more, by applying the differential operator 

1

2
0,C tD to (18), we can obtain the following:  
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1 1

2 3 2 2 2
0,

2
( ) M ( ) [M (0) M F(0)] MF( ) F( )C tt t t t t


 =  +  + + + D  (21) 

 It is clear, there is no fractional derivative for the unknown function ( )t . Accordingly, this equation can present 

us with an explicit and exact state-space illustration, as long 
1

2
0, F( )C t tD  is can be explicitly expressed.  

 

To confirm the preceding result, we state and prove the next theorem. 

Theorem 3.1 The system (14) has the following solution:  
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 where, ( )t , is an exact solution to a system of integer-order differential equations  
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 Next, by using the Laplace transform to (27), resulting in 
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 Using Laplace transform for (22) and substitute it in equation (29), one can have 
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 If we apply the inverse Laplace transform to the last equation (30), we have 



Ahmed F. Abduljaleel , Ayad R. Khudair                                           JCM - Vol.13(3) 2021 , pp  Math.  107–117                                                     113 

 

 

 

1 1

2 3 2 2 2
0,

2
( ) M ( ) [M (0) M F(0)] MF( ) F( )C tt t t t t


 =  +  + + + D                            (31) 

 Now, the proof is completed.     

4. Illustrative example 

In this section, we will give some examples to verify the efficacy of the proposed technique. To solve the examples, 

we used Maple.    

Example (1): Consider the following BTE [15]:  

 

1
3 2

22
0,

2
( ) ( ) , 0,

3
( )
2

C t

t
y t y t t t t= − + + − 



D                                                            (29) 

subject to  

 (0) 0, and (0) 1.y y= = −  (30) 

 

Applying theorem (2.2), we reduce (29) to the subsequent system of equations with its corresponding ICs,  
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 where 1( ) ( )y t y t=  and ICs 1 2(0) (0) 0y y= = , and 3(0) 1y = − . Next, from theorem (3.1), system (31), and the 

initial-value conditions, we have 
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where 1( ) ( )z t z t=  and ICs 1 2(0) (0) 0z z= = , and 3(0) 1z = − . Now, by using the Laplace transform of the system 

(32), we get 
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2( )z t t t= −  (33) 

 According to theorem (3.1), the analytical solution to (29), as follows: 

 

 
2( ) .y t t t= −  (34) 

 

Example (2):  Consider the fractional BTE [15], [30]: 
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 subject to  
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 Applying theorem (2.2), we reduce (35) to the subsequent system of equations with its corresponding ICs, 
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 where 1( ) ( )y t y t=  and ICs 1 2 3 4(0) (0) (0) (0) 0y y y y= = = = . Next, from theorem (3.1), system (37), and the 

initial-value conditions, we get 
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 where 1( ) ( )z t z t=  and ICs 1 2 3 4(0) (0) (0) (0) 0z z z z= = = = . Now, by using the Laplace transform of the system 

(38), we have  

 
3( )z t t=  (39) 

 According to theorem (3.1), the analytical solution to (35), as follows: 

 
3( ) .y t t=  (40) 
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5. Conclusions 

In this article, we have presented a technique for solving BTE by converting it to a system of linear differential 

equations of integer order. The main advantage of this technique is that it is being able to write the exact and 

explicit solutions of the BTE, unlike most of the different techniques that give the solution of BTE in terms of Mittag-

Leffler (infinite string function) functions. To demonstrate the ability and effectiveness of this idea, some examples 

are given. 
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