

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Sf-covering dimension and sf-local dimension

Ghazwan Farhan Shaker¹ and Raad Aziz Hussain Al-Abdulla²*

Department of Mathematics,""College of Science" "University of Al-Qadisiyah, Diwaniyah-Iraq. Email: ma20.post13@qu.edu.iq1

Department of Mathematics,""College of Science""University of Al-Qadisiyah, Diwaniyah-Iraq.Email: raad.hussain@qu.edu.iq²

ARTICLEINFO

Article history: Received: 11 /06/2022 Rrevised form: 09 /07/2022 Accepted : 17 /07/2022 Available online: 12 /08/2022

$A\,B\,S\,T\,R\,A\,C\,T$

The aim of this paper is to introduce new types of dimension functions which are sfcovering.dimension,sf-dim X, and sf-local dimension, sf-loc dim X, by using semi feebly open (sf-open) sets, with examples and theorems. The relationships between them and other concepts will be studied like sf-T₁-space, sf⁻-regular space and sf⁻-normal space.

Keywords: dim X , loc dim X ,sf-dim X , sf-loc dim X

MSC..

https://doi.org/10.29304/jqcm.2022.14.3.992

1.Introduction:

The foundation of dimension theory is the "dimension function," It has the properties of d(X)=d(Y) if X and Y are homeomorphic and $d(R^n) = n$ for every positive integer n. It is a function defined on the class of topological spaces where d(X) is an integer or ∞ . The dimension functions taking topological spaces to the set $\{-1,0,1,...\}$.[1] studied the dimension functions ind,Ind,dim. Actually dimension functions S – indX, S – IndX, S – dimX were examined using S-open sets in [10], dimension functions b – indX, b – IndX, b – dimX, were researched using b-open sets in [11], and dimension functions f – indX, f – IndX, f – dimX, were studied using f-open sets in [5], [2] investigated the dimension functions N – indX, N – IndX, N – dimX utilizing N-open sets. We recall the definitions of *dim*, *loc dim* from [1], and then use sf – open sets to add the dimension functions sf – *dim*, sf – loc dim .Finally, certain connections between them are investigated, and some conclusions about these notions are established.

2.Preliminaries

In this section, we recall some of the basic definitions and theorems.

Definition (2.1): [7]

Email addresses:

Communicated by 'sub etitor'

^{*}Corresponding author

Let B be subset of a topological space X. If there is an open set D where $D \subseteq B \subseteq \overline{D}$, then B called semiopen (s-open) set in X

<u>Remark(2.2): [6]</u>

A set U is semi-open (s-open) set in X iff $U \subseteq \overline{U^{\circ}}$, equivalent $U = \overline{U^{\circ}}$, the complement semi-open set is semi-closed (s-closed) set.

If there is an closed set D where $D^{\circ} \subseteq U \subseteq D$, then U called semi-closed(s-closed) set in X.

Definition (2.3): [3]

Let D subset of a topological space X, define semi-closure (s-closure) of D as an the intersection of every semi-closed sets contained D in X and define semi-interior (s-interior) of D as an the union of semi open sub set of X contained D and are denoted by \overline{D}^{s} , $D^{\circ s}$ respectfully

Proposition (2.4): [7]

let X be a topological space , if V is open subset of X and D is s-open set in X, then $D \cap V$ is an s-open set in X.

Proposition (2.5):[12]

If H is s-open in Y where Y is open subset of a topological space X, then H is s-open in X.

Proposition (2.6):[12]

If H is s-open of a topological space X and Y is open subset of X, then H is s-open in Y for $H \subseteq Y$.

Proposition (2.7):

If H is s-open set of a topological space X and W is open sub set of X, then $H \cap W$ is s-open in W **Proof:**

By Proposition (2.4) and Proposition (2.6), then $H \cap W$ is s-open in W

Definition (2.8): [4]

If X be topological space and $E \subseteq X$. Then E is called feebly open (f-open) set in X if there is an open set 0 like $0 \subseteq E \subseteq \overline{0}^{s}$.

Remark (2.9): [6]

If D is subset of a topological space X, then D called feebly open set in X iff $D \subseteq \overline{D^{\circ}}^{\circ}$. Feebly closed(f-closed)isThe complement of feebly open set where $\overline{\overline{D}^{\circ}} \subseteq D$.

<u>Remark (2.10):</u> [8]

Any open set is f-open set and any closed set is f-closed set

<u>Definition(2.11): [9]</u>

If B be subset of a topological space X, then B called semi feebly open (sf – open) set in X; if for any semi open set W where B \subseteq W we get $\overline{B}^{f} \subseteq$ W. Semi feebly closed(sf-closed) is the counterpart of sf- open set that W \subseteq B^{of} where V semi closed set in X.

Remark (2.12): [9]

Any f-closed set and any closed set is sf-open set . however, the opposite is untrue.

Proposition (2.13): [9]

If $\{A_{\alpha} : \alpha \in \Lambda\}$ is arbitrary collection of sf –open sets. Then $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is sf –open set.

Definition (2.14): [9]:

If the union of sf - open sets in topological space X is

also sf - open sets, Then X is said to be satisfy conduct union

Definition (2.15): [9]

If X is a topological space and $D \subseteq X$. Then sf-closure of D is the intersection of all sf-closed of X which Contains D and denoted by \overline{D}^{sf} , that means $\overline{D}^{sf} = \bigcap \{M: M \text{ is sf-closed in } X \text{ and } D \subseteq M\}$.

Definition (2.16): [9]

Let X be a topological space and $D \subseteq X$. Then sf-Interior of D is the union of all sf-open sets of X contained in D is and denoted by $D^{\circ sf}$, that means $D^{\circ sf} = \bigcup \{E : E \text{ is } sf - open \text{ in } X \text{ and } E \subseteq D \}$.

Theorem (2.17):[12]

If Y is open subspace of a topological space X, then $\overline{D}^{fy} = \overline{D}^f \cap Y$ for each $D \subseteq Y$.

Definition (2.18): [9]

A topological space X is called sf-T₁-space if for any $x \neq y$ in X there is sf-open sets A and B where $x \in A, y \notin A$ and $y \in B, x \notin B$.

Proposition (2.19): [9]

Let X be a conduct union topological space, then $\{x\}$ is sf – closed set $\forall x \in X$ iff X is sf -T₁-space

Definition (2.20):[12]

A topological space X is called sf^{π}-regular space if any x in X and sf – closed subset M where $x \notin M$, there is disjoint sf-open sets A, B such that $x \in A, M \subseteq B$.

Proposition (2.21):[12]

Let X be a conduct union topological space, then X is sf["]-regular space iff $\forall x \in X$ and \forall sf-open set $A \ni x \in A$, \exists sf-open set $V \ni x \in V \subseteq \overline{V}^{sf} \subseteq A$.

Definition (2.22): [9]

A topological space X is called sf[`]-normal space if for every disjoint sf-closed sets G_1 , G_2 there exists disjoint sf-open sets B_1 , B_2 such that $G_1 \subseteq B_1$, $G_2 \subseteq B_2$.

Proposition (2.23):[9]

A conduct union topological space X is sf[`]-normal space iff \forall sf -closed set $E \subseteq X$, and \forall sf -open set V in $X \ni E \subseteq V$, \exists sf -open set $U \ni E \subseteq U \subseteq \overline{U}^{sf} \subseteq V$

Proposition (2.24):

Let Y open sub space of a topological space, then the subset D of Y is sf - open in Y if it is sf - open in X.

Proof:

Let D is sf-open in X.To show D is sf-open in Y, by definition $D \subseteq H$ when H s – open in Y. Then H is s-open in X by proposition (2.5). Therefore $\overline{D}^f \subseteq H$, to prove $\overline{D}^{fy} \subseteq H$

$$\overline{D}^{fy} = \overline{D}^{f} \cap Y$$
 by theorem (2.17)

$$\subseteq \overline{D}$$

 \subseteq H , therefor D is sf – open in Y

Theorem(2.25):

Let Y is open and f-closed subset of a topological space X,then B is sf-open in X.If it is sf – open in Y

Proof:

To show B is sf-open in X, by definition $B \subseteq H : H$ is s-open in X. Then $H \cap Y$ is s-open in Y by Proposition (2.7). Since B is sf-open in Y and $B \subseteq H \cap Y$, then $\overline{B}^f \subseteq H \cap Y$ To prove $\overline{B}^{f} \subseteq H$

$\overline{B}^{f} = \overline{B \cap Y}^{f}$	(since B is sf-open in Y)
$\subseteq \overline{B}^{\rm f} \cap \overline{Y}^{\rm f}$	
$=\overline{B}^{f} \cap Y$	(since Y is f-closed)
$=\overline{B}^{fy}$	by theorem (2.17)
\subseteq H \cap Y	
⊆ H	

Therefor B is sf-open in X.

Proposition (2.26):

Let Y is open and f-closed subset of a topological space X,then $D \cap Y$ is sf-open in Y for any sf-open set D of X

Proof:

Since Y is f-closed in X, then Y is sf – open in X, then $D \cap Y$ is sf-open in X. Since $D \cap Y \subseteq Y$, then $D \cap Y$ is sf – open in Y by proposition (2.24)

Theorem (2.27):

Let Y is open and f-closed subset of a topological space X.then W is sf-open in Y iff \exists V sf-open in X \exists W = V \cap Y.

Proof:

Let W is a sf-open in Y. Then W is sf-open in X by proposition (2.25). Put W = V, we have $W = W \cap Y = V \cap Y$.

Conversely :

Let V be sf-open in X, then by proposition (2.26) $V \cap Y$ is sf – open in Y. therefor W is sf-open in Y.

Definition(2.28)[1]:

Let \mathcal{H} be a family of subsets of a set X, we define an order of the family \mathcal{H} as the greatest integer n where the family \mathcal{H} have n+1 sets with a non-empty intersection ;we say the family \mathcal{H} has order ∞ if there is no such integer. ord \mathcal{H} denotes the order of a family \mathcal{H} .

Definition(2.29)[1]:

Let $\{G_{\alpha}\}_{\alpha \in \Lambda}$ be a cover of a set X, then $\{V_{\gamma}\}_{\gamma \in \Gamma}$ is said to be a refinement of $\{G_{\lambda}\}_{\lambda \in \Lambda}$ if it is a cover of X and for any $\gamma \in \Gamma$ there is $\alpha \in \Lambda$ such that $V_{\gamma} \subseteq G_{\alpha}$

Definition(2.30)[1]:

A reduction of the family $\{A_{\lambda}\}_{\lambda \in \Lambda}$ is any family $\{B_{\lambda}\}_{\lambda \in \Lambda}$ such that $B_{\lambda} \subset A_{\lambda}$ for each $\lambda \in \Lambda$ such that the union is the same. Then every reduction which covers X is a refinement

Definition (2.31))[1]:

Let $\{B_{\alpha}\}_{\alpha \in A}$ be a family of subsets of space X, then $\{B_{\alpha}\}_{\alpha \in A}$ is called point finite if for any $x \in X$, the set $\{\alpha \in A : x \in B_{\alpha}\}$ is finite.

3.The Main Results

Definition(3.1):

Let X be a topological space ,The sf –covering dimension ,sf – dimX, of X is the least integer n where each finite sf-open covering of X has an sf – open refinement of order \leq n or is ∞ if no such integer exists .Thus sf – dimX = -1 if and only if X is empty,and sf – dimX \leq n if each finite sf-open covering of X has sf – open refinement of order \leq n. We have sf – dimX = n if it is true that sf – dimX \leq n but sf – dimX \leq n – 1 is not true . Finally sf – dimX = ∞ if for every integer n it is false that sf – dimX \leq n.

<u>Theorem (3.2):</u>

Let X be a topological space with sf $-\dim X = 0$. Then X is sf' - normal space.

Proof:

Let E_1 and E_2 be sf - closed sets of X with $E_1 \cap E_2 = \emptyset$. Then $E = \{X \setminus E_1, X \setminus E_2\}$ is an sf open covering of X, since sf - dimX = 0, then there is $U = \{U_1, U_2\}$ sf - open refinement of E which is covers X with order 0, hence $U_1 \cap U_2 = \emptyset$ and $X = U_1 \cup U_2$, then U_1, U_2 are sf-open and sf closed sets, and $U_1 \subset X \setminus E_1$ and $U_2 \subset X \setminus E_2$. Thus

 $E_1 \subseteq U_1^{C} = U_2$, $E_2 \subseteq U_2^{C} = U_1$ and $U_1 \cap U_2 = \emptyset$, then X is sf - normal space.

<u>Theorem (3.3):</u>

If X is a topological space and B is a clopn subset of X, then $sf - dimB \le sf - dimX$.

Proof:

refinement of $\{U_1, U_2, ..., U_k\}$ of order $\leq n$. There for $sf - dim B \leq n$.

Proposition(3.4):

If X is $sf - T_1$ -space and sf - dim X = 0, then X is sf'' - regular space.

Proof:

Let $x \in X$ and F sf – closed set of X with $x \notin F$. Then $x \in F^c$, where F^c is sf – open set in X .Since X is sf – T₁-space then {x} is sf – closed by Proposition (2.19). Therefore {X-{x}, F^c} be finite sf – open covering of X .Since sf – dimX =0, then {X-{x}, F^c} has sf – open refinement{V,W} which is cover of X with order zero. Then $V \subseteq X-\{x\}$, $W \subseteq F^c$ then $x \in W \subseteq F^c$ and $F \subseteq W^c = V$. Therefore there is V,W sf-open set where $F \subseteq V$ and $x \in W$ with $V \cap W = \emptyset$. Thus X is sf["] – regular space

Proposition (3.5):

Let X be a conduct union topological space, then $sf - dim X \le n$ iff each finite sf - open cover of X can be reduced to an sf - open cover of order $\le n$.

Proof:

If $\mathcal{G} = \{G_{\lambda_i}\}_{i=1}^n$ is finite sf - open covering of X, since $\mathrm{sf} - \mathrm{dim} X \leq n$ then \mathcal{G} has sf - open refinement $\mathcal{W} = \{W_{\alpha}\}_{\alpha \in \Lambda}$ of order $\leq n$. If $W_{\alpha} \in \mathcal{W}$ then there exists $G_{\lambda_i} \in \mathcal{G}$ such that $W_{\alpha} \subset G_{\lambda_i}$. Let $V_{\lambda_i} = \bigcup_{\alpha \in \Lambda} W_{\alpha} \subset G_{\lambda_i}$, then $\mathcal{V} = \{V_{\lambda_i}\}_{i=1}^n$ is sf - open reduction of \mathcal{G} which is the X cover and it is order $\leq n$.

Conversely

Let $\mathcal{G} = \{G_{\lambda_i}\}_{i=1}^n$ be a finite sf – open covering of X then there exists a reduction $\mathcal{W} = \{W_{\lambda}\}_{\lambda \in \Lambda}$ which is sf – open covering of X. W is thus a refinement of \mathcal{G} that is open of order $\leq n$. Hence sf – dimX $\leq n$.

Theorem (3.6):

Let X be a conduct union topological space, then $sf - dimX \le n$ if, and only if, every sf - open cover of X with n + 2 sets, has an sf - open reduction of n + 2 sets with empty intersection.

Proof:

Suppose that $sf - dimX \le n$, then every finite sf - open covering of X has sf - open reduction of order $\le n$ by Theorem (3.5).In particular if the number of elements of the cover is n+2 then the number of its reduction is also n+2 with order $\le n$ that is the intersection is not empty for at most n+1elements. Hence the intersection of all n+2 elements is empty

Conversely

Let $\mathcal{G} = \{G_1, G_2, ..., G_k\}$ be a finite sf – open covering of X, suppose that the order of $\mathcal{G} > n$, then there exists $G_1, G_2, ..., G_{n+2} \in \mathcal{G}$ such that $\bigcap_{i=1}^{n+2} G_i \neq \emptyset$. Suppose that $G^* = G_{n+2} \cup ... \cup G_k$ then $\{G_1, G_2, ..., G_{n+1}, G^*\}$ is sf – open covering of X with n + 2 sets, which it has an sf – open reduction $\{V_1, V_2, ..., V_{n+1}, V^*\}$ with empty intersection. Then $\{V_1, V_2, ..., V_{n+1}, V^* \cap G_{n+2}, ..., V^* \cap G_k\}$ is sf – open reduction of \mathcal{G} which cover X the non-empty intersection of the first n + 1 sets may not be empty. But the intersection of all sets of the reduction is empty. Let $x \in X$ where $x \notin V_i$, i =1,2,3, ... n + 1 then $x \in V^*$, therefore $x \in \mathcal{G}_i$ for some i = 1,2, ..., k hence $x \in V^* \cap \mathcal{G}_i$ for some i = n +2, ..., k. By repeating the procedure finite we will get a reduction of \mathcal{G} such that the intersection for each n + 2 set is empty thus the order of reduction is $\leq n$, hence $sf - \dim X \leq n$.

Definition (3.7):

Let $\{A_{\lambda}\}_{\lambda \in \Lambda}$ be an sf – open cover of X, $\{A_{\lambda}\}_{\lambda \in \Lambda}$ is called sf – shrinkable if and only if there is an sf – open covering $\{B_{\lambda}\}_{\lambda \in \Lambda}$ where $B_{\lambda} \subseteq \overline{B_{\lambda}}^{sf} \subseteq A_{\lambda}$ for each $\lambda \in \Lambda$. In this case we say that $\{B_{\lambda}\}_{\lambda \in \Lambda}$ sf – shrinks $\{A_{\lambda}\}_{\lambda \in \Lambda}$, denoted by $B \ll_{sf} A$.

<u>Theorem (3.8):</u>

If X is an conduct union topological space ,the following claims are thus equivalent:

- 1) X is an sf normal space.
- 2) every point-finite sf open covering of X is sf shrinkable.
- 3) every finite sf open covering of X has sf closed refinement.

Proof:1 \rightarrow 2

Suppose that $\{G_{\alpha}\}_{\alpha \in A}$ be a point-finite sf – open covering of sf – normal space X and let A be well-ordered. We shall construct an sf – shrinkable of $\{G_{\alpha}\}_{\alpha \in A}$ by introduction of the transfinite. Let μ be an element of A and let for any $\alpha < \mu$ there are an sf – open set U_{α} where $\overline{U_{\alpha}}^{\mathrm{sf}} \subset G_{\alpha}$ and for each $\gamma < \mu$, $\bigcup_{\alpha \leq \gamma} U_{\lambda} \cup \bigcup_{\alpha > \gamma} G_{\alpha} = X$. Let x be a point of X. Then since $\{G_{\alpha}\}_{\alpha \in A}$ is a point finite there is a largest element Σ , say, of A where $x \in G_{\Sigma}$. If $\Sigma \geq \mu$ therefor $x \in \bigcup_{\alpha \geq \mu} G_{\lambda}$, whilst if $\Sigma < \mu$ then $x \in G_{\Sigma}$.

 $\bigcup_{\alpha \leq \Sigma} U_{\lambda} \subset \bigcup_{\alpha < \mu} U_{\alpha} \text{. Hence } \bigcup_{\alpha < \mu} U_{\alpha} \cup \bigcup_{\alpha \geq \mu} G_{\alpha} = X \text{. Thus } G_{\mu} \text{ contains the complement of } \bigcup_{\alpha < \mu} U_{\lambda} \cup \bigcup_{\alpha > \mu} G_{\alpha}. \text{Since X is sf} - \text{normal space, there exist an sf} - \text{open set } U_{\mu} \text{ where:}$

$$X \setminus \left(\bigcup_{\alpha < \mu} U_{\lambda} \cup \bigcup_{\alpha \ge \mu} G_{\alpha} \right) \subset U_{\mu} \subset \overline{U_{\mu}}^{sf} \subset G_{\mu}$$

Thus $\overline{U_{\mu}}^{sf} \subset G_{\mu}$ and $\bigcup_{\alpha \leq \mu} U_{\lambda} \cup \bigcup_{\alpha > \mu} G_{\lambda} = X$. The construction of a sf-shrinking of $\{G_{\alpha}\}_{\alpha \in A}$ is completed by introduction of the transfinite.

$2 \rightarrow 3$

Let $\{G_{\alpha}\}_{\alpha \in \Lambda}$ be a finite sf – open covering of X then $\{G_{\alpha}\}_{\alpha \in \Lambda}$ is a point- finite sf – open covering of X. Therefore there exists $\{U_{\alpha}\}_{\alpha \in \Lambda}$ an sf – open family of covering of X such that $\overline{U_{\alpha}}^{sf} \subset G_{\alpha}$ for each $\alpha \in \Lambda$. Therefore $\{\overline{U_{\alpha}}^{sf}\}_{\alpha \in \Lambda}$ is a sf – closed refinement of $\{G_{\alpha}\}_{\alpha \in \Lambda}$.

$3 \rightarrow 1$

Let every finite sf – open covering of X has a sf – closed refinement and let M, N be disjoint sf – closed sets of X. The covering {X \ M, X \ N} of X has a sf – closed refinement K.Let D be the union of the members of K disjoint from A and let H be the union of the members of K disjoint from N then D, H are sf – closed sets and D \cup H = X. Then if $V = X \setminus D, W = X \setminus H$ then V, W are disjoint sf – open sets M \subseteq V, N \subseteq W. Therefor X is sf – normal space.

Proposition (3.9):

Let X is a conduct union topological space, the following claims are thus equivalent:

- 1) sf dimX \leq n.
- 2) For each finite sf open covering $\{A_1, A_2, ..., A_k\}$ of X there is an sf open covering $\{V_1, V_2, ..., V_k\}$ of order $\leq n$ such that $V_i \subset A_i$ for i = 1, 2, ..., k.
- 3) If $\{A_1, A_2, ..., A_{n+2}\}$ is an sf open covering of X, there is an sf open covering $\{V_1, V_2, ..., V_{n+2}\}$ such that each $V_i \subset A_i$ and $\bigcap_{i=1}^{n+2} V_i = \emptyset$.

Proof: $1 \rightarrow 2$

Suppose $sf - dimX \le n$. The finite $sf - open covering \{A_1, A_2, ..., A_k\}$ has an sf - open refinement \mathcal{W} of order $\le n$. If $W \in \mathcal{W}$ then $W \subset A_i$ for some i. Let each w in \mathcal{W} be associated with one of the sets A_i containing it and let V_i be the union of those members of \mathcal{W} thus associated with A_i . Then V_i is sf - open and $V_i \subset A_i$ and each point of X is in some member of \mathcal{W} and hence in some V_i , each point

 $x \in X$ is in at most n + 1 members of \mathcal{W} , each of which associated with a unique A_i , and hence x is in at most n + 1 members of $\{V_i\}$. Thus $\{V_i\}$ is an sf – open covering of X of order $\leq n$.

 $\mathbf{2} \rightarrow \mathbf{1}$

Let $\mathcal{A} = \{A_1, A_2, ..., A_k\}$ be a finite sf – open covering of X has sf – open covering $\mathcal{V} = \{V_1, V_2, ..., V_k\}$ of order $\leq n$ such that $V_i \subset A_i$ for i = 1, 2, ..., k. Let $\mathcal{G} = \{G_1, G_2, ..., G_k\}$ be sf – open covering of X such that $V_i = G_i$ for each i. Thus \mathcal{G} be an sf – open refinement of X with order $\leq n$. Hence sf – dimX $\leq n$.

$2 \rightarrow 3$

Let $\mathcal{A} = \{A_1, A_2, ..., A_{n+2}\}$ be an sf – open covering of X then \mathcal{U} has sf – open covering $\mathcal{V} = \{V_1, V_2, ..., V_{n+2}\}$ of order $\leq n$ such that $V_i \subset A_i$. Since order \mathcal{V} is $\leq n$ then $\bigcap_{i=1}^{n+2} V_i = \emptyset$. $\mathbf{3} \rightarrow \mathbf{2}$

Let X be a space satisfying (3) and let $\{A_1, A_2, ..., A_k\}$ be a finite sf – open covering of X.We may assume that k > n + 1. Let $G_i = A_i$ if $i \le n + 1$ and let $G_{n+2} = \bigcup_{i=n+2}^k A_i$. Then $\{G_1, G_2, ..., G_{n+2}\}$ is an sf – open covering of X and hence by inference there exists an sf – open covering $\{H_1, H_2, ..., H_{n+2}\}$ such that each $H_i \subset G_i$ and $\bigcap_{i=1}^{n+2} H_i = \emptyset$. Let $W_i = A_i$ if $n + 1 \ge i$ and let $W_i =$ $A_i \cap H_{n+2}$ if n + 1 < i. Then $\mathcal{W} = \{W_1, W_2, ..., W_{n+2}\}$ is an sf – open covering of X, each $W_i \subset$ A_i and $\bigcap_{i=1}^{n+2} W_i = \emptyset$. If there is a subset B of $\{1, 2, ..., k\}$ with elements such that $\bigcap_{i\in B} W_i \neq \emptyset$. Let's renumber the members of W to give a family $\mathcal{P} = \{P_1, P_2, ..., P_k\}$ such that $\bigcap_{i=1}^{n+2} P_i \neq \emptyset$. By applying the above construction to \mathcal{P} , we obtain an sf – open covering $\mathcal{W}' = \{W'_1, W'_2, ..., W'_k\}$ such that each $W'_i \subset P_i$ and $\bigcap_{i=1}^{n+2} W'_i = \emptyset$. Clearly if C is a subset of $\{1, 2, ..., k\}$ with n + 2 elements where $\bigcap_{i\in C} P_i =$ \emptyset and $\bigcap_{i\in C} W'_i = \emptyset$. Thus by a finite number of repetitions of this process we obtain an sf – open covering $\{V_1, V_2, ..., V_k\}$ of X of order \leq n such that each $V_i \subset A_i$.

Theorem (3.10):

Let X be an sf[`] – normal space. Then the following statements are equivalents:

- 1. $sf' dim X \le n$.
- Every finite sf open covering is sf shrinkable to an sf open covering and the order of its sf – closure is ≤ n.
- 3. Every finite sf open covering can be reduced to sf closed covering of order $\leq n$.
- 4. Every finite sf open covering of n + 2 sets can be reduced to a sf closed with empty intersection.

Proof: $1 \rightarrow 2$

Suppose that sf[`] - dimX \leq n and let $\mathcal{U} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ be a finite sf – open covering of X.Then \mathcal{U} has an sf – open reduction $\mathcal{V} = \{V_{\lambda}\}_{\lambda \in \Lambda}$ of sf – open covering of order \leq n by Theorem(3.5).Since X is sf[`] – normal space then \mathcal{V} is sf – shrinkable to an sf – open covering $\mathcal{W} = \{W_{\lambda}\}_{\lambda \in \Lambda}$ hence $W_{\lambda} \subseteq \overline{W_{\lambda}}^{N} \subseteq V_{\lambda}$ therefore \mathcal{W} is an sf – open covering of X and sf – shrinks \mathcal{U} . Since order $\mathcal{V} \leq$ n then order $\overline{W}^{sf} \leq$ n and $\bigcap_{i=1}^{n+2} \overline{W}^{sf} \subset \bigcap_{i=1}^{n+2} V_{i} = \emptyset$ hence order $\overline{W}^{sf} \leq$ n. $\mathbf{2} \rightarrow \mathbf{3}$

If U is a finite sf – open covering of X. Then U is sf – shrinkable to an sf – open covering W of X such that $\operatorname{order} \overline{W}^{sf} \leq n$. Then \overline{W}^{sf} is sf – closed reduction of U, $\operatorname{order} \overline{W}^{sf} \leq n$. 3 \rightarrow 4

Let $\mathcal{U} = \{U_1, U_2, ..., U_{n+2}\}$ is a finite sf – open covering of X.Then \mathcal{U} has sf – closed reduction $\mathcal{F} = \{F_1, F_2, ..., F_{n+2}\}$ of order $\leq n$ which covers X.Since order $\mathcal{F} \leq n$ then $\bigcap_{i=1}^{n+2} F_i = \emptyset$. $\mathbf{4} \rightarrow \mathbf{1}$

Let $\mathcal{U} = \{U_1, U_2, ..., U_{n+2}\}$ is a finite sf – open covering of X also let $\mathcal{F} = \{F_1, F_2, ..., F_{n+2}\}$ be sf – closed reduction \mathcal{U} with empty intersection, for each i.

Let $G_i = X \setminus F_i$ then $\mathcal{G} = \{G_1, G_2, ..., G_{n+2}\}$ be sf – open covering of X.Since X is sf[`] – normal space then \mathcal{G} is sf – shrinkable to sf – open covering $\{V_1, V_2, ..., V_{n+2}\}$ hence $V_i \subseteq \overline{V_i} i^N \subseteq G_i$. Let $W_i = U_i \setminus \overline{V}^{sf} \subset U_i$ for some i where $\mathcal{W} = \{W_1, W_2, ..., W_{n+2}\}$ is sf – open reduction of U which covers X, then

$$\bigcap_{i=1}^{n+2} W_i = \bigcap_{i=1}^{n+2} \left(U_i \setminus \overline{V}_i^{sf} \right) = \bigcap_{i=1}^{n+2} \left(U_i \cap \overline{V}_i^{sf^C} \right) \subset \bigcap_{i=1}^{n+2} \left(\overline{V}_i^{sf^C} \right) \subset \bigcap_{i=1}^{n+2} \left(V_i^C \right) \ \subset \left(\bigcup_{i=1}^{n+2} V_i \right)^C$$
$$= X^C = \emptyset$$

Therefore by Theorem (3.6) then $sf - dim X \le n$.

Definition(3.11):

Let X be a topological space , then The sf – local dimension, sf – loc dimX, of a space X has the following definition. If X is empty then sf – loc dimX = –1, otherwise sf – loc dimX is the least integer n where for each point x of X there exists some sf – open set U containing x where sf – dim $\overline{U} \leq n$, or if there is no such integer then sf – loc dimX = ∞ .

Theorem(3.12):

If (X,τ) be a topological space, then $sf - locdim X \le sf - dim X$

Proof:

Suppose that $sf - dim X \le n$ and $x \in X$

hence X sf - open set X containing x,

then $sf - dim\overline{X} = sf - dimX \le n$

Proposition (3.13):

Let A be an closed set of a space X, then $sf - locdimA \le sf - locdimX$.

Proof:

Suppose that $sf - locdimX \le n$ and let $x \in A$, then there exists an sf - open set U of X where $x \in U$ and $sf - dim\overline{U} \le n$. Then $U \cap A$ is an sf - open set in A such that $x \in U \cap A$ by Proposition (2.26). And the closure of $U \cap A$ in A is closed set of \overline{U} , therefor has sf-dimension $\le n$ by Proposition (3.3). Then $sf - locdimA \le n$, thus $sf - locdimA \le sf - locdimX$

Proposition (3.14):

Let Y be an open set of locally indiscrete sf'' - regular space X then, $sf - locdimY \le sf - locdimX$.

<u>Proof</u>:

Suppose that $sf - locdimX \le n$ and let $x \in Y$, then there is an sf - open

set U of X such that $x \in U$ and $sf - \dim \overline{U} \le n$. Then $U \cap Y$ is an sf - open set in Y such that $x \in U \cap Y$ by Propositio (2.26). Since X is an sf'' - regular space, then there exists an sf - open set G such that $x \in G \subset \overline{G}^{sf} \subset U \cap Y$. Then G is an sf-open in Y, and \overline{G} is closure of G in Y.Since \overline{G} is closed subset of \overline{U} , it follows that $sf - \dim \overline{G} \le n$ by Proposition (3.3). Hence $sf - \operatorname{locdim} Y \le sf - \operatorname{locdim} X$.

Theorem(3.15):

 $Let(X,\tau) \text{ be a topological space , then } sf-locdim X \leq n \text{ iff every sf-open covering of } X \text{ has sf-open refinement } \{V_{\lambda} : \lambda \in \Lambda\} \text{ such that } sf-dim \overline{V_{\lambda}} \leq n \text{ . } \forall \lambda \in \Lambda$

Proof: (\rightarrow)

let $sf - locdim X \le n$ and $\{U_{\lambda} : \lambda \in \Lambda\}$ be sf-open cover of X. Let $x \in X$, then

 $x \in U_{\lambda}$ for some $\lambda \in \Lambda$, then

either $\exists V_{\alpha}$ sf-open such that $x \in V_{\lambda} \subset U_{\lambda}$

hence V $_{\lambda}$ sf-open set such that $x \in V_{\lambda} \subset U_{\lambda}$ and $sf - \dim \overline{V_{\lambda}} \leq n$

therefore the prove is finish.

Otherwise if $\exists W_{\lambda}$ sf-open set such that $x \in W_{\lambda}$ and $sf - \dim \overline{W_{\lambda}} \leq n$

let $V_\lambda = U_\lambda \cap W_\lambda$, then $x \in V_\lambda \subset U_\lambda$.

since $\overline{V_{\lambda}}$ is closed in $\overline{W_{\lambda}}$, then sf - dim $\overline{V_{\lambda}} \leq n$ by Proposition (3.3).

(←)

Let $x \in X$ and $\{U_{\lambda} : \lambda \in \Lambda\}$ is sf-open covering of X, then $x \in U$ for some $\lambda \in \Lambda$

Then U has sf-open refinement $\{V_{\lambda} : \lambda \in \Lambda\}$

Hence V_{λ} is sf-open set such that $x \in V_{\lambda}$ some $\lambda \in \Lambda$ and $sf - \dim \overline{V} \leq n$

There for $sf - locdimX \le n$

References

[1] A.P.Pears "On Dimension Theory of General Spaces" Cambridge university press, (1975).

[2] E. R. Ali "On Dimension Theory by Using N-Open Sets", M.Sc. thesis university of Al-Qadissiya college of mathematics and computer science, (2011).

[3] G, S.Grossly. and Hildebrand S. K. " semi closed set and semi continuity in Topological space "Txas J-sci (1971).

[4] Maheshwari S.N & Tapiu ." Feebly open sets" . Ann University . Timisaras, (1978).

[5] N.H.Hajee "On Dimension Theory by Using Feebly Open Set", M.Sc. thesis university of Al-Qadissiya college of mathematics and computer science, (2011).

[6] N.K. Ahmed "On some application of special sub sets of topological spaces "M.sc thesis, University of Salahaddin , College of science (1990).

[7] N.Levine "Semi open set and semi Continuity in topological space". Amer .Math .Monthly (1963).

[8] N.M. Al Tabatbai "On New Types of Weekly open sets ", M.Sc thesis University of Baghdad (2004).

[9] R. A. H. Al-Abdulla and O. R.M. Al-Gharani "On paracompactness Via sf-open sets " University of Al-Qadissiya , college. of Mathematics and . computer science , (2020).

[10] R.A.H.AL-Abdulla "On Dimension Theory", M.Sc. thesis university of Baghdad, college of science, (1992).

[11] S.K.Gaber "On b-Dimension Theory" M.Sc. thesis university of Al-Qadissiya , college of mathematics and computer science, (2010).

[12] Z.N.K. Hussain " On Countable Chain Condition by using sf-Open Sets ", M .Sc thesis University of Al-Qadissiya, college of science, (2021).