

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Sf-covering dimension and sf-local dimension

*Ghazwan Farhan Shaker1and Raad Aziz Hussain Al-Abdulla ² **

Department of Mathematics,""College of Science" "University of Al-Qadisiyah, Diwaniyah-Iraq .Email: ma20.post13@qu.edu.iq¹

Department of Mathematics,""College of Science""University of Al-Qadisiyah, Diwaniyah-Iraq.Email: raad.hussain@qu.edu.iq²

ARTICLE INFO

Article history: Received: 11 /06/2022 Rrevised form: 09 /07/2022 Accepted : 17 /07/2022 Available online: 12 /08/2022

ABSTRACT

The aim of this paper is to introduce new types of dimension functions which are sfcovering.dimension,sf-dim X, and sf-local dimension, sf-loc dim X , by using semi feebly open (sf-open) sets, with examples and theorems. The relationships between them and other concepts will be studied like $sf-T_1$ -space, sf -regular space and sf -normal space.

Keywords: dim X , loc dim X ,sf-dim X , sf-loc dim X

MSC..

https://doi.org/10.29304/jqcm.2022.14.3.992

1.Introduction:

The foundation of dimension theory is the "dimension function," It has the properties of $d(X)=d(Y)$ if X and Y are homeomorphic and $d(R^n) = n$ for every positive integer n. It is a function defined on the class of topological spaces where $d(X)$ is an integer or ∞ . The dimension functions taking topological spaces to the set $\{-1,0,1,...\}$.[1] studied the dimension functions ind,Ind,dim. Actually dimension functions S – indX, S – IndX, S – dimX were examined using S-open sets in [10], dimension functions b – indX, b – IndX, b – dimX, were researched using b-open sets in [11], and dimension functions $f - \text{indX}, f -$ IndX, f – dimX, were studied using f-open sets in [5], [2] investigated the dimension functions N – $indX$,N – IndX,N – dimX utilizing N-open sets. We recall the definitions of dim , loc dim from [1], and then use sf – open sets to add the dimension functions sf – dim , sf – loc dim .Finally, certain connections between them are investigated, and some conclusions about these notions are established .

2.Preliminaries

In this section, we recall some of the basic definitions and theorems.

Definition (2.1): [7]

Email addresses:

Communicated by 'sub etitor'

[∗]Corresponding author

Let B be subset of a topological space X. If there is an open set D where $D \subset B \subset \overline{D}$, then B called semiopen (s-open) set in X

Remark(2.2): [6]

A set U is semi-open (s-open) set in X iff $U \subseteq \overline{U^{\circ}}$, equivalent $U = \overline{U^{\circ}}$, the complement semi-open set is semi-closed (s-closed) set.

If there is an closed set D where $D^{\circ} \subseteq U \subseteq D$, then U called semi-closed(s-closed) set in X.

Definition (2.3): [3]

Let D subset of a topological space X, define semi-closure (s-closure) of D as an the intersection of every semi-closed sets contained D in X and define semi-interior (s-interior) of D as an the union of semi open sub set of X contained D and are denoted by \overline{D}^s , D^{os}respectfully

Proposition (2.4): [7]

let X be a topological space , if V is open subset of X and D is s-open set in X, then $D \cap V$ is an sopen set in X .

Proposition (2.5):[12]

If H is s-open in Y where Y is open subset of a topological space X,then H is s-open in X.

Proposition (2.6):[12]

If H is s-open of a topological space X and Y is open subset of X, then H is s-open in Y for $H \subseteq Y$.

Proposition (2.7):

If H is s-open set of a topological space X and W is open sub set of X, then H ∩ W is s-open in W **Proof:**

By Proposition (2.4) and Proposition (2.6), then H \cap W is s-open in W

Definition (2.8): [4]

If X be topological space and $E \subseteq X$. Then E is called feebly open (f-open) set in X if there is an open set 0 like $0 \subseteq E \subseteq \overline{0}^s$.

Remark (2.9): [6]

If D is subset of a topological space X, then D called feebly open set in X iff $D \subseteq \overline{D^{\circ}}^{\circ}$. Feebly closed(f-closed) is The complement of feebly open set where $\overline{\overline{D}}^{\circ} \subseteq D$.

Remark (2.10): [8]

Any open set is f-open set and any closed set is f-closed set

Definition(2.11): [9]

If B be subset of a topological space X,then B called semi feebly open (sf −open) set in X; if for any semi open set W where B \subseteq W we get $\overline{B}^f \subseteq W$. Semi feebly closed(sf-closed) is the counterpart of sf- open set that $W \subseteq B^{\circ f}$ where V semi closed set in X.

Remark (2.12): [9]

Any f-closed set and any closed set is sf-open set . however, the opposite is untrue.

Proposition (2.13): [9]

If { A_{α} : $\alpha \in \Lambda$ } is arbitrary collection of sf −open sets. Then $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is sf −open set.

Definition (2.14): [9]:

If the union of sf − open sets in topological space X is

also sf − open sets, Then X is said to be satisfy conduct union

Definition (2.15): [9]

If X is a topological space and $D \subseteq X$. Then sf-closure of D is the intersection of all sf-closed of X which Contains D and denoted by \overline{D}^{sf} , that means $\overline{D}^{sf} = \cap \{M : M \text{ is sf-closed in X and D} \subseteq M\}$.

Definition (2.16): [9]

Let X be a topological space and $D \subseteq X$. Then sf-Interior of D is the union of all sf-open sets of X contained in D is and denoted by $D^{\circ sf}$, that means $D^{\circ sf} = \bigcup \{E : E \text{ is sf} - \text{open in X and } E \subseteq D\}$.

Theorem (2.17):[12]

If Y is open subspace of a topological space X, then $\overline{D}^{fy} = \overline{D}^f \cap Y$ for each $D \subseteq Y$.

Definition (2.18): [9]

A topological space X is called sf-T₁-space if for any $x \neq y$ in X there is sf-open sets A and B where $x \in A$, $y \notin A$ and $y \in B$, $x \notin B$.

Proposition (2.19): [9]

Let X be a conduct union topological space, then $\{x\}$ is sf – closed set $\forall x \in X$ iff X is sf -T₁-space

Definition (2.20):[12]

A topological space X is called sf"-regular space if any x in X and sf – closed subset M where $x \notin M$, there is disjoint sf-open sets A, B such that $x \in A$, $M \subseteq B$.

Proposition (2.21):[12]

Let X be a conduct union topological space, then X is sf["]-regular space iff $\forall x \in X$ and \forall sf-open set $A \ni x \in A$,∃ sf-open set $V \ni x \in V \subseteq \overline{V}^{sf} \subseteq A$.

Definition (2.22): [9]

A topological space X is called sf -normal space if for every disjoint sf-closed sets G_1 , G_2 there exists disjoint sf-open sets B_1 , B_2 such that $G_1 \subseteq B_1$, $G_2 \subseteq B_2$.

Proposition (2.23):[9]

A conduct union topological space X is sf`-normal space iff \forall sf -closed set $E \subseteq X$, and \forall sf -open set V in $X \ni E \subseteq V$, \exists sf -open set $U \ni E \subseteq U \subseteq \overline{U}^{sf} \subseteq V$

Proposition (2.24):

Let Y open sub space of a topological space, then the subset D of Y is sf – open in Y if it is sf – open in X**.**

Proof:

Let D is sf-open in X.To show D is sf-open in Y, by definition $D \subseteq H$ when H s −open in Y. Then H is s-open in X by proposition (2.5). Therefore $\overline{D}^f \subseteq H$, to prove $\overline{D}^{f_y} \subseteq H$

$$
\overline{D}^{fy} = \overline{D}^{f} \cap Y \qquad \text{by theorem (2.17)}
$$

$$
\subseteq \overline{\text{D}}^{\text{f}}
$$

 \subseteq H, therefor D is sf – open in Y

Theorem(2.25):

Let Y is open and f-closed subset of a topological space X, then B is sf-open in X.If it is sf − open in Y

Proof:

To show B is sf-open in X, by definition $B \subseteq H : H$ is s-open in X. Then H \cap Y is s-open in Y by Proposition (2.7) . Since B is sf-open in Y and f ⊆ H ∩ Y

To prove $\overline{B}^f \subseteq H$

Therefor B is sf-open in X .

Proposition (2.26):

 Let Y is open and f-closed subset of a topological space X,then D ∩ Y is sf-open in Y for any sf-open set D of X

Proof:

Since Y is f-closed in X, then Y is sf – open in X, then D ∩ Y is sf-open in X. Since D ∩ Y \subseteq Y, then D ∩ Y is sf – open in Y by proposition (2.24)

Theorem (2.27):

Let Y is open and f-closed subset of a topological space X.then W is sf-open in Y iff \exists V sf-open in X ∋ W = V ∩ Y.

Proof:

Let W is a sf-open in Y. Then W is sf-open in X by proposition (2.25). Put $W = V$, we have $W =$ $W \cap Y = V \cap Y$.

Conversely :

Let V be sf-open in X, then by proposition(2.26) V \cap Y is sf – open in Y. therefor W is sf-open in Y.

Definition(2.28)[1]:

Let *H* be a family of subsets of a set X, we define an order of the family H as the greatest integer n where the family *H* have n+1 sets with a non-empty intersection ;we say the family *H* has order ∞ if there is no such integer. ord H denotes the order of a family H .

Definition(2.29)[1]:

Let $\{G_\alpha\}_{\alpha\in\Lambda}$ be a cover of a set X,then $\{V_\gamma\}_{\gamma\in\Gamma}$ is said to be a refinement of $\{G_\lambda\}_{\lambda\in\Lambda}$ if it is a cover of X and for any $\gamma \in \Gamma$ there is $\alpha \in \Lambda$ such that $V_{\gamma} \subseteq G_{\alpha}$

Definition(2.30)[1]:

A reduction of the family $\{A_{\lambda}\}_{{\lambda}\in{\Lambda}}$ is any family $\{B_{\lambda}\}_{{\lambda}\in{\Lambda}}$ such that $B_{\lambda} \subset A_{\lambda}$ for each $\lambda \in \Lambda$ such that the union is the same. Then every reduction which covers X is a refinement

Definition (2.31))[1]:

Let ${B_\alpha}_{\alpha \in A}$ be a family of subsets of space X ,then ${B_\alpha}_{\alpha \in A}$ is called point finite if for any $x \in X$,the set { $\alpha \in A$: $x \in B_{\alpha}$ } is finite.

3.The Main Results

Definition(3.1):

Let X be a topological space ,The sf −covering dimension ,sf − dimX, of X is the least integer n where each finite sf-open covering of X has an sf – open refinement of order \leq n or is ∞ if no such integer exists .Thus sf – dimX = -1 if and only if X is empty, and sf – dimX \leq n if each finite sf-open covering of X has sf – open refinement of order \leq n. We have sf – dimX = n if it is true that sf – dimX \leq n but sf – dimX \leq n – 1 is not true. Finally sf – dimX = ∞ if for every integer n it is false that $sf - dimX \leq n$.

Theorem (3.2):

Let X be a topological space with sf $-$ dimX = 0. Then X is sf' $-$ normal space.

Proof:

Let E₁ and E₂ be sf – closed sets of X with E₁ \cap E₂ = \emptyset . Then E= {X \ E₁, X \ E₂} is an sf – open covering of X, since sf – dimX = 0, then there is $U = {U_1, U_2}$ sf – open refinement of E which is covers X with order 0, hence $U_1 \cap U_2 = \emptyset$ and $X = U_1 \cup U_2$, then U_1 , U_2 are sf-open and sf – closed sets,and $U_1 \subset X \setminus E_1$ and $U_2 \subset X \setminus E_2$. Thus

 $E_1 \subseteq U_1^C = U_2$, $E_2 \subseteq U_2^C = U_1$ and $U_1 \cap U_2 = \emptyset$, then X is sf –` normal space.

Theorem (3.3):

If X is a topological space and B is a clopn subset of X, then $sf - dimB \leq sf - dimX$.

Proof:

Let sf – dimX \leq n, to prove sf – dimB \leq n. Let {U₁, U₂, ..., U_k} be an finite sf – open covering of B, Then for any i, there is G_i is sf – open set in X such that $U_i = B \cap G_i$ by theorem(2.27). The finite sf – open covering $\{G_1, G_2, ..., G_k, X \setminus B\}$ of X has an sf – open refinement W of order $\leq n$. Let $K =$ $\{W \cap B : W \in W\}$ where W ∩ B is an sf – open in B by proposition (2.26). There for K is an sf – open refinement of $\{U_1, U_2, ..., U_k\}$ of order ≤ n. There for sf – dim B ≤ n. ■

Proposition(3.4):

If X is sf – T_1 -space and sf – dimX =0, then X is sf["] – regular space.

Proof:

Let $x \in X$ and F sf – closed set of X with $x \notin F$. Then $x \in F^c$, where F^c is sf – open set in X Since X is $sf - T_1$ -space then $\{x\}$ is $sf - closed$ by Proposition (2.19). Therefore $\{X - \{x\}, F^c\}$ be finite $sf - open covering of X$. Since $sf - dimX = 0$, then ${X-\{x\}, F^c\}$ has $sf - open refinement{V,W}$ which is cover of X with order zero. Then $V \subseteq X - \{x\}$, $W \subseteq F^c$ then $x \in W \subseteq F^c$ and $F \subseteq W^c = V$. Therefore there is V,W sf-open set where $F \subseteq V$ and $x \in W$ with $V \cap W = \emptyset$. Thus X is sf["] – regular space

Proposition (3.5):

Let X be a conduct union topological space, then sf – dimX \leq n iff each finite sf – open cover of X can be reduced to an sf – open cover of order \leq n.

Proof:

If $\mathcal{G} = \{G_{\lambda_i}\}_{i=1}^n$ $\sum_{i=1}^{n}$ is finite sf – open covering ofX, since sf – dimX \leq n then G has sf – open refinement $W = \{W_{\alpha}\}_{{\alpha \in \Lambda}}$ of order \leq n. If $W_{\alpha} \in W$ then there exists $G_{\lambda_i} \in G$ such that $W_{\alpha} \subset G_{\lambda_i}$. Let $V_{\lambda_i} = U_{\alpha \in \Lambda} W_{\alpha} \subset G_{\lambda_i}$, then $V = \{V_{\lambda_i}\}_{i=1}^n$ \int_{1}^{n} is sf – open reduction of G which is the X cover and it is order $\leq n$.

Conversely

Let $\mathcal{G} = \{G_{\lambda_i}\}_{i=1}^n$ $\sum_{i=1}^{n}$ be a finite sf – open covering of X then there exists a reduction $W =$ $\{W_{\lambda}\}_{\lambda \in \Lambda}$ which is sf – open covering of X. W is thus a refinement of G that is open of order \leq n. Hence sf – dim $X \leq n$.

Theorem (3.6):

Let X be a conduct union topological space, then $sf - dimX \le n$ if, and only if, every $sf - open$ cover of X with $n + 2$ sets, has an sf – open reduction of $n + 2$ sets with empty intersection.

Proof:

Suppose that $sf - dimX \leq n$, then every finite $sf - open covering$ of X has $sf - open reduction$ of order \leq n by Theorem (3.5). In particular if the number of elements of the cover is n+2 then the number of its reduction is also n+2 with order \leq n that is the intersection is not empty for at most n+1 elements . Hence the intersection of all n+2 elements is empty

Conversely

Let $\mathcal{G} = \{G_1, G_2, ..., G_k\}$ be a finite sf – open covering of X, suppose that the order of $\mathcal{G} > n$, then there exists $G_1, G_2, ..., G_{n+2} \in \mathcal{G}$ such that $\bigcap_{i=1}^{n+2} G_i \neq \emptyset$. Suppose that $G^* = G_{n+2} \cup ... \cup G_k$ then ${G_1, G_2, ..., G_{n+1}, G^*}$ is sf – open covering of X with $n + 2$ sets, which it has an sf – open reduction $\{V_1, V_2, ..., V_{n+1}, V^*\}$ with empty intersection. Then $\{V_1, V_2, ..., V_{n+1}, V^* \cap G_{n+2}, ..., V^* \cap G_k\}$ is sf – open reduction of G which cover X the non-empty intersection of the first $n + 1$ sets may not be empty. But the intersection of all sets of the reduction is empty. Let $x \in X$ where $x \notin V_i$, i = 1,2,3, ... $n + 1$ then $x \in V^*$, therefore $x \in \mathcal{G}_i$ for some $i = 1, 2, ..., k$ hence $x \in V^* \cap \mathcal{G}_i$ for some $i = n + 1$ 2, ..., k. By repeating the procedure finite we will get a reduction of G such that the intersection for each n + 2 set is empty thus the order of reduction is \leq n, hence sf – dimX \leq n. \blacksquare

Definition (3.7):

Let ${A_{\lambda}}_{\lambda \in \Lambda}$ be an sf – open cover of X, ${A_{\lambda}}_{\lambda \in \Lambda}$ is called sf – shrinkable if and only if there is an sf – open covering ${B_{\lambda}}_{\lambda \in \Lambda}$ where $B_{\lambda} \subseteq \overline{B_{\lambda}}^{sf} \subseteq A_{\lambda}$ for each $\lambda \in \Lambda$. In this case we say that ${B_\lambda}_{\lambda \in \Lambda}$ sf – shrinks ${A_\lambda}_{\lambda \in \Lambda}$, denoted by B $\ll_{sf} A$.

Theorem (3.8):

If X is an conduct union topological space ,the following claims are thus equivalent:

- 1) X is an sf' normal space.
- 2) every point-finite sf open covering of X is sf shrinkable.
- 3) every finite sf open covering of X has sf closed refinement.

$Proof:1 \rightarrow 2$

Suppose that ${G_{\alpha}}_{\alpha \in A}$ be a point-finite sf – open covering of sf – normal space X and let A be well-ordered.We shall construct an sf – shrinkable of ${G_{\alpha}}_{\alpha \in A}$ by introduction of the transfinite. Let μ be an element of A and let for any $\alpha < \mu$ there are an sf – open set U_{α} where $\overline{U_{\alpha}}^{sf} \subset G_{\alpha}$ and for each $\gamma < \mu$, $\bigcup_{\alpha \leq \gamma} U_{\lambda} \cup \bigcup_{\alpha > \gamma} G_{\alpha} = X$. Let x be a point of X. Then since $\{G_{\alpha}\}_{\alpha \in A}$ is a point finite there is a largest element Σ , say, of A where $x \in G_{\Sigma}$. If $\Sigma \ge \mu$ therefor $x \in \bigcup_{\alpha \ge \mu} G_{\lambda}$, whilst if $\Sigma < \mu$ then $x \in G_{\Sigma}$

 $\bigcup_{\alpha \leq \Sigma} U_{\lambda} \subset \bigcup_{\alpha \leq \mu} U_{\alpha}$. Hence $\bigcup_{\alpha \leq \mu} U_{\alpha} \cup \bigcup_{\alpha \geq \mu} G_{\alpha} = X$. Thus G_{μ} contains the complement of $U_{\alpha \leq \mu}$ U_{λ} \cup $U_{\alpha > \mu}$ G_{α} . Since X is sf` – normal space, there exist an sf – open set U_{μ} where:

$$
X \setminus \left(\bigcup_{\alpha < \mu} U_{\lambda} \cup \bigcup_{\alpha \ge \mu} G_{\alpha} \right) \subset U_{\mu} \subset \overline{U_{\mu}}^{sf} \subset G_{\mu}
$$

Thus $\overline{U_{\mu}}^{sf} \subset G_{\mu}$ and $\bigcup_{\alpha \leq \mu} U_{\lambda} \cup \bigcup_{\alpha > \mu} G_{\lambda} = X$. The construction of a sf-shrinking of $\{G_{\alpha}\}_{\alpha \in A}$ is completed by introduction of the transfinite.

$2 \rightarrow 3$

Let ${G_{\alpha}}_{\alpha\in\Lambda}$ be a finite sf – open covering of X then ${G_{\alpha}}_{\alpha\in\Lambda}$ is a point-finite sf – open covering of X. Therefore there exists $\{U_\alpha\}_{\alpha \in \Lambda}$ an sf – open family of covering of X such that $\overline{U_\alpha}^{sf} \subset G_\alpha$ for each $\alpha \in \Lambda$. Therefore $\left\{ \overline{U_{\alpha}}^{sf} \right\}_{\alpha \in \Lambda}$ is a sf – closed refinement of $\{G_{\alpha}\}_{\alpha \in \Lambda}$.

$3 \rightarrow 1$

Let every finite sf – open covering of X has a sf – closed refinement and let M, N be disjoint sf – closed sets of X. The covering ${X \setminus M, X \setminus N}$ of X has a sf – closed refinement K.Let D be the union of the members of K disjoint from A and let H be the union of the members of K disjoint from N then D, H are sf – closed sets and D ∪ H = X. Then if $V = X \setminus D$, W = X \ H then V, W are disjoint sf – open sets $M \subseteq V$, $N \subseteq W$. Therefor X is sf^{\cdot} − normal space.

Proposition (3.9):

Let X is a conduct union topological space, the following claims are thus equivalent:

- 1) sf dim $X \leq n$.
- 2) For each finite sf open covering $\{A_1, A_2, ..., A_k\}$ of X there is an sf open covering $\{V_1, V_2, ..., V_k\}$ of order $\leq n$ such that $V_i \subset A_i$ for $i = 1, 2, ..., k$.
- 3) If $\{A_1, A_2, ..., A_{n+2}\}$ is an sf open covering of X, there is an sf open covering $\{V_1, V_2, \dots, V_{n+2}\}\$ such that each $V_i \subset A_i$ and $\bigcap_{i=1}^{n+2} V_i = \emptyset$.

Proof: $1 \rightarrow 2$

Suppose sf – dimX \leq n . The finite sf – open covering $\{A_1, A_2, ..., A_k\}$ has an sf – open refinement W of order \leq n. If $W \in W$ then $W \subset A_i$ for some i. Let each w in W be associated with one of the sets A_i containing it and let V_i be the union of those members of W thus associated with A_i . Then V_i is sf – open and $V_i \subset A_i$ and each point of X is in some member of W and hence in some V_i , each point

 $x \in X$ is in at most $n + 1$ members of W, each of which associated with a unique A_i , and hence x is in at most $n + 1$ members of $\{V_i\}$. Thus $\{V_i\}$ is an sf – open covering of X of order $\leq n$.

 $2 \rightarrow 1$

Let $A = \{A_1, A_2, ..., A_k\}$ be a finite sf – open covering of X has sf – open covering $V =$ $\{V_1, V_2, \dots, V_k\}$ of order $\leq n$ such that $V_i \subset A_i$ for $i = 1, 2, \dots, k$. Let $\mathcal{G} = \{G_1, G_2, \dots, G_k\}$ be sf – open covering of X such that $V_i = G_i$ for each i. Thus G be an sf – open refinement of X with order $\leq n$. Hence $sf - dimX \leq n$.

$2 \rightarrow 3$

Let $A = \{A_1, A_2, ..., A_{n+2}\}$ be an sf – open covering of X then U has sf – open covering $V =$ $\{V_1, V_2, ..., V_{n+2}\}\$ of order $\leq n$ such that $V_i \subset A_i$. Since order \mathcal{V} is $\leq n$ then $\bigcap_{i=1}^{n+2} V_i = \emptyset$. $3 \rightarrow 2$

Let X be a space satisfying (3) and let $\{A_1, A_2, ..., A_k\}$ be a finite sf – open covering of X.We may assume that $k > n + 1$. Let $G_i = A_i$ if $i \le n + 1$ and let $G_{n+2} = \bigcup_{i=n+2}^{k} A_i$. Then $\{G_1, G_2, ..., G_{n+2}\}$ is an sf − open covering of X and hence by inference there exists an sf − open covering $\{H_1, H_2, ..., H_{n+2}\}\$ such that each $H_i \subset G_i$ and $\bigcap_{i=1}^{n+2} H_i = \emptyset$. Let $W_i = A_i$ if $n+1 \ge i$ and let $W_i = A_i$ $A_i \cap H_{n+2}$ if $n+1 < i$. Then $W = \{W_1, W_2, ..., W_{n+2}\}$ is an sf – open covering of X, each $W_i \subset$ A_i and $\bigcap_{i=1}^{n+2} W_i = \emptyset$. If there is a subset B of {1,2, ..., k} with elements such that $\bigcap_{i\in B} W_i \neq \emptyset$. Let's renumber the members of W to give a family $\mathcal{P} = \{P_1, P_2, ..., P_k\}$ such that $\bigcap_{i=1}^{n+2} P_i \neq \emptyset$. By applying the above construction to P , we obtain an sf – open covering $W' = \{W'_1, W'_2, ..., W'_k\}$ such that each $W'_i \subset P_i$ and $\bigcap_{i=1}^{n+2} W'_i = \emptyset$. Clearly if C is a subset of $\{1, 2, ..., k\}$ with $n + 2$ elements where $\bigcap_{i \in C} P_i =$ \emptyset and $\bigcap_{i\in C} W_i' = \emptyset$. Thus by a finite number of repetitions of this process we obtain an sf – open covering $\{V_1, V_2, ..., V_k\}$ of X of order \leq n such that each $V_i \subset A_i$.

Theorem (3.10):

Let X be an $sf[`]$ – normal space. Then the following statements are equivalents:

- 1. sf^{\cdot} − dimX \leq n.
- 2. Every finite sf open covering is sf shrinkable to an sf open covering and the order of its sf – closure is \leq n.
- 3. Every finite sf open covering can be reduced to sf closed covering of order $≤$ n.
- 4. Every finite sf − open covering of n + 2 sets can be reduced to a sf − closed with empty intersection.

Proof: $1 \rightarrow 2$

Suppose that sf $-$ dimX \leq n and let $\mathcal{U} = \{U_{\lambda}\}_{{\lambda \in \Lambda}}$ be a finite sf – open covering of X. Then \mathcal{U} has an sf − open reduction $V = \{V_{\lambda}\}_{\lambda \in \Lambda}$ of sf − open covering of order \leq n by Theorem(3.5).Since X is sf` − normal space then V is sf − shrinkable to an sf − open covering $W = \{W_{\lambda}\}_{\lambda \in \Lambda}$ hence $W_{\lambda} \subseteq \overline{W_{\lambda}}^N \subseteq V_{\lambda}$ therefore W is an sf – open covering of X and sf – shrinks U . Since order $V \le n$ then order $\overline{W}^{\text{sf}} \le n$ and $\bigcap_{i=1}^{n+2} \overline{W}^{\text{sf}} \subset \bigcap_{i=1}^{n+2} V_i = \emptyset$ hence order $\overline{W}^{\text{sf}} \le n$. $2 \rightarrow 3$

 If U is a finite sf − open covering of X. Then U is sf − shrinkable to an sf − open covering W of X such that order \overline{W}^{sf} < n. Then \overline{W}^{sf} is sf – closed reduction of U, order \overline{W}^{sf} < n. $3 \rightarrow 4$

Let $\mathcal{U} = \{U_1, U_2, ..., U_{n+2}\}\$ is afinite sf – open covering of X. Then \mathcal{U} has sf – closed reduction $\mathcal{F} = \{F_1, F_2, ..., F_{n+2}\}\$ of order $\leq n$ which covers X.Since order $\mathcal{F} \leq n$ then $\bigcap_{i=1}^{n+2} F_i = \emptyset$. $4 \rightarrow 1$

Let $\mathcal{U} = \{U_1, U_2, \dots, U_{n+2}\}$ is a finite sf – open covering of X also let $\mathcal{F} = \{F_1, F_2, \dots, F_{n+2}\}$ be sf – closed reduction U with empty intersection, for each i.

Let $G_i = X \setminus F_i$ then $G = \{G_1, G_2, ..., G_{n+2}\}$ be sf – open covering of X.Since X is sf – normal space then G is sf – shrinkable to sf – open covering $\{V_1, V_2, ..., V_{n+2}\}$ hence $V_i \subseteq \overline{V}_i$ i^N $\subseteq G_i$. Let $W_i = U_i \setminus$ $\overline{V}^{\text{sf}} \subset U_i$ for some i where $W = \{W_1, W_2, ..., W_{n+2}\}$ is sf – open reduction of U which covers X, then

$$
\bigcap\nolimits_{i=1}^{n+2}W_i=\bigcap\nolimits_{i=1}^{n+2}\left(U_i\backslash\overline{V_i}^{sf}\right)=\bigcap\nolimits_{i=1}^{n+2}\left(U_i\cap\overline{V_i}^{sf^C}\right)\subset\bigcap\nolimits_{i=1}^{n+2}\left(\overline{V_i}^{sf^C}\right)\subset\bigcap\nolimits_{i=1}^{n+2}\left(V_i^C\right)\ \subset\left(\bigcup\nolimits_{i=1}^{n+2}V_i\right)^C
$$

Therefore by Theorem (3.6) then sf – dimX \leq n. ■

Definition(3.11):

Let X be a topological space **,**then The sf − local dimension, sf − loc dimX , of a space X has the following definition. If X is empty then $sf - loc \, dimX = -1$, otherwise $sf - loc \, dimX$ is the least integer n where for each point x of X there exists some sf − open set U containing x where sf − $\dim \overline{U} \leq n$, or if there is no such integer then sf – loc dimX = ∞ .

Theorem(3.12):

If(X, τ) be a topological space, thensf – locdimX \leq sf – dim X

Proof:

Suppose that $sf - dimX \leq n$ and $x \in X$

hence X sf – open set X containing x,

then sf – dim $\overline{X} =$ sf – dim $X \leq n$

Proposition (3.13):

Let A be an closed set of a space X, then $sf - localimA \leq sf - localimX$.

Proof:

Suppose that sf − locdimX ≤ n and let x∈ A,then there exists an sf − open set U of X where x ∈ U and sf – dim $\overline{U} \leq n$. Then $U \cap A$ is an sf – open set in A such that $x \in U \cap A$ by Proposition (2.26). And the closure of U ∩ A in A is closed set of \overline{U} , therefor has sf-dimension \leq n by Proposition (3.3). Then sf – locdim $A \le n$, thus sf – locdim $A \le sf - \text{locdim} X$

Proposition (3.14):

Let Y be an open set of locally indiscrete sf' – regular space X then, $sf - locdimY \leq sf$ locdimX.

Proof:

Suppose that $sf - localimX \leq n$ and let $x \in Y$, then there is an s f – open

set U of X such that $x \in U$ and $sf - dim \overline{U} \le n$. Then $U \cap Y$ is an $sf - open$ set in Y such that $x \in U \cap Y$ Y by Propositio (2.26). Since X is an sf["] − regular space, then there exists an sf – open set G such that $x \in G \subset \overline{G}^{sf} \subset U \cap Y$. Then G is an sf-open in Y, and \overline{G} is closure of G in Y.Since \overline{G} is closed subset of \overline{U} , it follows that sf – dim $\overline{G} \le n$ by Proposition (3.3). Hence sf – locdimY \le sf – locdimX.

Theorem(3.15):

Let(X, τ) be a topological space, then sf – locdimX \leq n iff every sf-open covering of X has sf-open refinement $\{V_\lambda : \lambda \in \Lambda\}$ such that $sf - \dim \overline{V_\lambda} \leq n$. $\forall \lambda \in \Lambda$

Proof: (\rightarrow)

let sf – locdimX ≤ n and {U_{λ}: λ ∈ Λ } be sf-open cover of X. Let x ∈ X, then

 $x \in U_\lambda$ for some $\lambda \in \Lambda$, then

either $\exists V_{\alpha}$ sf-open such that $x \in V_{\lambda} \subset U_{\lambda}$

hence V λ sf-open set such that $x \in V_{\lambda} \subset U_{\lambda}$ and $sf - dim \overline{V_{\lambda}} \leq n$

therefore the prove is finish .

Otherwise if $\exists W \lambda$ sf-open set such that $x \in W \lambda$ and $sf - dim \overline{W_{\lambda}} \leq n$

let $V_{\lambda} = U_{\lambda} \cap W_{\lambda}$, then $x \in V_{\lambda} \subset U_{\lambda}$.

since $\overline{V_{\lambda}}$ is closed in $\overline{W_{\lambda}}$, then sf – dim $\overline{V_{\lambda}} \leq n$ by Proposition (3.3).

 (\leftarrow)

Let $x \in X$ and $\{U_i : \lambda \in \Lambda\}$ is sf-open covering of X, then $x \in U$ for some $\lambda \in \Lambda$

Then U has sf-open refinement $\{V_\lambda : \lambda \in \Lambda\}$

Hence V_{λ} is sf-open set such that $x \in V_{\lambda}$ some $\lambda \in \Lambda$ and sf – dim $\overline{V} \leq n$

There for sf $-$ locdimX \leq n

References

[1] A.P.Pears "On Dimension Theory of General Spaces" Cambridge university press, (1975).

[2] E. R. Ali "On Dimension Theory by Using N-Open Sets", M.Sc. thesis university of Al-Qadissiya college of mathematics and computer science, (2011).

[3] G, S.Grossly. and Hildebrand S. K. " semi closed set and semi continuity in Topological space "Txas J-sci (1971).

[4] Maheshwari S.N &Tapiu ."Feebly open sets" . Ann University . Timisaras, (1978).

[5] N.H.Hajee "On Dimension Theory by Using Feebly Open Set", M.Sc. thesis university of Al-Qadissiya college of mathematics and computer science, (2011).

[6] N.K. Ahmed "On some application of special sub sets of topological spaces "M.sc thesis, University of Salahaddin , College of science (1990).

[7] N.Levine "Semi open set and semi Continuity in topological space" . Amer .Math .Monthly (1963).

[8] N.M . Al Tabatbai "On New Types of Weekly open sets ", M .Sc thesis University of Baghdad (2004).

[9] R. A. H. Al-Abdulla and O. R.M. Al-Gharani "On paracompactness Via sf-open sets " University of Al-Qadissiya , college. of Mathematics and . computer science , (2020) .

[10] R.A.H.AL-Abdulla "On Dimension Theory", M.Sc. thesis university of Baghdad, college of science, (1992).

[11] S.K.Gaber "On b-Dimension Theory" M.Sc. thesis university of Al-Qadissiya , college of mathematics and computer science, (2010).

[12] Z.N.K. Hussain " On Countable Chain Condition by using sf-Open Sets ", M .Sc thesis University of Al-Qadissiya , college of science , (2021) .