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A B S T R A C T 

A lot of techniques are represented to have a useful for denoising and in-painting digital 
images. These techniques are based on a partial differ- ential equations (PDEs). Thus, we need 
to find the solution of PDEs. In this work, we consider a finite difference method to solve PDEs 
approxi- mately based on image compression.  In addition, we compared the results in 
different criteria of the errors 

MSC.. 

https://doi.org/ 10.29304/jqcm.2022.14.2.999 



2 Jumana H.S, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL. 14(2) 2022 , PP  MATH. 88–101
 

1. Introduction 

Image compression is getting more attention from researchers because of, the growth and development of the 
image and the vast size of data transferring through networks [1] and [2]. For this reason, required the need 
for an effective technique to store and conveyance with high quality for the images [3] and [4]. Compression 
techniques can be divided into two types which are lossy and lossless techniques. The difference between these 
types is that the compression ratio is higher in lossy technique compared with lossless technique. Some 
ofresearcher works published about these techniques can be seen in [5]- [9]. 

One of the computer science branches is an image compression, which is depending on the principle (reduced 
the size of an image with out lossing too much information). Several partial differential equations (PDEs) 
appeared their usefulness in called inpainting methods. To understand the basic idea of PDE based on image 
compression we need to do the following steps [11]: 

 - Select a subset of the pixels from the original image to be stored by using some algorithm. 

 - Compression algorithms i.e. Store these pixels in as condensed a way as possible. 

- Decompression i.e. Using a PDE operator to Interpolate these stored pixels for restoring the image over the 
whole grid. 

We need to find the solution of PDE, some times we can find some exact solutions for some PDEs. In the other 
hand, this is not possible generally. So, in this case we can look a way to find approximate numerical solutions 
for a given equation. Finite difference method is one of the main numerical techniques for PDEs. The report is 
organized as follows: In Section 2, we will show how certain PDEs used in image analysis can be discretized 
[10], what the principle of the finite difference method and how we can calculate it. Following, in section 3, we 
consider the basic information about the steps of the image compression. Section 4, we will consider some 
investigations about the finite difference method and compare the results with the linear interpolation by the 
summarizing them. 

 

In order to recover our image, we set out to discretize the operators. Note that for now, we assume that we 
have already selected our subset of pixels by some methods, random or otherwise 

2.  Discretization of operators 

In general, the PDEs form can be representing as: 

Lv = F, (t, x, y) ∈ R+ × Ω 

∂v (t, x, y) = 0, on R+ ∂Ω 

                                       ∂N 

v (0, x, y) = f (x, y), 

where Ω is a domain of the image which is bounded by the normal N , denoted by ∂Ω. L is generally a second 
order differential operator such as: 

∂v/∂t(t,x,y)+H(x,y,v(t,x,y),∇v(t,x,y),∇^2 v(t,x,y))=0 

We consider how we can use the finite difference method to discretize the PDE’s operator. The reason behind 
choosing the finite difference method. The structure of a digital image, which is, distributed the pixels 
uniformly.  Therefore we can relate an image with uniformly grids, as in Figure 1. As a simple way to explain 
the procedure of discretization in the difference method. Figure 2 can be used. 

Now, we need to understand how finite differences can be evaluated and what their types are.. 
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Figure 1: Grid on the space domain with 3  3 neighborhood of the vertex (i, j). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 2: steps of the algorithms 

2.1Finite Difference Method 

The principle of the finite difference method based on an approximation of the derivatives in the PDE using 
linear combinations of function values at the grid points. 

2.1.1.  Approximation of first order derivative 

The finite difference method has three types of differences as follows: (see Figure 3) 

Backward Difference: which can be represented as

(
𝜕𝑢
𝜕𝑥

)
𝑖

≈
𝑢𝑖 − 𝑢𝑖−1

∆ 𝑥
 

Forward Difference: which can be represented as

(
𝜕𝑢
𝜕𝑥

)
𝑖

≈
𝑢𝑖+1 − 𝑢𝑖

∆𝑥
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Central Difference: represented by the following rule 

 
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Geometric interpretation 
We can use Taylor series expansions in Eq. (1) using one of the variables to see how well finite difference 
approximations work. 

                            𝑢(𝑥) =  ∑
∞

𝑛=0

(𝑥 − 𝑥𝑖)𝑛

𝑛!
(

𝜕𝑛𝑢
𝜕𝑥𝑛)

𝑖
,                                                     (1) 

𝑇1: 𝑢𝑖+1 = 𝑢𝑖 + 𝛥𝑥 (
𝜕𝑢
𝜕𝑥

)
𝑖

+
(𝛥𝑥)2

2
(

𝜕2𝑢
𝜕𝑥2)

𝑖
+

(𝛥𝑥)3

6
(

𝜕3𝑢
𝜕𝑥3)

𝑖
+ ⋯ 𝑇2: 𝑢𝑖−1

= 𝑢𝑖 − 𝛥𝑥 (
𝜕𝑢
𝜕𝑥

)
𝑖

+
(𝛥𝑥)2

2
(

𝜕2𝑢
𝜕𝑥2)

𝑖
−

(𝛥𝑥)3

6
(

𝜕3𝑢
𝜕𝑥3)

𝑖
+ ⋯  

2.1.2 Accuracy of finite difference approximations 

We can measure the accuracy of the approximation by truncation errors as follows: 

 𝑇1 ⟹ (
𝜕𝑢
𝜕𝑥

)
𝑖

=
𝑢𝑖+1 − 𝑢𝑖

∆𝑥
−

(𝛥𝑥)
2

(
𝜕2𝑢
𝜕𝑥2)

𝑖
−

(𝛥𝑥)2

6
(

𝜕3𝑢
𝜕𝑥3)

𝑖
+ ⋯

Forward difference     truncation error O(∆x)
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𝑇2 ⟹ (
𝜕𝑢
𝜕𝑥

)
𝑖

=
𝑢𝑖 − 𝑢𝑖−1

∆𝑥
−

(𝛥𝑥)
2

(
𝜕2𝑢
𝜕𝑥2)

𝑖
−

(𝛥𝑥)2

6
(

𝜕3𝑢
𝜕𝑥3)

𝑖
+ ⋯

Backward difference    truncation error O(∆x) 

 

𝑇1 − 𝑇2 ⟹ (
𝜕𝑢
𝜕𝑥

)
𝑖

=
𝑢𝑖+1 − 𝑢𝑖−1

2 ∆𝑥
−

(𝛥𝑥)2

6
(

𝜕3𝑢
𝜕𝑥3)

𝑖
+ ⋯

                                               Central difference      truncation error  O(∆x)2.

This is more accurate because∆x2 → 0 is faster than ∆x as ∆x → 0. 

2.1.3 Approximation of the second order derivative 

Approximation of the second order derivative can be represented as the central difference scheme as follows:

  

𝑇1 + 𝑇2 ⟹ (
𝜕2𝑢
𝜕𝑥2)

𝑖
=

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(𝛥𝑥)2 − 𝑂(𝛥𝑥)2

2.1.4 Approximation in two dimensions 

Approximation in two dimensions can be represented as follows:

(
𝜕2𝑢

𝜕𝑥𝜕𝑦
)

𝑖,𝑗
=

(𝜕𝑢
𝜕𝑦

)
𝑖+1,𝑗

− (𝜕𝑢
𝜕𝑦

)
𝑖−1,𝑗

2 𝛥𝑥
+ 𝑂(𝛥𝑥)2 .                             (2) 

Therefore we need to calculate (𝜕𝑢
𝜕𝑦

)
𝑖+1,𝑗

 and (𝜕𝑢
𝜕𝑦

)
𝑖−1,𝑗

 

   (
𝜕𝑢
𝜕𝑦

)
𝑖+1,𝑗

=
𝑢𝑖+1,𝑗+1 − 𝑢𝑖+1,𝑗−1

4𝛥𝑦
+ 𝑂(𝛥𝑦)2,                                   (3) 

 

   (
𝜕𝑢
𝜕𝑦

)
𝑖−1,𝑗

=
𝑢𝑖−1,𝑗+1 − 𝑢𝑖−1,𝑗−1

4𝛥𝑦
+ 𝑂(𝛥𝑦)2.                                   (4)

Then we can substitute each of Eq. (3) and (4) in Eq. (2) we get: (see Figure 4) 
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(
𝜕2𝑢

𝜕𝑥𝜕𝑦
)

𝑖,𝑗
=

𝑢𝑖+1,𝑗+1 − 𝑢𝑖+1,𝑗−1 − 𝑢𝑖−1,𝑗+1 + 𝑢𝑖−1,𝑗−1

4𝛥𝑥𝛥𝑦
+ 𝑂[(𝛥𝑥)2, (𝛥𝑦)2] (5) 

  

 

 

 

 

 

 

 

 

 

 

Figure 4: Approximation in two dimensions 

We will consider an example about the simple finite difference method of the heat equation: 

Example 1. [10] 

{   
𝜕𝑣
𝜕𝑡

= 𝑟 ∆𝑣 = 𝑟 (
𝜕2𝑣
𝜕𝑥2 +

𝜕2𝑣
𝜕𝑦2),                        (𝑡, 𝑥, 𝑦) ∈ 𝑅+ × 𝛺  

𝜕𝑣
𝜕𝑁

(𝑡, 𝑥, 𝑦)
= 0,                                                     𝑜𝑛    𝑅+ ×  𝜕𝛺 𝑣(0, 𝑥, 𝑦)
= 𝑓(𝑥, 𝑦),                                                                                                      (6)

where r is a positive constant. To discretized Eq. (1) we need Taylor expansions. In simple way, discretized 
each derivative separately in x and y. So we obtain:

𝜕𝑣
𝜕𝑡

− 𝑟 ∆𝑣|𝑖,𝑗
𝑛 =

𝑣𝑖,𝑗
𝑛+1 − 𝑣𝑖,𝑗

𝑛

∆𝑡
−

𝑣𝑖+1
𝑛 + 𝑣𝑖−1

𝑛 + 𝑣𝑗+1
𝑛 + 𝑣𝑗−1

𝑛 − 4𝑣𝑖,𝑗
𝑛

ℎ2 + 𝑂(∆𝑡) + 𝑂(ℎ2), 

where h = ∆x = ∆y. Then the difference scheme solution will propose as:

         𝑢𝑖,𝑗
𝑛+1 = 𝑢𝑖,𝑗

𝑛 +
𝑟 ∆𝑡
ℎ2 (𝑢𝑖+1,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛 + 𝑢𝑖,𝑗−1
𝑛 − 4𝑢𝑖,𝑗

𝑛 ),                      (7)

where 𝑣𝑖,𝑗
𝑛  is the exact solution for the PDE and  𝑢𝑖,𝑗

𝑛  is the discrete (approximate) solution  at  location  (ih, jh)  
and  time  n∆t. For  the  boundary  condition we can use the same procedure and the initial condition u0   = gi,j 
where g represents the discretization of f . 

 

Now, we will consider the basic procedure of the compression to the PDE. 

3. Image Compression 

As we mentioned before there are three important steps to do compress for the image. The idea of image 
compression is to select some points from the original image as landmarks points and drop the reminder. But, 
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the question here how we can select these points to do the compression. For this part of the process, there are 
two types to select the pixels of image: 

- Randomly. 

- Uniformly, which is the best way to select where the color gradient of  image is changing quickly. 

 

Then we will store the pixels that we are selected in the previous step. General-purpose data compression can 
be used to compress the representation. Finally, we can interpolate the stored pixels using PDE operator. 

 

4. Experimental Results 

In this part of the work, we will implement the finite difference method on the images. Also, we will do 
comparison between the finite difference method and the linear interpolation. 

We implemented different images by using a linear interpolation and the finite difference method. In addition 
we consider different PDE’s (heat , Poisson and biharmonic equation) then apply the finite difference method 
of these equations on the images. 

In this part, we implemented three different numbers of the iteration of the FDM of the heat equation. After, we 
consider another type of PDE, which is Poisson equation, and also we do the same procedure in Figure 5: 

In the other hand, we applying the FDM for the biharmonic equation with the result as in figure 6: When we 
apply biharmonic equation and discretized each derivative we need 13 points to estimate a value. As a result, 
we can investigate the third equation less time than the others but it is not good when we repeat the iteration 
more than 2 because it will need a lot of points outside the domain. 

Now, we evaluate the structural similarity index (SSIM)for each color. SSIM for the blue color of the yellow rose 
greater than the other colors because the lowest of intensity in this color(see Figure(15)).  As we can see, from 
these results the different formula of the finite difference method having the same values approximately. While, 
at the higher iteration we got better result and approached to be the same value when we apply the linear 
interpolation approximately. Also, the method stencil of 13 points to find the missing pixel values by FDM 
interpolation when they increase in the order of iterations, the result was a bad comparison of the other 
methods because this method needs 13 points to estimate one value.  So, when we repeat the same formula 
several times it will be out of the bounded of the image. 

 

5. Conclusion 

The partial differential equation represents a vital part in the image processing generally; we take these 
features to create the interpolation from their approximate solutions by using the finite difference method. We 
investigated the types of the equation affected on the quality of image and also the number of repeating the 
procedures. 
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(a) fig 1 (b) fig 2 
 

(c) fig 3 (d) fig 4 
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(e) fig 5 

Figure 5: Yellow rose image with compress and decompress by linear interpolation 

 

 

(a) fig 1 (b) fig 2 
 

(c) fig 3 (d) fig 4 

 

(e) fig 5 (f) fig 6 

 

(g) fig 7 

Figure 6: (a) Yellow rose image (b,c) FDM of heat equation with 2 iterations (d,e) FDM of 
heat equation with 5 iterations (f,g) FDM of heat equation with 10 iterations 
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(a) fig 1 (b) fig 2 

 

(c) fig 3 (d) fig 4 

 

(e) fig 5 

Figure 7: (a) Yellow rose image (b,c) FDM of Poisson equation with 2 iterations (d,e) 
FDM of Poisson equation with 10 iterations.



8 Jumana H.S, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL. 14(2) 2022 , PP  MATH. 88–101
 

 

 

 

(a) fig 1 (b) fig 2 

 

(c) fig 3 (d) fig 4 

 

(e) fig 5 

 

Figure 8: (a) Yellow rose image (b,c) FDM of biharmonic equation with 2 iterations 
(d,e) FDM of biharmonic equation with 10 iterations. 

 

Figure 9: The compression ratio
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Figure 10: Mean square error for the yellow rose image 

Figure 11: Signal to noise ratio for the yellow rose image 

Figure 12: Peak signal to noise ratio for the yellow rose image 

 

 

 

 

 

 Figure 13: Mean square error for the Lena image 

 

 



10 Jumana H.S, Journal of Al-Qadisiyah  for Computer Science and Mathematics VOL. 14(2) 2022 , PP  MATH. 88–101
 

 

 

 

Figure 14: Signal to noise ratio and peak signal noise ratio for the Lena image 

 

 

Figure 15: Structural similarity index for the yellow rose image and the Lena image 

 

 

 

 

 

 

 

 

Figure 16: Grayscale Image 
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