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Abstract:
In this paper, we introduce and study type of modules namely (t-essentially quasi-Dedekind modules)
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1. Introduction

Let R be a commutative ring with unity and M be
a right R-module. A submodule N of M is called
quasi-invertible if Hom (%,M) =0 [10]. M is
called quasi-Dedekind if every nonzero submodule
N of M is quasi-invertible, that is Hom (%M) =0
for each nonzero submodule N of M. Equivaently
M is quasi-Dedekind if for each f € End(M), f #
0, then Ker(f) =0 [10]. As a generdization of
guasi-Dedekind modules. Tha’ar in [14] introduced
the concept essentialy quasi-Dedekind (briefly,
ess.g-Ded.) by restricting the definition of quasi-
Dedekind on essential submodules, where a
submodule N of M iscalled essential in M (denoted
by N <,sM) if NnW =0 for each nonzero
submodule W of M[7]. However, the concept
essentially quasi-Dedekind is equivalently to k-
nonsingular which is introduced by Roman C.§[12],
that M is ess-g-Ded. Module if for each f €
End(M),Ker(f) <.;s M implies f = 0.

In [3] "introduced the concept t-essentia
submodule, a submodule N of M is called t-essential
submodule (denoted by N <,.,c M) if NnW <
Z,(M), then W < Z,(M), where Z,(M) is the

second singular submodule of M and defined by

My Ze(M) _ o
(m ) = Zm) Z(M) = {m € M:mI=0 for some

[<ess R}7]. It is clear that Z(M)={mE€
M: ann(m) <. R}AISO,Z,(M) = {m € M:ml =

0 for somel < R} = {mMm€ M:ann(m) <. R}".
It is obvious, every essentia submodule is t-
essential, but not conversely.

In section two, we define t-essentially quasi-
Dedekind module, where an R-module M is called t-
essentially quasi-Dedekind if every nonzero t-

essential  submodule is quasi-invertible, that is

M
N’

Hom (X, M) = 0 for each (0) # N <¢¢; M.
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Analogus characterization of ess.qg-Ded. module we
have . An R-module M is t-ess.g-Ded. if for each
f € End(M),Ker(f) <ies M implies f =0. We
study t-essentialy quasi-Dedekind module. It is
clear that every t-essentially quasi-Dedekind module
is essentialy qusi-Dedekind but not conversely
(Remarks and Examples 2.2(2) and every quasi-

Dedekind module is t-essentially quasi-Dedekind,
but the converse may be not true (Remarks and
Examples 2.2(4)). Also we see that every
nonsingular module is t-essentially quasi-
Dedekind( Remarks and Examples 2.2(3)).

The property of t-essentially quasi-Dedekind is

inherited by direct summand (Proposition 2.3);
however it is not inherited by direct sum. So we
provide necessary and sufficient conditions for a
direct sum of t-essentially quasi-Dedekind to be t-
essentially quasi-Dedekind.

Beside these some connections between t-
essentially quasi-Dedekind modules and other types
of modules are investigated.

It is known that every quasi-Dedekind module M is
a prime module (that is annM = annN for each
(0)= N < M) but the converse may be not true [11].
However implies that every prime modules is
ess.q.Ded.. Also, every essentially quasi-Dedekind
module M is essentially prime module (that is
annM = annN for each N <, M) and the
converse is not true in general [14, Proposition
2.1.8]. We notice that every t-ess.q.Ded. module M
implies annM = annN for each (0) # N <;s M,
so this note lead us in section three to introduce and
study the concept of t-essentially prime module (that
isannM = annN for each, (0) # N <;.,; M). Thus

for amodule M, we have the following implications.

t-&ssq-Ded:’t-esspri me =’ ess.prime.
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But none of these implications is reversible(
Remarks and Examples 3.3(2),(3)). The concepts
essentially prime module and t-essentially prime
module  are  equivaent, under certain
conditions(Propositions 3.4,3.7). Also we have that
for an R-module , with annM = annM(M is the
quasi-injective hull of M) then M is t-essentialy
prime if and only if M is t-essentially prime
(Proposition 3.9). Beside these many other
properties of t-essentially prime modules, also
several connections between this type of modules
and other modules are presented.

We list some known results, which will be needed
for future use.

Proposition 1.1:[3, Proposition 2.2]. The following
statements are equivalent for a submodule A of an
R-module M:

(1) Aist-essential in M;

(A+Zy(M) . L M
2) —=—isessentia in——;
@) Z(M) S tial Zy(M)’

(3) (A+Z,(M) isessential in M;

4 % iSsZ,-torsion.

Remark 1.2: [2, Corollary 1.3] Let A; be a
submodule of M, for each 4 €A
(1) If Alisafinite set and A4, <;.; M, then
Naen Ar StesNaer Ma;
(2) @irendi <tes @reaMy if and only if
A <ies M, for each 1 €A.

Proposition 1.3: [2, Corollaryl.2] Let A< B < M.
Then A <;,c M if and only if A<,sB and
B <ies M.

2. T-essentially Quasi-Dedekind modules
Definition 2.1: An R-module M is caled t-
essentially quasi-Dedekind (brifly t-ess.qg.Ded.) if
every nonzero t-essential submodule N of M is

quasi-invertible, that is M ist-ess.g-Ded. if

Farhan .D/Shukur .N/Inaam .M

M
E)

Hom( M)=0 for al nonzero t-essential

submodule N of M. A ring R ist-ess.g-Ded. if itist-

ess.g-Ded R-module.

Remar ks and Examples 2.2:

(1) It is clear that every simple is t-ess.g-Ded.
module.

(2) Every t-ess.g-Ded. module is ess.g-Ded.
module, since every essential submodule is t-
essential. However the converse may be not
true, for example: Let M =Q®Z, as Z-
module. M isess.g-Ded. let N = Q(0). Then
N+ Z,(M) = (@&(0) + (0)8Z,) =
Q®Z, =M <, M and so by Proposition 1.1,
N <5 M. It follows that Hom(:,M) =

Hom(Z,,Q®Z,) # 0 and hence M is not t-
ess.g-Ded.

(3) Every nonsingular module ist-ess.g-Ded.

Proof: Let M be a nonsingular module. Then by
[11, Proposition 3.13], every essential submodule is
quasi-invertible. Hence every t-essential submodule

is quasi-invertible by Remark 1.2, and so M is t-
ess.g-Ded.. O

(4) It is obvious that every quasi-Dedekind is t-
ess.g-Ded, but the converse is not true in
genera, for example: The Z-module Z®Z is
nonsingular, so it is t-ess.g-Ded. (see part
(3)), but M is not quasi-Dedekind since

M

Hom(z55

,M) =~ Hom(Z,Z®Z) # 0.

Similarly each of the Z-module Q®Z, Q®Q is t-
ess.g-Ded., but not quasi-Ded.
(5) Let R be a ring. Then the following are
equivalent:
(1) Rist-ess.q.-Ded,;
(2) Risess Q-Ded.
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(3 Ris a

semiprime)ring.

nonsingular(R is a

Proof: (1)=(2) It follows by Remarks
and Examples 2.2(2).

(2)=(3) It follows by [14, Proposition
2.2.6]

(3)=(1) It follows by Remarks and

Example 2.2(3). O
(6) For R-module M, % is t-ess.g-Ded. for

each t-closed submodule C of M, where
asubmodule C of M iscalled t-closed if C
has no proper t-essential extension in M
[3].

Proof: If C is at-closed submodule, then

by [3, Proposition 2.6] % is nonsingular.

Hence by Remarks and Examples

2.2(4), % ist-ess.g-Ded. O

In particular, % ist-ess.g-Ded. for any R-module
27

M.

(7)Let M be a t-uniform module ( that is, for
submodule of M ist-essentia[8] . Then M ist-
ess.g-Ded. if and only if M isess.g-Ded.

(8) A homomorphic image of t-ess.qg-Ded. need not

be at-ess.q-Ded. for example : Z asa Z-module

is t-ess.g-Ded. let 7T:Z»—>L=Z4 be the
<4>

natural projection, hence n(Z) = Z, is not t-

ess.g-Ded. since Hom(%,z4)¢0 and

(2) <tes Za-

(9) Le¢ M and M'be two isomorphic R-
module. Then M is t-ess.g.Ded. if and
only if M" ist-ess.g-Ded.

(20)If M is t-ess.g-Ded., then annM = annN for

eachN <,,s, MandN # 0

Farhan .D/Shukur .N/Ilnaam .M

Proof: Since M is t-ess.g-Ded., every
N <(es M, N=+0 is  quasi-invertible

submodule. Hence annM = annN for each
0#N <;,,c Mby[11] O

(11)Let M be an R-module such that Z,(M) < N
for all N <M. Then M is t-ess.q.Ded. if nd
only if M isess.g-Ded.

Proof:= Itisclear.
&< Let N<,s M. Then by Remark 1.2, N+
Z,(M) <, M, hence N <,;c M (since Z,(M) <

N). As M isessq-Ded., thus Hom (%, M) = 0. O

The property of t-ess.g-Ded. is inherited by direct
summand.

Proposition 2.3: A direct summand of t-ess.q-Ded.
module M ist-ess.g-Ded.

Proof: Let N be adirect summand of M(N <® M).
To prove N isat-ess.g.Ded. Let (0)# K <, N. As
N <® M,M =N®W, for some W <M. Since
K <(es N and W <ios W, then
K®W <., N@W =M. By t-essentidly quasi-

M

Dedekind of M, Hom (mw,

M)=0; thus ,
Hom (X, M) = 0. Suppose , Hom (%,N) 0 that
is there exist f:%i—» N,f # 0. Hence iof:%r—»
M,io f # 0, where i isthe inclusion mapping. Thus
Hom (%M) # 0, which is a contradiction. It
follows that Hom (%N) =0 and N ist-ess.g-Ded.

d

Thaa’r in [14, Theoreml.2.3] an R-module is
ess.g.Ded. if and only if M is K-nonsingular that is
for each f € End(M) implies f = 0.

By similar proof of this result, we get the following.
Theorem 2.4: Let M be an R-module. Then M ist-
ess. Q-Ded., if and only if for each f € End(M) ,
0 # Kerf <;.c M impliesf = 0.
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Note 2.5: Every semisimple module is ess.q-Ded.
[14, Proposition 1.2.4]. However semisimple
module may not t-ess. Q-Ded., since
Hom(Z%-, Zs) = Hom(Zs, Zs) # 0 and
(3) <tes Zs(because (3) +Z,(Zs) = (3) + Zs =
Ze Sess Ze)-
"Asgari in [4] introduced t-semisimple module,
where an R-module M is called t-semisimple if for
each N <M, there exists K <® M such that
K <tes N. It is clear that every semismple is t-
semisimple but the converse may be not true ” [4].
Proposition 2.6: Let M be t-semisimple module and
t-ess.q-Ded. module. Then t-closed submodule of M
ist-ess.g-Ded.
Proof: Let N be t-closed submodule of M. Then by
[3, Lemma 2.5(1)]N = Z,(M), and so[4, Theorem
2.3], N isdirect summand . Thus by Proposition 2.3,
N isat-ess. Q-Ded. O
Corollary 2.7: Let R be a t-semisimple ring and t-
ess.g-Ded.. Then R issemisimple.
Proof: Since R ist-ess. Q-Ded, R is nonsingular by
Remarks and Examples 2.2(5). But R is honsingular
and t-semisimple ring implies R is semisimple. O
"Recall that a module M over a commutative ring
R is called scalar module if for each f € End(M),
there exists 0 = r € R such that f(x) = xr for each
x € M" [13].
" An R-module M is called quasi-prime if ann(m)
isaprimeidea of R, for each m # 0 and m € M”
[1].
Theorem 2.8: Let M be a scalar quasi-prime
module. Then M ist-ess.q-Ded.
Proof: Let f € End(M) and suppose that # 0 .
Since m is a scalar module, there exists 0 # r € R
and f(x)=xr for ech xe€eM. Assume
Ker(f) <(es M, hence Ker(f) + Z,(M) <., M by

Farhan .D/Shukur .N/Ilnaam .M

Proposition 1.1. So that for any m € M, there exist
a €R such that 0= ma € Ker(f) + Z,(M). It
follows that ma=m; +m, for some m, €
Kerf,m, € Z,(M). Thus
f(m) + f(m,) = f(m,) € Z,(M). If mar =0,
then ar € ann(m). But ann(m) is a prime idea of

f(ma) = mar =

R since M is quasi-prime, so either a € ann(m) or
r € ann(m). If a € ann(m), then ma = 0, which
is a contradiction. If r € ann(m) then mr = 0 for
each meM and Mr = f(M) =0 (that is f = 0)
which is a contradiction. Thus 0 # mar € Z,(M)
which implies tha Z,(M)<,,M and <0
Z,(M) <;,s M which acontradiction issince Z,(M)
is t-closed by [3, Corollary 2.7(1)]. Therefor

Ker(f) s M. Thus M ist-ess.g-Ded. O

Remark 2.9: If M is a t-ess.g-Ded. module, then
either M or E(M) (quasi-injective hull or injective
hull of M) is t-ess.g-Ded. The following example
explain this: Let M = Z; as Z-module. M is t-ess.g-
Ded, but M = E(M) = Z;” isnot t-ess g-Ded.

The converse of Remark 2.8 follows directly by the
following result, which is an analogous to [14,
Proposition 1.2.15].

Proposition 2.10:Let M be at-ess. g-Ded R-module
and it is quasi-injective. If N <,,; M, then N isat-
ess. Q-Ded R-module.

Proof: It is similar to the proof of [14, Proposition
1.2.15] and so isomitted. O

Corollary 2.11: Let M be an R-module. If M(or
E(M) is at-ess.g-Ded R-module. Then M is tes.g-
Ded.

Proof: Since M <, M(M <, E(M)),

SOM <,ps M(M <(os E(M))), the result follows by

Proposition 2.10. O
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Now we turn our attention to the direct sum of t-
ess.g-Ded modules. First we notice that the direct
sum of two t-ess.g-Ded modules need not be t-ess.g-
Ded, as the following example: The Z-module Z,
and Z; are t-ess.g-Ded. module, but Z,@Z; ~ Z, is
not t-ess.g-Ded.

Definition 2.12: Let M and W be R-module. M is
said to be t-ess.g-Ded relative to W for dl f €
Hom(M, W), f # 0implies Kerf £;,s M.
Remarksand Examples 2.13:

(1) Let M bean R-module. M is at-ess.q-Ded
module if and only if M is at-ess. Q-Ded
relativeto M.

(2) Let M beat-ess.g-Ded . Then M isat-ess.
g-Ded. relativeto N, foreach N < M.

(3) Z is not t-ess. g-Ded relative to Z,, since
there exists f:Zg,+— Z, defined by
f0) =f(2) =f(4) =0g, f=
f(g) = f(é) = Iz2

Thus Ker(f) = {0,2,4} <,os Z¢ and f # 0.

The following Theorem is anaogous to [14,
Theorem 1.3.5].

Theorem 2.14: Let {M;} ;c, be a family of R-
modules. Then M = {M;} ;c, ist-ess. g-Ded if and
only if M; t-ess. g-Ded relativeto M; for i,j € A.

Proof: It is similar to Theorem 1.3.5 in [14] and so

isomitted. O

3. t-essentially prime Modules

Ali Saba in [11] prove that: If M is a prime
module, then for each fe€FEnd(M) and
Ker(f) <.,ss M then =0 ; that is every prime
module is ess. g-Ded module. However prime
module does not imply t-ess. g-Ded. for example :
Let M be the Z-module Z,® Z,. M is a prime
module but M is not t-ess. g-Ded since M is

singular and so every submodule N of M,

Farhan .D/Shukur .N/Inaam .M

N <o M. Take N = Z,®(0). Then Hom (s, M) #
0.

We have the following:

Proposition 3.1: Every faithful prime module is t-
ess. g-Ded.

Proof: First we shall show that M is nonsingular.
Let x € Z(M) and suppose that x # 0. Then
ann(x) <. R. Hencethereexistsx € R,r # 0 and
r € ann(x) and so xr = 0. As M is a prime module
and x # 0,7 € annM = 0 which is a contradiction.

Thus Z(M) =0(M is nonsingular) and so by
Remarks and Examples 2.2(3), M ist-ess. g-Ded. O

Notice that the condition M is faithful s
necessary in Proposition 3.1 as we have seen
M = Z,®Z, as Z-module is prime, not faithful and
M isnot t-ess. g-Ded.

Now it is known by [14, Proposition 2.1.8], every
ess. g-Ded module is an essentially prime module (
that is anngM = anngzN for each N <., M). Also,
by Remarks and Examples 2.2(9), if M is at-ess. g-
ded module, then annyM = annzyN for each
(0) # N <(,c M. This leads us to introduce the
following.

Definition 3.2: An R-module is called t-essentially
prime (briefly t-ess.prime) if anng M = annyN for
each (0) # N <;os M.

Remarksand Examples 3.3:

(1) Itisclear that every prime module is t-ess.
prime is, but the converse is not true in
genera (see part(3), I11).

(2) Bvery t-ess. prime module is ess. prime,
since every essential submodule is t-
essential. But the converse may not be true
in general, for example. The Z-module Z,
is ess. prime module, but it is not t-ess.
prime since annyZ, # anny(2) and

(2) Stes ZG-
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(3) A t-ess. prime module need not be t-ess. g-
Ded module, as the following examples
show :

M Let M be the Z-module Z,®Z,. M
is t-ess. prime, but M is not t-ess.
g-Ded as we have seen in the
beginning of section three.

(n Let M = Z,®Z, as Z-module . M
is not t-ess. g-Ded , since if
N = Z®(0), then N+ Z,(M) =
M <, M and so by Proposition
11, N <ios M. But
Hom(x, M) =
Hom(Z,,Z®Z,) #0. On the
other hand, we can show that M is
t-ess. prime as follows. Let
W <ies M then w +
Z,(M) <, M( by Proposition
11). As M is an ess. prime
module by [14, Example 2.1.12],
hence annZ(W +7Z, (M)) =
ann,M = (0). It follows that
ann,W nannzZ,(M) = 0 and so
ann,W N 2Z = 0. (since
Z,(M) = (0)®Z, and
annygZ,(M) = 2Z). Since
27 < Z then ann,W = 0. This
implies ann,W = ann,M and M
is t-ess. prime. Also, note that M
is not prime module.

(4) Let M be anonsingular module. Then M is
an ess. prime if and only if M is a t-ess.

prime module.

Proposition 3.4: Let M be a faithful R-module such
that anng(Z,(M)) <. R. Then M isan ess. prime

moduleif and only if M ist-ess. prime.

Farhan .D/Shukur .N/Inaam .M

Proof: < Itisclear.

= Let 0# N <;ps M. Then N+ Z,(M) <55 M.
As M is ess. prime, ann(N + Z,(M)) = annM =
(0). Hence annNn ann(22 (M)) =0. By

hypothesis, ann(Z,(M)) <., R, <o that annN =
0 = annM. It followsthat M ist-ess. prime. O

"Recall that an R-module M is bounded if there
existsx € M suchthat anngM = anng(x) " [6].
Proposition 3.5: Let M be a bounded module with
anngM is a prime idea of R and annygM <
ann(Z,(M)). Then M ist-ess. prime.

Proof: Let (0)# N <¢(,,xsM. Then N+
Z,(M) <,s M by proposition 1.1. Since M is
bounded with annM is a prime ideal, then by [14,
Lemma 2.1.11], M is ess. prime. Hence anng(N +
ZZ(M)) =anngM. It follows that annizn
anng(Z,(M)) = anngM. As annyM is a prime
ideal, either annyN < annyM or anngyZ,(M) =
anngM. Thus either annzN < anngM or
anng(Z,(M)) = anngM. But by
hypothesis anngM # anng(Z,(M)), S0 that
anngN = anngM and so M ist-ess. prime. O
Corollary 3.6: Let M be a bounded quasi-prime R-
module with annyM € anng(Z,(M)). Then M ist-
€ss. prime.

Proof : As M is aquasi-prime module, then annyM
isaprimeideal of R and so by [14, Lemma 2.1.11]
M is an ess. prime module. Then by the same
procedure of Proposition 3.5, M is a t-ess. prime
module. O

As application of Corollary 3.6, M = Q®Z, asZ-
module is t-ess. prime module since M is bounded
(where ann;M = ann,(1,1), daso it is easy to
check that M is quasi-prime, and O=ann,M &

anny(Z,(M)) = ann,Z, = 2Z.
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" Recall that an R-module is called multiplication if
foreach N < M, N = MI for someideal I of R" [5].
Proposition 3.7: Let M be a faithful multiplication
R-module. Consider the following statements:

(1) Misat-ess. prime.

(2) M ist-ess.g-Ded.

(3) M isess.prime;

(4) R ist-ess. g-Ded;

(5) Risess. g-Ded;

(6) Endgr(M) ist-ess.g-Ded.

Then (1) < (2) <)<= (5) < (6) and (4) < (6) if
M isafinitely generated module.

Proof: (1) =(2) Since M is t-ess. prime, M is ess.
prime. Hence by [14, Proposition 2.1.16], R is ess.
g-Ded and so R is nonsingular by [14, Proposition
12.6]. On the other hand, M is faithful
mulitiplication implies Z(M) = MZ(R) by [5,
Corollary 2.1.4]. It follows that Z(M) = M(0) = 0;
that is M is nonsingular and hence by Remarks and
Examples 2.3(3), M ist-ess. g-Ded.

(2=(1) It follows by Remarks and Examples
3.3(3).

(2)=(3) M is t-ess.g-Ded implies M is t-ess. prime
and hence M ess. Prime
Examples 3.3(2),(3)).
(3=(5) Since M is an ess. prime faithful module
then by [14,Lemma 2.1.16], R isess. g-Ded.

(see Remarks and

(5=(2) Since R is ess. g-Ded, R is nonsingular
which implies M is nonsingular because Z(M) =
MZ(R) = 0. Thus M ist-ess g-Ded by Remarks and
Examples 2.2(3).

(4)<=(5) It follows by Remarks and Examples
2.2(5).
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()=(@©) Since M is a finitely generated

multiplication module, then M is scalar R-module

[13]. Hence by [10], E(M) ~ —— ~ = ~ R. Thus

~ annM (0)

End(M) ist-ess. g-Ded if and only if R ist-ess. g-
Ded. O

Remark 3.8: The condition M is a multiplication
module cannot be dropped from Theorem 3.7. The
following example explains this:

Let M = Z&®Z, as Z-module but not multiplication
module. However, M ist-ess. prime Z-module and it
is not t-ess. g-Ded (see Remarks and Examples
3.3(3(11)). Also note that R ist-ess. g-Ded.
Proposition 3.9: Let M be an R-module. Then M is
t-ess prime and annM = annM if and only if M is
tes- prime. Where M isthe quasi-injective hull of M.
Proof: = Let (0) # N <,,s M. To prove annyN =
anngM. Since M <, M, then M <., M and so
NNM <., M by Proposition 1.3. Let B <M and
(NOAM)NB € Zy(M) — — — — — — — (.  Then
NNB <€ Z,(M) € Z,(M). 1t follows tha B <
Z,(M), since N <.,,s M and B<M < M. Thus
B S Z,(M)NM = Z,(M); and so by (I) implies
NNB < s M. On the other hand M is t-ess. prime,
which implies that anng(NNM) = anng(M) =
anng(NNM) 2 anng(N)(
because (NNM) < N, hence anngx(M) 2 anngN.

But anng(M) € annzgN. Thus anng(M) =

anng(M).  Since

anng(N) and so M ist-ess. prime.

&< Since M <, M, then M <., M. So that by t-
essentially prime of M, annpg(M) = anngy(M).
Now, let (0) # N <;s M, hence N <;,s M <(,s M
which implies N <, M. It follows that
anng(N) = anng (M) ( since M ist-ess. prime), but

by the proof anng (M) = anng(N). Thus

anngN = anngM and M ist-ess. prime. O
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Remark 3.10: The condition anngM = anngM
can’t be dropped from Proposition 3.9 and the
following example explains this. Let M be the Z-
module Z, (where P is a prime number). M is a
prime module, so it is t-ess. prime, but M = Zp« is
not t-ess. prime ( since (0) =ann;M #

annz(%+Z)=PZ. Also notice that PZ=

ann;M # anny,M = 0.

——p
=

ess-q-Ded.
ess.prime

—p
-

I+

t-ess.q-
Ded
t-ess-prime

[

-

prime

g-Ded
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1

Introduction

Let H beareal Hilbert space® = C < H, and
T:C — C is non — expansive. Mapping. That is,
if lla=»bll =1If(a@) - f®I for
multivalued  operator A is called

monotone if the following condition hold:

eacha,b €

C.Also any

<a —a,,d, —d;, >=0 Va; € D(A), d; €
A(z;). And it is called maxima monotone if for
al(a,h)eHxH{a—b.,,h—d)=0 and for
al (b,d) € gph(A)then we get,h € A(z). The
monotone operators has an important role in
different [1]-

[5]). On other hand, The convergence of the iteration

branches of mathematics, see.(

method studied by many researchers see ([6]-[16]).
Define the following mapping as follows:

Jry = U +1,A7)(@)

resolvet mapping where < r, > be a sequence of

this mapping is caled
positive real numbers. Also, the metric projection
P.(a) from H onto C is defined as follows:

For any a € H there exists a unique element
P.(a) € C sdtisfiesthe following:

lla = P.(a)|l < lla— D], forallb € C.That is, for
each a€X, P(a)=»b iff beC and |la—b| =
inf{|la — cl|;c € C}.

Now, the following definitions and lemmas are

interesting to area of research:

12

Lemma(1.1) [16]
Let <a,> and <pB,> are sequences
of nonnegative real number such that
App1 < a,+pB, , for each. n=>1. If Y7, a,
convergethen lim,,_,,, a, exists.
Definition(1.2) : [17]
LetT: C — C be a mapping then every p € C

is called asymptotic fixed point of T if there exists
(a,) is sequence in C such that «, - p and
llan = T'(a) |l — 0.

Lemma (1.3) : [18]

Let C be a nonempty convex closed subset of rea
Hilbert space H and T is hon-expansive multivalued
mapping such that Fix(T) # @.ThenTis demi-
closed, i.e,a, = p and lim,_ d(an,F((xn)) =
0.Thenp € I'(p).

Lemma(1.4) : [19]

If (a,) be a sequence in H and ||la,,; —a|l <
|a, — a|| for adl a € C. Then (P.(a,)) converges

strongly toapointin C.

Now, we introduce the concept of expansion

mapping

Main Results
In this section, we define a new iterations
for sequence of expansion mapping. Also, we study

the convergence for these iterations.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019

ISSN (Print): 2074 — 0204

ISSN (Online): 2521 — 3504

Definition(2.1)

Any mapping f is
mapping if for each sequence(z,) in

called expansion
(0,1)
converges to zero then there exists a nonnegative

real number z such that

(1_ Zn)”x_w ”2 +Z(X—fx,W—fW)k+1
= |lfx—fw]|*fordl k > 0andx,w € C

The concept of expansion mapping is
independent of non — expansive

mapping. As shown by the following examples:

Example (2.2)

If f:(0,00)— (0,0) be a mapping such that
f(x) = x.Then the mapping f isnot non-expansive
but it is expansion,mapping. Since, for each
sequence (z,,) in [0,1] converges to zero then there

exists z such that,
4
z= K+
(X = fow = fw)
(1= z)llx—wl>+z{x = f,w = fi, !
Example (2.3)
Let f: H— H be a mapping such that f(x) = x.

||lx —w ||? and satisfy

It is clear that the mapping f is not expansion
mapping but it isnon — expansive.
Theorem (2.4):

Let A;,4,,.... ,Apae  maxima
monotone multivalued mapping C nonempty convex
closed in H, (f,) be a sequence of non-expansive
(To)
mapping
sequences in (0,1] converges to 0O, such that

mapping and is bounded sequence of

expansion onC.Let (a,) (b, ae
ap, + b, =1and X%, y,; = 1. Define the iteration

process(x,,) asfollows:

13
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m
w, = bnvn + (1 - bn) Z yn:i ]:;n,i Un

i=1

Unt1 = anTnUn + (1 - an)ann
If Ny Fix(JE,, ) 0 (NG Fix(T)) 0

(Ny=1 Fix(f,)) = ©.Then  (x,)
weakly to an asymptotic common fixed point of

has converges

T,, for eachn € N. Moreover (P.(v,)) converges
strongly to apointin C.

Proof :
et p ey Fix(fh, )0 (NG, Fix(T)) n
(NZ-y Fix(f,))

by, —p) + (1 = by). ||

(i Vi Jns Yn (W) = p)
i=1

< byllv, —pllI?

lw, —pII* =

m
+A=b) ) Vi 1o = pIP?
i=1

< byllv, = pll + (1 = by)llv, — plI?
= |lv, —pll?
Now, for any sequence (z,) in [0,1] converges to
zero then there exists anonnegative real number z
such that
1Vns1 = PlI? = ITovn + (1 — @) fawn — plI?
< a,||IT, v, = plI?
+(1
— a) |l fown — plI?
IVns1 = PlI? < anllTyv, —plI?
+ (1 - aplw, —pll?
IVns1 = PlI* < an (1 — z)llv, — plI?
+ by 2| (Tup = T) (v — v
~ (Tup = )|
+bnz (vy = fru 0 — f)"
+ (1 —apllv, —pll?
< a,{(1 = z)llv, — plI*}
+ (1 —apllv, —pll?

lvpe1 — P||2
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—-plI* + (1 = allv, —pll?
= llv, — plI?

By lemma (1.1), we get lim,,_,. || v,

< apllvy

- pll exists and
hence (f,,)is aso bounded. So by lemma (1.4) we
get (P-(v)) converges strongly to the pointin C.
— Tl < llan—1(bp-1Tp-1Vp—1
+ (1 = bn-1)fn-1Wn-1 = Tn¥)
+ (1 -an-fp-1Vn-1—
< ap-1llbp1Th-1Vn—1
+ (1 = b)) Towy—1 — Tyl
+ byl fa-1vn-1 = Tavall
Since(f,,) and(T,) adso bounded and

{ay), (by,) are sequences in (0,1] converges to zero.

llvn

are

Asn — oo weget, ||lv, — T,v,||—0.

Now, since (v,) is bounded then there exists
subsequence (v,;,) of v, such that v,, — z and
v, — T,,v, |l — 0. Then we get z is an asymptotic
common fixed of T, foreach n € N.Then the
iteration,(v,,) to an
asymptotic
T,,foreachneN. m

has converges weakly

common fixed point of
Now, we consider property P for any

sequence as follows:

Let (T,)be a sequence, of mapping we say

that (T,,) has property F if (T,) satisfies the

condition:

T, — zlI* < |IT, |l ,for each z € (N7-; Fix(T,)).

In the following theorem we study the

convergence for the iteration process

m
w, = b’n [dnvn + (1 - dn) Z )/n,i ]Ti‘n,i Uﬂ:|

i=1

+ (1 - b'n)gnvn

Un+1
=d, [anTnvn + bpfuvn + Cnfngnvn]
+ l{ngnwn 2.1)

14
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where (d,,) and (b,) are sequences in [0,1] such
that (d,),(b,) converges to zero, d, = b,. Such

thata'n+b'n =l,a,+b,+c, =1, X Vn; -

Theorem (2.5) :

Let AL A, ... maximal
monotone multivalued mapping and @ # C convex
closed in X, (T,)

expansion mappings

A, ae

is bounded,sequences of
onCand(f,), (gn)
sequences of non-expansive mapping on C. If
(2.1

are
the
and

iteration  process defined as

(Fix(Ut,.)) 0 (N=r Fix(m) 0 (N Fix(R0) 0

(N3y=1 Fix(gy,)) # @.Then
weakly to an asymptotic common fixed point of

(x,) has converges

T, , foreachn € N. Moreover (P.(x,)) converges
strongly to a pointin C.
Proof :

Let

pe(Fi(t,))n ( lx(Tn)> (ﬂ Fix(f,) )

ﬁjs

n (ﬂ ix(gn)>
llw, — plI?
dn(vn - p) + (1 - an)

m
: +
" (Z Yn,i ];n,i Un _p>
i=1

(1 - Bn)gnvn -p

dn(vn - P) + (1 - dn) 2
m

(Z }/n,i ];'n,i Up — p)
i=1

+ (1 - b’n)llpcgnvn - P”z
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dn”vn - p”Z + (1 - dn)
L, m
lw, —pll> <b
n — D n Zyn,i

i=1

. 2
]‘rl‘n',: Un - p ||

+ (1= by)llvy — plI?
< byldyllv, — plI?
+ @1 = d)llv, —pll*]
+ (1= by)llvy — plI?
Wy = plI* = byllvy —plI> + (1 = by)llvy, = plI?
= llvn — plI?
Hence,  [lw, —plI* < llv, —plI?
Now, by (2.1) then we have
Ins1 = plI? < dullanTavy + bufavn + Cafagnvn
= plI* + bpll gnwn — pI?
Ivns1 = plI? < dnanlITv, — plI?
+ dnbyllfavn — plI?
+ dncnll fugnvn — pII?
= dn @b I T, vy — frvnll®
= byl fovn = fuTuvnll?
= dnCnpllfuTavn — Tovnll?
+ bpllgnwn — pII?
< dpanlITyvn — plI* + dobyllfove — pII?
+ dncnll fugnvn — pII?
+ dp@n b T vy — fuvnll
+ dpbncpllfuvn = faTuvall?
— 8y Cnnll fuTa Vs — T ll?
— dn@nbp||Tyvn — fuvnll
= byl favn — faTuvnll?
= dnCpanll fuTavn — Tuvnll?
+ bl gnwn — plI?
For any sequence (z,) in [0,1] converges to zero
there exists a nonnegative real number z such

that

V41 —P”Z

Zena .H/ Reyadh.D

< dpan[(1 = z)llv, — plI?
+ znllp — Tupll- 1@ — Tup) (cvn
= Tavn — (0 = TuP)
+2((p — Tab, Vo — Tuvn )]
+ dybnllv, — plI?
+ dycallv, —plI?
+5,[lwy, — plI?
Now,
IVni1 = plI? < dra,
v, = plIZ + dubpllv, — plI? + dncnllv, — plI?
+ bpllv, — plI?
V1 =PI = dullvy = plI* + (1 = a)llv, — plI?
= |lv, —plI?
By lemma (1.1),
we get lim,_.|lv, — pll exists. Hence, (v,) is
bounded sequence, so that (g,) and (f,) are aso
bounded sequences.
So, by lemma (1.4) we deduce {P.(x,)) converges
strongly to the point in C.
lvy, — Tavnll = ||ar{—1[an—1Tn—1Vn—1
+ bp_1fn-1Vn-1
+ Cno1fn-19n-1Yn-1]
+ b1 [an-1by_1 (Ty_1vpq
= fr—1Vn-1)
+ bp_1¢n-1(fre1Vn-1
— fac1Tn-1Vn-1)
+ cn1an1(fae1Tno1Vnq
= Tno1Vn-1) + dn_1 Gn-1Wn-1]

- Tan”
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lvn, = Tavnll < @y _qllan_1Tn-1vn-1
+ by-1fn-1Vn-1
+ cne1fn-1Th-1Vn-1 = GnWall
+ bn’—lllan—lbn—l(Tn—lvn—l
— fa-1Vn-1)
+ bp16n-1(fr-1Vn—1
— fa-1Tn-1Vn-1)
+ 11 (fe1Tne1Vna
= Th-1Vn-1) + o1 Gn-1Wn—1
— Tawnll
Since G,,b, — 0  and (T,),{f,)and (g,) are
bounded then we get

lv, — Tyvpll — 0asn—

Now, since (v,) is bounded sequence then there
exists subsequence (v,,;,) of (v,) such that v, — z

and since ||v,, — T,,v, || — 0 ,then we get,

z is asymptotic common fixed point of
T,, forall n€N.

Then the iterations(v,,) has converges weakly to an
asymptotic common fixed point of T,, forall n €
N. m

In the following theorem we give a new
iteration process and we study the convergence for

thisiteration to an asymptotic common fixed point.
Theorem (2.6) :

If (f,) be a sequence of non-expansive
mapping on C and (T,) be a bounded sequence of
expansion mappings onC. Define the iteration

(vy,) asfollows:
Wy = dyfrvn + (1 — ) (Tyvy)
m

Un+1 = Qn Z Vn,i ]rin_i Un

i=1

+ (1 - an)ann (2-2)

16
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where  (d,), (b,),{a,),(b,) are sequences in
[0,1] such that{a,),(b,) converges to 0 such
that. 1f (N, Fix(i,)) 0 (NG Fix(T) n
(N1 Fix(f))
# (. Then the iteration process(v,) has converges
weakly to an asymptotic common fixed point
of T, ,forall n€N. Moreover (P:(v,))
converges, strongly to a point in
C.
Proof :
Let p € (Fix(P.)) n (N, Fix(Ty)) N
(N1 Fix(fu))
Since w, =d, f,v, + (1 — dn)(BnPcTnvn +
(1 = by) fP.Tyvy,) then we have,
lw, = plI? < dll vy — plI?

+ (1 = d)lITv, — pllI?]
lw, = plI* < dypllv, — plI?

+ (1 = d)lIT,v, — pllI?]

= dyllv, —plI?

+ 1 = d)ITv, — plI?
For any sequence (z,) in [0,1] converges to zero
there exists a nonnegative real number z such
that

lw,, = plI* < dpllvy, — plI?
+ (1 - d)IA - z) v, —pll?
+ 2,ll(p — Tup) vy — Tovn
— (-T2l
+2((vy — T, p — TaP))"]

lw, = plI? < dllv, —plI* + (1 = d)llv, — plI?

= llv, — pll?

Hence, |lw, —plI* < llv, —plI?

i 2
];n,i Un - p||

m
lvper — p”2 < anzyn,i
i=1

+ (1 = a)llfawn — P||2
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m
19nes =PI < @ ) yi Il v =l

i=1

+ (1 - alw, —pll?
Ivni1 = plI? < anll v, —plI?

+ 1 = allv, — pll?

= |lv, —plI?
By lemma (1.1), we get lim,,_,, ||, — p| exists
Hence, the iteration (x,) is bounded sequence. So

(fn) and (g,) aso bounded sequences. And hence,
by lemma (1.4) we deduce (P;(v,)) converges

strongly toapointin C. =
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Abstract:

The notion of Cech fuzzy soft closure spaces was defined and its basic properties are
introduced very newly by Majeed [1]. In the present paper, we define the notion of fuzzy soft
separated sets in Cech fuzzy soft closure spaces and prove some properties concerning to this
notion. By using the notion of fuzzy soft separated sets we introduce and study the concept of
connected in both Cech fuzzy soft closure spaces and their associative fuzzy soft topological
gpaces. Then we introduce the concept of feebly connected, and discuss the relationship
between the concepts of connected and feebly connected. Finally, we introduce several
examplesto clarify our results.
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1. Introduction

It is known that Zadeh [2] in 1965
introduced the principal idea of fuzzy sets, which is
supply a natural basis for handling mathematically
the fuzzy phenomena which exist in our real world,
and for constructing new branches of fuzzy
mathematics. Later in 1999, Molodtsov [3] initiated
the concept of soft set theory, which is a purely new
way for modeling uncertainty. Molodtsov [3]
established the main results of this new theory and
successfully applied the soft set theory into several
directions, such as theory of probability, Riemann
integration, smoothness of functions, operations
research and game theory. The concept of fuzzy soft
sets was defined by Magji et al. [4] as fuzzy
generalizations of soft sets. Then in 2011, Tanay
and Kandemir [5] were gave the concept of
topological structure based on fuzzy soft
sets. The study of fuzzy soft topological spaces
was pursued in recent years by some others [6, 7, 8,
9, 10, 11].

Cech [12] in 1966, introduced the notion of
Cech closure spaces (X, C), where C: P(X) — P(X)
is a mapping satisfying C(@) = 9,4 € C(4) and
C(AUB) =C(A)UC(B), the mapping C caled
Cech closure operator on X. After Zadeh introduced
the concept of fuzzy sets, in 1985 Mashhour and
Ghanim [13] put the concept of Cech fuzzy closure
spaces when they exchange sets by fuzzy setsin the
definition of Cech closure space. In 2014, Gowri
and Jegadeesan [14] using the concept of soft setsto
introduced and investigation soft Cech closure
spaces, the soft closure operator in that sense was
defined from the power set P(Xp,) of Xp, to itself
(where F, is a soft set over the universe set X with
the set of parameter K, and A € K). Also, in the
same year, Krishnaveni and Sekar [15] introduced
and study Cech soft closure spaces (where the soft
closure operator here defined from the set of all soft
sets over X to itself). Very recently Majeed [1]
employ the fuzzy set theory to define and study the
notion of Cech fuzzy soft closure spaces which is a
generalization to Cech soft closure spaces that given
by Krishnaveni and Sekar [15]. Also, Majeed and
Maibed [16] introduced some structures of Cech
fuzzy soft closure spaces. They show that every
Cech fuzzy soft closure space gives a parameterized
family of Cech fuzzy closure spaces, and defined
and studied fuzzy soft exterior (respectively,
boundary) in Cech fuzzy soft closure spaces.
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On the other hand, the notion of
connectedness in closure spaces is introduced and
studied. Cech [12] defined the notion of connected
spaces in closure spaces. According to Cech a subset
A of aclosure space X is said to be connected in X if
A can not be represent as the union of two nonempty
semi-separated subsets of X, that is A =A; UA,,
(C(A) NA) U (A4, NC(Ay)) = @ implies A, =0
or A, = @. Plastria [17] studied connectedness and
local connectedness of simple extension. Gowri and
Jegadeesan [18] introduced the concept of
connectedness in soft Cech closure spaces.

In the present paper, we extend the notion
of connectedness in Cech fuzzy soft closure spaces.
In Section 3, we define the concept of fuzzy soft
separated sets in Cech fuzzy soft closure spaces and
give some of its basic properties. Then we introduce
the notion of disconnected in both Cech fuzzy soft
closure spaces and their associative fuzzy
soft topological spaces based on fuzzy
soft separated sets. In Section 4, we
present the concept of  feebly
disconnected Cech fuzzy soft closure space. We
show that the concept of disconnected and
feebly disconnected are independent (see Examples
4.11 and 4.12).

2. Preliminaries

In this section we review some basic
definitions and results related of fuzzy soft theory
and Cech fuzzy soft closure spaces that will be
needed in the sequel, and we foresee the reader be
familiar with the usual notions and most basic ideas
of fuzzy set theory. Throughout our paper, X will
refer to the initia universe, I =[0,1], I, = (0,1],
I1¥ be the set of all fuzzy sets of X, and K the set of
parameters for X.

Definition 2.1 [9, 10, 19, 20] A fuzzy soft set
(fss, for short) A, on X is a mapping from K to I¥,
i.e,A:K > 1%, where A,(h) #0 if heAcK
and A,(h) =0 if h ¢ A € K, where 0 is the empty
fuzzy set on X. The family of all fuzzy soft sets over
X denoted by F,; (X, K).

In the next definition, the basic operations
between fuzzy soft sets are given.
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Definition 2.2

F.s (X, K), then

1. A, issaid to be a fuzzy soft subset of uz, denoted
by AA € Ug, if }\A(h) < /.lB(h), fordl h € K.

2. A, and up are said to be equal, denoted by A, =

ug if Ay S ugand pg S A,.

3.The union of A, and ug, denoted by A, U ug is

the fss J(AUB) defined by J(AUB)(h) = )\A(h) \%

ug(h), fordl h € K.

4.The intersection of A, and ug, denoted by
}\A N ug is the fss O-(AﬂB) defined by O-(AﬂB)(h) =
Aa(h) A ug(h),fordl h € K.

[9, 10, 20] Let A, pp €

Definition 2.3 [9, 11, 20] The null fss, denoted
by 0k, isafssdefined by 0, (h) = 0, foral h € K.

Definition 2.4 [9, 11, 20] The universal fss,
denoted by 1, isafssdefined by 1,(h) = 1, for all
h € K, where 1 isthe universal fuzzy set of X.

Definition 2.5 [20] The complement of a fss
s € Fis(X,K), denoted 1, — A,, is the fss
defined by (1 — A,)(h) =1 — A,(h), for each
heK,ltsclearthat 1, — (1 — Ax) = A,.

Definition 2.6 [21] Two fss's A, up € Fis(X, K)
are said to be digoint, denoted by A, N ug = O, if

Definition 2.7 [5, 20] A fuzzy soft topological
space (fsts, for short) (X,t,K) where X is a
nonempty set with a fixed set of parametersand t is
a family of fuzzy soft sets over X satisfying the
following properties:

10,14 €1,

21f Ay, up € T,then A4, N ug € 7,

3.1f (A4); € 7, then U;eje(44); € 7.

T iscaled atopology of fuzzy soft setson X. Every
member of 7 is called open fuzzy soft set (open-fss,
for short). The complement of open-fss is called a
closed fuzzy soft set (closed-fss, for short).

Definition 2.8 [1] An operator 6:F, (X,K) —
F,(X,K) is caled Cech fuzzy soft closure operator
(C-fsco, for short) on X, if the following axioms are
satisfied.
(C1) 6(0k) = O,
(C2) Ap € O(Ay), fordl 2, € Fs (X, K),
(C3) 6(A4 U pp) = 0(A4) U O(py), for al Ay, up €
Fos (X, K). 5
The triple (X,60,K) is called a Cech fuzzy soft
closure space (C F-fscs, for short).

A fss}, is said to be closed-fss in (X, 6,K) if
Aa = 0(4,). And afss), issaid to be an open-fssif
1x — A, isaclosed-fss.
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Proposition 2.9 [1] Let (X,6,K) be aCF-scs,
and Ay, ug € Fis (X, K) such that A, C ug,
then 6(1,) S 6 (up).

Definition 2.10 [1] Let (X,60,K) be a CF-scs,
and let A, € F,c(X,K). The interior of A,, denoted
by Int(A,) is defined as Int(A,) =1y —
01k = Ap)).

Definition 2.11 [1] Let V be a non-empty subset
of X, then 7, denotes the fuzzy soft set V, over X
for whichV(h) =1, foral h € K, (where 1,: X -
I suchthat 1,(x) =1if x€V and 1,(x) =0 if
xegV).

Theorem 2.12 [1] Let (X,6,K) be a CF-scs,
VeXandlet,:F(V,K) > Fpe(V,K) defined as
0,(As) = VkNO(A,). Then 6, is a CF-sco. The
triple (V, 8y, K) is said to be Cech fuzzy soft closure
subspace (CF-sc subspace, for short) of (X, 6, K).

Theorem 2.13 [1] Let (X,6,K) bea CF-scsand
let Ty € Fis(X, K), defined as follows

To = {1k — Ar0(A4) = M2}
Then 74 isafuzzy soft topology on X and (X, 74, K)
iscalled an associative fsts of (X, 6, K).

Definition 214 [22] Let (X,79,K)be an
associative fsts of (X,0,K) and let 1, € Fi (X, K).
The fuzzy soft topological closurer of A,with
respect to 0, denoted by 7Tg-cl(A,), is the
intersection of al closed fuzzy soft super setsof 4, .
i.e,

Tg-cl(A4) =N {pc : /112291),06 and 0(pc) = pc }-

And, The fuzzy soft topologica interior of A,with
respect to 0, denoted by 74- int( A4) isthe union of
al open fuzzy soft subset of A,. i.e,,
T~ int(A4) = Ufpcipc © A4 and 0(1x — pc) =
1k — pc}- (22

The next theorem give the relation between the
C-fsco 6 (respectively, interior operator Int) and the
fuzzy soft topological closure t4-cl (respectively,
interior g-int).

Theorem 2.15 [22] Let (X,6,K) be CF-scs and
(X, 74, K) be an associative fsts of (X,0,K). Then
forany A, € F,o(X,K)
To-int(Ay) S Int(Ay) € A4 S 0( 1) S 16-
cl(Ay). (2.3
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3.Connected Cech Fuzzy Soft Closure
Spaces

In this section we introduce and study fuzzy
soft separated sets in CF-scs, then we use it to
introduce the notion of connectednessin CF-scs's.

Definition 3.1 Let (X,6,K) be a CF-scs. If there
exist non-empty proper fsss Ay, ug € Fss(X K),
such that 1,N0(ug) =0, and 6(A,)Nup = O, then
the fss's 1, and uy are called fuzzy soft separated
sets.

In other words, two non-empty fuzzy soft set
A4, g Of CF-scs (X,0,K) are said to be fuzzy soft
separated  sets if and only if (4,N60(up))
U@ ) Npg) = 0.

Remark 3.2 Itisclear that if A, and up are fuzzy
soft separated sets in (X, 6, K), then 4, and uy are
digoint fuzzy soft sets. The following example
shows that the converseis not true.

Example 3.3 Let X={a, b, c}, K={hy, h,} and let
pc = {(hy,bgs), (hy, by 5)}. Define 6: Fs (X, K) —
F..(X,K) asfollows:

0(44) _
OK lf A‘A = OK )
= {{(hy ags V bos), (hos, aos V bos)} if A4 S pc,
1k otherwise.

Then 6 is C-fsco on X. Here we have A, =
{(hy, by 5)} and pup = {(hy, ags), (hz, ¢o5) } are non-
empty digoint fuzzy soft sets but 1, and pp are not
fuzzy soft separated sets.

Theorem 3.4 Let (X,0,K) be a CF-scs. Then
every fuzzy soft subset of fuzzy soft separated sets
are also fuzzy soft separated sets.

Proof. Let A, and ujp are fuzzy soft separated sets
in (X,0,K), and let p. € 4, and n, S ug. Since
pc € 44 and np S ug, then by Proposition 2.9, we
have 6(pc;) € 6(1,) and O(np) € O(ug). This
implies 6(pc) Nnp S 0(A) N and 6(np) N
pc €S 0(ug) NA,. But 1, and up are fuzzy soft
separated sets, it follows 6(p;) Nnp S 0(4,) N
up =0 and  6(mp) Npc S O(up) N A4 = O.
Hence 0(pc)Nnp =0 and  6(np) N pc = Ok.
Thus p, and n, are fuzzy soft separated sets.
|
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Theorem 3.5 Let (V, 6, K) be a CF-sc subspace
of (X,6,K) andlet A4, ug € Fsx(V,K), then 4, and
up are fuzzy soft separated setsin (X, 60,K) if and
only if A, and up are fuzzy soft separated sets in
V,6,,K).

Proof. Let (X,0,K) bea CF-scsand (V,6,,K) bea
CF-sc subspace of (X,6,K). Assume that that A,
and pp are fuzzy soft separated setsin (X, 6, K), this
implies that 1,N6(ug) =0, and 6(A,)Nug = 0g.
Which means (1,N8 (uz))U(6(A4) Nug) = 0k.
Now,

(14 ﬂ_eV(.uB))U(GV(AA)ﬂ.uB) =
U((VNO (1)) Nip)

= ((AaNV)NO (p)) UV Nup)NO (A,))

= (N6 (up))
U(usNB(44))

(AAﬂ(VKng(uB)))

= 61(.

Therefore, 1, and up are fuzzy soft separated setsin
(X,6,K) if and only if A, and up are fuzzy soft
separated setsin (V, 6y, K). [ |

Definition 3.6 A CF-scs (X,6,K) is said to be
disconnected Cech fuzzy soft closure space
(disconnected-CF-scs, for short) if there exist fuzzy
soft separated sets A, and pug such that
6(A)N6(up) = 0 and (A,)U6 (up) = 1.

Definition 3.7 A CF-scs (X,6,K) is said to be
connected Cech fuzzy soft closure space (connected-
CF-scs, for short) if it is not disconnected-CF-scs.

Now we give two examples one is
disconnected-CF-scs and the other is connected-CF-
cs.

Example 3.8 Let Xx={a, b}, K={h,, h,}. Define
0: F.,s(X,K) - F.s (X, K) asfollows:
0(A) )
Ok if 4= 0Ok,
_ {{(hl'al V by)} if Aa € {(hy,a1)},
{(hy,a, V by)} if Aa € {(hy a1)},
1k other wise.

Then (X,6,K) is disconnected-CF-scs. To explain
that taking A4 = {(hy, ap5)} and pp = {(h2, ao2)}-
It is clear that 4, and pp are fuzzy soft separated
sets  such that 0(1)N6(up) =0, and

0(A4)U6 (up) :TK-
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Example 3.9 Let X={a, b}, K={hy, h,}. Define
0: Fos (X, K) > Fi (X, K) asfollows:

0(4) _
Ok if A= 0,
={{(hy,a; V by)} if A4 S{(hy, a1V by)},
1 otherwise.

Then (X, 6,K) is connected-CF-scs.

Remark 3.10 Connectedness in CF-scs is not
hereditary property. The following example explain
that.

Example 3.11 Let X={a, b, c}, K={hy, h,} and |et
()1, ()2 € Fs(X, K) such that
()1 = {(hy, a1 V by V coa)} and (A4)2
{(hy,a, V by Vco7)}.

Define 8: s (X, K) — F(X, K) asfollows:
0(s)_

( Ok

| {(hy, a1V by V o))}
= {{(hz, a1 Vb Vcyr)}

[6((24)1) U O((A4)2)

1x

if A= (_)K:

if A4S ()1,

if A4S (Aa)2,

if 24 S (Aa)1V (Aa)2
otherwise.

Then (X, 0, K) is connected-CF-scs. Let V = {a, b},
then 6y: F,(V, K) - Fi(V, K) defined as
Oy(Aa)
0
{(hy, a1V by)}
{(hz, a1 V by)}
Vi

if 4= 6Kv

if 4 S {(hy, a1V by},

if A4 €{(hz, a1V by)},
otherwise.

Then (V, 8y, K) is disconnected-CF-sc subspace of
(X,0,K). Since thereexist A, = {(hy,a; V b;)} and
ug = {(hy,a; vV b))} are fuzzy soft separated sets
such that 0y (A)NOy, (1) =04 and
Oy (A)U8y (up) =Vi.

Now, we introduce the concept of fuzzy
soft separated sets in the associative fsts's of CF-
SCS'S.

Definition 3.12 Two non-empty fsss A, and i
are said to be fuzzy soft separated sets in the
associative fsts (X, g, K), if A4N1e-cl(up) = 0k
and 7g-cl(4,)Nug =0g.

Theorem 3.13 If A, and up are fuzzy soft
separated sets in the associative fsts (X, 7g, K), then
A4 and pp are aso fuzzy soft separated sets in
(X,6,K).
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Proof. Let 1, and uy are fuzzy soft separated sets
in (X,79,K). Then A4N7e-Cl(ug) = 04 and ty-
cd(A)Nup =0g. By Theorem 215 we get,
A4N0(up)=0x and 8(A,)Nup=0g. Thisimplies 1,
and up are fuzzy soft separated sets in (X, 0, K).
[

Definition 3.14 An associative fsts (X, g, K) of
CF-scs (X,0,K) is said to be disconnected fsts, if
there exist two fuzzy soft separated sets 1, and ug in
(X,tg,K) such that t4-cl(1,)Nte-cl(up) = 0 and
Tg-Cl(A4)Utp-cl(up) = 1 .

Definition 3.15 An associative fsts (X, 74, K) of
CF-scs(X, 6,K) is said to be connected fsts, if it is
not disconnected fsts.

Theorem 3.16 If (X,14,K) is a disconnected
fsts, then (X, 6, K) is disconnected-CF-scs.

Proof. Let (X,7y,K) be disconnected fsts, then
there exist two fuzzy soft separated sets A, and py in
(X,tg,K) such that tg-cl(14)NTe-cl(up) = 0 and
19-Cl(A)Utg-Cl(up) = 1x. Since 14-cl(1,) and 74-
cl(ug) are closed-fss's, then 0(ty — cl(A,) ) = -
cl(24) and 6(zg-cl(up)) = To-Cl(tp). Let pc = 79~
cl(44) and np = t4-cl(up). Then we have p. and 1,
are fuzzy soft separated sets in (X, 6, K) such that

8(pc) N 0(mp) =pc Nnp =0, and  O(pc) U
G(nD) =pCU77D == 1K' HenCe, (X,G,K) |S
disconnected-CF-scs. n

Corollary 3.17 If (X,6,K) is connected-CF-scs,
then (X, 74, K) isaconnected fsts.

Proof. The proof follows by suppose (X, 74, K) is
disconnected fsts. From Theorem 3.16, we get
(X,6,K) is disconnected-CF-scs which is a
contradiction with hypothesis. Hence, the result. m

Remark 3.18 The converse of Theorem 3.16 and
its corollary is not true in general. That is, if
(X,0,K) is disconnected-CF-scs, then (X,7g,K)
need not to disconnected fsts. The following
example shows that.

Example 3.19 In Example 3.8, (X,6,K) is
disconnected-CF-scs.  But its  associative  fsts
(X, 19, K) isconnected fsts, because 7, = {0, 1x].
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4. Feebly Connected Cech Fuzzy Soft
Closure Spaces

Definition 4.1 A CF-scs (X,6,K) is said to be
feebly disconnected-CF-scs, if there two non-empty
digoint fuzzy soft sets A, and up such that
AU8(up) = Tx and 8(A44)Upp = 1.

Definition 4.2 A CF-scs (X, 6,K) is said to be
feebly connected-CF-scs if it is not feebly
disconnected-CF-scs.

Remark 4.3 Feebly disconnectedness in CF-scs
is not hereditary property. The following example
explains that.

Example 4.4 Let X={a,b,c}, K={hy, h,} and let
(Aa)1, (Aa)2 € Fss(X, K) such that
(A4)1 = {(hy,a; V¢y)} and
(A4)2 = {(hy,by), (hz, a1 V by V ¢p)}.
Define 0: F,(X, K) — Fs(X, K) asfollows:

6( 1)

(01{ if 4= 0g,

{(h,a; v}

{(hy,b1), (hy, a4 V by V ¢p)}
1k otherwise.

Then (X, 0, K) is feebly disconnected-CF-scs. Since
there exit A, ={(hy,q;Vc,)} and pug=
{(hy,by), (hy,a; V by Vc;)} are digoint fuzzy soft
setssuch that 8 (ug)UA, =1, and ug U6 (1,) =1k.
Let V = {b}, then B,: Fie(V, K) > Foe(V, K) defined
s

Oy (44) _
_ { OK lf /‘lA = 01(!
Vi otherwise.

Then (V, 6y, K) is feebly connected-CF-sc subspace
of (X,6,K).

Definition 4.5 An associative fsts (X, 74, K) of
CF-scs (X, 6,K) is said to be feebly disconnected
fsts, if there exist two non-empty digoint fuzzy soft
sets 1, and pp such that A, Utg-cl(ug)=1, and t,-
cl(2)Upp = 1k.

Theorem 4.6 If (X,0,K) isfeebly disconnected -
CF-scs, then (X, 74, K) isfeebly disconnected fsts.

Proof. The proof follows from the definition 4.1
and Theorem 2.19. m

Corollary 4.7 If (X,74,K) is feebly connected
fsts, then (X, 6, K) is feebly connected-CF-scs.

if Aa € (Aa)1,
if 24 € (Aa)2,

Lina.H/ Rasha. N

Proof. The proof follows by suppose (X, 6,K) is
feebly disconnected-CF-scs. From Theorem 4.6, we
get (X, 14, K) is feebly disconnected fsts which is a
contradiction with hypothesis. Hence, the result. m

Next we discuss the relationship between
disconnectedness and feebly disconnectedness in
CF-scss.

Remark 4.10 The concept of disconnected-CF-
scs  and feebly disconnected-CF-scs  are
independent. The next two examples explain our
clime.

The following example shows that if (X,6,K) is
disconnected-CF-scs, then (X,6,K) need not to be
feebly disconnected-CF-scs.

Example 4.11 Let X={a, b}, K={h}. Define
0: F.s (X, K) - Fy (X, K) asfollows:

6(2a)
(_)K if 4= (_)K!
_) ey if a=(ha) 0<t<1y,
B | {(h,b)} if 2a={(hbs); 0<s<1}
1k other wise.

Then (X, 6,K) is disconnected-CF-scs, since there
exist A4 = {(h,aos)} and pg = {(h, by 3)} are fuzzy
soft separated sets such that 8(1,)NO(ug) = 0, and
0(A,)UB(up) =1;. However, (X,6,K) is not
feebly disconnected-CF-scs since for any non-empty
digoint fsss 1, and g, we have 1,U8(ug) # 1.

The next example shows that if (X, 0,K) is feebly
disconnected-CF-scs, then (X,6,K) need not to be
disconnected-CF-scs.

Example 4.12 Let X={a, b}, K={h,, h,}. Define
0: F.,s(X,K) - F.s (X, K) asfollows:
0(1) i
Ok if 4= 0g,
{(hy, a1 V by), (hy, b))} if a4 € {(hy, b1)},
{(h1,a1), (hy,ay V by)} if A4 € {(hy,a1)},
1k other wise.

Then (X, 8, K) is feebly disconnected-CF-scs. Since
there are non-empty digoint fuzzy soft setsi, =
(b))} and g ={(h;;a)} such that
0(24)Upp=1k and AAUG(/JB)flK-

And (X, 6,K) is connected-CF-scs. Since for any
fuzzy soft separated sets 1, and up, we have
0(A)UO (up) =1y but 8(1,)NO(up) # O.
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Remark 4.13 1t is worth noting that the
definitions of disconnected-CF-scs and  feebly
disconnected-CF-scs (see Definitions 3.6 and 4.1,
respectively) turn to be every disconnected-CF-scs
is feebly disconnected-CF-scs, if the fuzzy soft
separated sets which are satisfying the conditions of
disconnected-CF-scs are closed-fss's.
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Abstract:

In this paper we introduced a new set is said B c— open set where we studied and
identified its properties and find the relation with other sets and our concluded a new class of
the function called B"c— cont. function, B c— open function, B c— closed function.
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1- Introduction :
The topologica idea from study this set is
generalization the properties and using its to prove
many of the theorems. In [1]Abd El-Monsef
M.E.,El.Deeb S.N. Mahmoud R.A Introduced set of
class - open, p- closed which are considered as in
put to study the set of class B'c — open, B ¢ — closed
and we introduced the interior and the closure as
property of B c — open set, B'c — closed set. In [4]
Najasted O (1965) and [5] Andrijecivic D (1986)
introduced a study about the set o —open,
a —closed, B — open with the set B- open set and
through it, we introduced proof many of proposition
as the set B'c — open set with a —closed it can lead
to set B- open set. In [6] Ryszard Engelking
introduced the function as concept to - continuous,
B'c — continuous, B— open function, B'c — open
function, p— closed function, B'c — closed function
and find the relation among them.
2. OnB’c— open sets
Definition (2.1) [1]

Let X beatop. sp. Thenasub set A of X is
called to be

i) ap-opensetif ACA .
i) ap- closed set if A 2 40"

Theall B- open (resp. - closed) set sub sets
of aspace X will be as always symbolizes that fo(x)
(resp. Be(x)).

Example (2.2):

Let X ={a, b, ¢, d} with topology
t={0,X,{a , {ab},{a c, d}. Thenthe clases of
f3- open set and pclosed set are:

Po(X) ={@, X, {a} {a b} {a c}{ad} {abc}{a
b, d}.{a c,d}.

BC((j>}<)={®,X,{b} {ct{d}t.{b, c}, {b, d} {c, d} {b,
c, d}.

Remark (2.3):

Let X be atop. Sp. If A = X, then A is p-
open set.
Remark (2.4):

If A B- open set in X, then A® is B- closed
setin X.

Proposition (2.5):
Let X beatop. Sp. Then:
i) Every open set is - open setin X.
ii) Every closed set is B- closed set in X.
Proof :
i) Let A be open set, then A = A’. Since A € A, then

A=A CA’, therefor ACA , hence A isp- open
set inX.
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ii) Let A be closed set, then A open set, then A® p-
open setin X by (i), then A B- closed set in X.

The converse of above proposition is not true in
general.

Example (2.6):

Let X ={1,2 3}, t={0, X,{1},{23} }.
po(X) ={@, X, {1},{2},{3},{1,2}, {13}, {23} }.
BC (X) = Bo(X).

Note that A = {3} is B- open (resp. B-
closed) set, but not open (resp. closed) set.
Theorem (2.7):

Let X be atop. Sp. Then the following
statement are holds:

i) The union family of B- open setsis - open set.

ii) The intersection family of B- closed sets is -
closed set.

Proof:

i) Let {A, i €A} be a family of B-open setin

[o]

X, then Aagﬁc,then

A, c[lLJAT

ae

= 1A,

ael

JA LA =L

ael ael ael

, hence l'-J Aa isB-open set .
ael

ii)Let {A, o €A} beafamily of B-closed set
inX , then { A ! @ € A} be B-open set in X, then

¢ A(i:(ZEA } B - open sets .But

ael

[(TA]°= UAAS, then [ﬂAAa]," B-

aelh

open setsin X . Therefor Q\A‘” [-closed set in
ae

X.
Remark (2.8):
i) [1] the intersection of any two - open sets is not
- open set in general.
ii) The union of any two B- closed sets is not p-
closed set in generdl.
Example (2.9):

Let X = {1, 2, 3}, t = {9, X, {1}, {2},
{12} }.
Po(X) ={@, X, {1},{2},{1,2},{1,3}, {23} }.
Pe(X) ={d, X, {1}, {2}, {3}, {13}, {23} }.
i) Let A={1,3}, B ={23} are - open sets, but A N
B ={3} not - openin X.
ii) Let A ={1}, B={2} arep- closed sets, but A UB
={1,2} not B- closed in X.
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Proposition (2.10)

Let X be atop. Sp. Then:
i) Gisanopensetin X iff G NA =G N A for each
AcCX.[2]
Proposition (2.11)

Let X be atop. Sp. Then:
i) The intersection a - open set and open set in X
is - open set.
ii) The union a B- closed set and closed set in X is
f3- closed set.
Proof:

i) Let A be ap- open set, then A€ 4°
Let B open set. Then

ANBCc (A NnB).

c@’ nB).
=(4"n B") by proposition (2.10) .
=(A nB).

c nB)o

=AnB by proposition (2.10)
Therefore AN Bisp-opensetinX.
ii) Let A be ap- closed set in X, then A€ B- open set
inX.

by proposition (2.10)

Let B be closed set in X, then B open set
in X, then by (i) we get A® n B® - open set in X,
but (A U B)® = (A€ n B), then (A U B)® p- open set
in X, then A U B B- closed setin X.
Definition (2.12):

Let X beatop. Sp. and A € X. Then:
i) Aisa — openif A € 40 [4].
ii) Aisa—closedif 49 < A[4].
Definition (2.13):

Let X be atop. Sp. X and A € X. Then a -
open set A is said aB'c. open set if V x € A 3 F,
closedset 3 x € F, € A. A isaB c- closed set if A®
isaB’c— open set X.

The all B'c — open (resp. B'c — closed) set
sub set of a space X will be as always symbolize B'c
O (X) (resp. B cc(X) ).
Example (2.14):

In example (2.9). Note that closed set in X

are:
9, X,{2,3},{13},{3}. Then
B'cO(X)={0,X,{23},{1,3} }
Remark (2.15):

If A B'c - open setin X, then A®isB'c —
closed setin X.
Remark (2.16):

From definition (2.13). Note that:
i) Every B'c — open set is - open set.
ii) Every B'c — closed set is p- closed set.
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The converse of above Remark is not true in
general.
Example (2.17):

Let X ={a b, c},t={0, X,{a, {b, c}}.
po(X)={0, X, {a}, {b}, {c},{a b}, {ac} {bc}}.
pe(X) = po (X)

BcO(X) {0, X,{a},{b,c}}.

B'c C(X) = B'c O (X). Not thatA {c} is B- open
(resp. B- closed) ser. but not B'c- open (resp. B'c —
closed) set.

Remark (2.18):

i) The B c — open set and open set are in-dependent.
ii) The B'c — closed set and closed set are in-
dependent.

Example (2.19):

In example (2.9) not that B co (x) = {@, X,
{1,3},{2,3}, B'cc(x) ={@, X, {1}, {2}}. Note that
i) A ={2,3} B'c— open set, but not open and B =
{1} isopen, but not B'c — open.

ii) A ={2} B'c— closed set, but not closed and B =
{3} isclosed set, but not B'c — closed.
Proposition (2.20):

Let X be atop. Sp. and A= X. If A a —
closed. Then A B- openin X iff A B'c— open.
Proof:

SupposethatAaBopensetinX then A ©
a° LetxeACA Since xeA and A a -
cIosedsetthenA c A. ThusxeA c A, EiA

closedsetdx € A° € A. ThenA B’ C — open set.
Conversely
Suppose that A B'c — open set, then by definition
(2.13), we get A B- open.
Corallary (2.21):
If A open set and « — closed, then A B'c —

open.
Proof:

By proposition (2.5) (i) and proposition
(2.20).
Proposition (2.22):

Let X beatop. Sp.and A € X. If A a -
open. Then A B- closed iff A B'c — closed.
Proof:

Let A be B- closed, then A€ B- open. Since
A a — open, then A — closed, then by proposition
(2. 20), we get A® B'c — open set. There fore A p-
closed set.
Corallary (2.23):

If A closed set and a — open, then A B'c —

closed.
Proof:
By proposition (2.5) (ii) and (2.22)
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Proposition (2.24):

Let X be atop. Sp. X. Then
i) The union family of B'c — open set is B'c- open
Set.
ii) The intersection family B c — closed set is B'c —
closed set.

Proof:
i) Let { A,: @ €A} beafamily of B'c — open
sets, then {A,: a € A} is B- open sets, then

UgeaAq IS B- open set by lemma (2.7) (i). Let x €
UgeaAq - then x € A, for some o € A. Since A,
B'c- open set V a € A, then 3 F closed set in x 3 x
€F €A, S Ugep A. Then for UgepA, is B'c-
open set.

i) Let{ A,: a €A} beafamily of B'c— closed
sets, then {AS: a € A} is afamily of B c- open sets,
then UgepAS is B'c- open sets by (i), them
[U(xeAA((:x ] B*C_ closed. But naeAAa = [Uo(EAA((:x ]Cv
then NgepA, iSB c—closed in X.

Remark (2.25):

i) Not every intersection of two B'c — open set is
B¢ — open set.

ii) Not every union of two B c — closed set is B¢ —
closed set.

Example (2.26):

In example (2.9)
B'cO(X)={0,X,{23}, {13} }.
B'cC(X)={®, X,{1},{2} }. Not that:
i) Let A ={1,3}, B ={2,3} are B'c— open set, but A
N B ={3} not B'c—opensetinX.
i) Let A ={1}, B={2} are B'c— closed set, but A
U B ={1,2} not B'c— closed set in X.
Definition (2.27):

Let A subset of top. Sp. Then A iscalled:
i) Clopen set if A closed and open.[6]
ii) B- Clopen set if A B- closed and - open.
iii) B'c - Clopen set if A B'c - closed and B'c —
open.
Proposition (2.28):[4]

Let X beatop. Sp. and A € X. Then
i) Every closed set is a — closed set.
ii) Every open set is o — open set.
Proposition (2.29):

Let X be atop. Sp. Then:
i) The union B c — open set and clopen set isB'c —
open.
ii) The intersection B”c- closed set and clopen set is
B’c - closed.
Proof:
i) Let A B'c — open set, then A® B'c- closed. Let B
clopen, then B® clopen, then B® closed and open.
Since B€ closed, then B¢ B- closed. Since B open,
then B a — open by proposition (2.28) (ii), then B¢
B'c — closed, then A n B® B'c — closed by
proposition (2.22) (ii), then (A°n B)° B¢ — open.
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But A U B = (A n BYC, therefor A U B B'c—
open setin X.
ii) Let A B'c — closed, then A° B'c — open. Let B
clopen, then B€ clopen, then by (i), we get A u B®
B’c — open, then (A U BY)® B'c — closed. But A n
B = (A® U B, then A n BB c- closed.
Proposition (2.30):

Let X be atop. Sp. Then:
i) The intersection B'c — open set and clopen isB'c
— open set.
i) The union B"c- closed set and clopen set is Bc-
closed.
Pr oof:
i) Let A be B'c — open set and B clopen, then B
open and closed, then A B- open set and B open,
then A N B is B- open set by (2.11)(i). Letx € A n
B,thenx € A andx € B, then 3 F closed set in x 3 X
EF € A.SinceFNnBisclosed setinx, thenx € F
NB < ANB,hence A n BB c— open.
ii) Let A B'c — closed set, then A B'c- open. Let B
clopen in X, then B clopen, then by (i) we get A® n
B® B'c- open in X, then (A u B B'c — closed.
But A U B = (A° n B, then A U B B'c — closed
inX.

The following diagram shows the relation
among types of open, closed sets.

[ Tl i —
¥ LAY g F LA
ot i, R K
¥ n ) |
H s clime e B bomasl H it el "
- ol o o
(@) , ()

Definition (2.31):
Let F: X - Y be a function and A € X.

Then:
i) Fis called continuous function [6]. If VA open
subset of Y, then F* (A) is open subset of X.
ii) Fis caled B- continuous function. If VA open
subset of Y , then F* (A) is B- open subset of X.[1]
iii) F is called B"c-continuous function. If VA open
subset of Y , then F* (A) isB"c - open subset of X.
Proposition (2.32):

Let F: X - Y be a function and A € X.

Then:
i) Every cont. functionisap- cont.
ii) Every Bc -cont. functionisap- cont.
Proof:

Let F: X = Y beafunction
i) Let F cont. and Let A be open in Y. Since F is
cont. function , then F* (A) is open in X, then F*
(A) isap- openin X. Hence F isa - cont.
ii) Let FB'c -cont. and Let A be openinY. Since F
B'c -cont. function then F* (A) B'c — open in X,
then F* (A) B- openin X, hence Fisa p- cont.

The converse of above proposition is not
truein general.
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Example (2.33)
Let F: X = Y beafunction and let X = {1,

2,3}
t={0, X, {1,{23} }.
po(X) ={®, X,{1},{2},{3},{1,2},{1,3}, {23} }.
Bco(X)={0, X, {1},{2,3} }.
Y={ab,c} t={0,Y,{a, {b},{a b} }.
po(Y)={@.,Y,{a}, {b},{a b},{a c},{bc}}.
Bco(Y)={0,Y,{ac}, {bc}}.

Define F(1) =a, F(2) = b, F(3) = C.
Notethat Fisp- cont. But
i) F not cont. Since A ={b} openin Y, but F*(A) not
openin X.
ii) Fnot B'c - cont. Since A = {b} openinY, but F
Y(A) not B'c- openin X.
Remark (2.34):

The continuous function and B”c-
continuous are independent in general.
Example (2.35):

Let F: X = Y beafunction
Let X ={1,2,3},t={0, X, {1}, {2}, {1,2}, {1,3}},
Bo(x) =t.
B'co (x) ={®, X, {2},{13} }.
Y={abc}, t={0,Y,{a, {b} {ab}}.
po(Y)={a,Y.{a},{b},{a b}, {a c},{b,c}}.
Bco(Y)={0,Y,{ac} {bc}}.

Define F(1) =a, F(2) =b, F(3) = C.
Note that F is cont. function, but not B'c - cont.
function. Since A={a} openinY, but F*(A) not
B c- openin X.
Example (2.36)

Let F: X - Y beafunctionand Let X ={1,

2,3}.

t={9, X, {1}, {3}, {1,3}}, Bo(X) ={ @, X, {1}, {3},
{1.2},{13},{2,3}}.

Bco(X)={0, X,{1,2},{23} }.
Y={abc},t={0,Y,{ab}}.

DefineF(1) =a, F(2) =b, F(3) =C.
Notethat FisB'c- cont. Since A ={a, b} isopen
inY, but FY(A) not openin X.

The following diagram shows the relation among
type of the continuous function.

3- TheClosure:
Definition (3.1): [1]

The intersection of all B- closed set of atop.
Sp. X which is containing A is called a B- closure of
A and denoted by AP.
i.eAP=n{ F: A CF Fisp-closedinX}.
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Definition (3.2):

The intersection of al B'c - closed set of
atop. Sp. X which is containing A is said a B'c -
closure of A and denoted by AB'C.
i.eAB'C=n{ F:ACF FisB'c-closedinX}.
Lemma (3.3):

Let X beatop. Sp. and A € X. Then
)X eAPiff vp-opensetGandx e GO GNA #
o [1].
i) X eAP'C iff vB'c-openset Gandx € G3Gn
A=+0.
Pr oof:
ii) Let x ¢ AB°C, thenx ¢ N F3 FisBc— closed set
and A C F, then x € [NF]° 3 [NF]° is B'c — open
containing X. Hence
[NF° NA  [NF° N [NF] = 0.
Conversely
Supposethat 3 aB'c—openset G3 x € Gand A N
G=0. then A € G° 3 G°isB’c- closed set, hence
XeKB*C
Remark (3.4):

Let X be a topological space and A € X.

Then
i) AP is - closed set and AB"C isB'c — closed set.
i) AP (resp. AP'C) is the smallest B- closed (resp.
B ¢ - closed) set containing A.
iii)Ac AP aso A C ABC. VA CX.
Proof:
Clear.
Proposition (3.5):

Let X beatop. Sp. X and A < X. Then:
i) A B- closed set iff A = AP [1].
ii) A B'c— closed set iff A = ABC,
Proof: .
ii) Let A be B ¢ — closed set

Let X ¢ A, then X € A% then 3 B'c — open
set A°3 A°n A =0, then X ¢ AB'C, then AB'C
A. Since A € AP°C by Remark (3.4) (iii). Hence A =
ABC.
Conversely

Let A = AB'C. Since AB'C B'c — closed set
inX and A = AP'C, then A B'c— closed set.
Proposition (3.6):

Let X beatop. Sp. X and A € X. Then:
AP =R [1].
ii) If A € B, then AP c B,
Pr oof:
ii) Let A € B. Since B < B? by Remark (3.4) (iii),
then A c BF.

Since Bf is p- closed in X and AP is the
smallest B- closed set containing A. There for
AP c BP,
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Proposition (3.7):
Let X beatop. Sp. X and A < X. Then

AP = AB'C
ii) If A € B, then AB'C ¢ BB'C,
Proof:
i) Since AB'C is B'c — closed, then by proposition
(3.5) (ii), we get the result.
i) Let A € B. Since B < Bfby Remark (3.4) (iii),
then A € BB'C,
Since BBC is B'c — closed and AB'C is the smallest
B’c - closed containing A. Then fore AB'C < BB'C,
Proposition (3.8)

Let F. X - Y be function. Then the
following statements are equivalent.
i) Fisp- continuous.
i) F* (B) isB- closed in X V Bisclosed setin Y.
ii)FAPYS FAA)VACSX.

iv) F-1 (B)B c F'(B)VBCY.
Proof:
(i)

(i)

Let B beclosed setin Y, then Y-B is open
setinY, then F' (Y-B) isap- openin X by (i),
then X — F* (B) isap- openin X.

Then F* (B) isap- closed in X.
(ii) (iii)

Let A X, then F(A) €Y, then F(A) is
closed set in Y, then F* (F(A)) is a p- closed set in
X by (ii). Since F(A) € F(A), Then A € F! (F(A)),
then A < F* (F(A)), there fore F (AP) < F(A).
(iii) (iv)

Lee BCY, then FYB) cX,
FFLB)] < F [Fi(B) by (i), then F

[F1(B)] < (B), then F-1(B) < F!(B).
(iv) (i)

Let B be open set in Y, then Y — B is
closed setinY. Then

FT(Y—B) cF'(Y=B)=F!(Y-B). Since F!
(Y -=B) =X — F'(B) isap- closed set in X, then F*
(B) isap- opensetin X.
There fore F isa - continuous.
Proposition (3.9)

Let F© X - Y be a function. Then the
following statements are equivalent.
i) FisBC- continuous.
i) F* (B)isB'c- closedin X V Bisclosed setin Y.
i) F(AB) c F(A) VA CX.

iv)F1(B) < F'(B)VBCY.
Pr oof:
(ii)

(i)

Let B be closed set in*Y, then Y-B is open
setinY, then F*(Y-B)isaB'c- openin X by (i),
then X — F* (B) isaB’c - openin X.

then
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Hence F* (B) isaB'c- closed in X.
(ii) (iii)

Let Ac X, then F(A) €Y, then F(A) is
closed setin Y, then F* (F(A)) isa BC- closed set in
X by (ii). Since F(A) € F(A), Then A € F! (F(A)),
then AB'C c F* (F(A)), hence F (AB'C) c F(A).
(iii) (iv)

Lee BCY, FYY) cX,
F[F-1 (B)] . < F[F-1(B)], then F[F% (B)] .

— ——B%c _
B,then F-1(B) < F!(B).
(iv) (i)
Let B be open set in Y, then Y — B is
closed setinY. Then

F1(Y—B)  cF'F—B)=F!(Y-B), then F*
(Y -B) =X - F!(B) isaBC- closed set in X. F*
(B) isaBC- open setin X.
Therefore FisaB'c - continuous.
Definition (3.10):

Let F. X - Y be function and A € X.

then then

Then:
i) F is called open (resp. closed) [6] . If V A open
(resp. closed), subset of X, then F(A) is open (resp.
closed) subset of Y.
ii) Fis called B- open (resp. B- closed). If V A open
(resp. closed), subset of X, then F(A) is - open
(resp. B- closed) subset of Y.
iii) Fis called B'c - open (resp. B'c - closed). If v A
open (resp. closed), subset of X, then F(A) is B'c -
open (resp. B'c - closed) subset of V.
Proposition (3.11):

Let F: X - Y be a function and A € X.

Then:
i) Every open function is - open.
ii) Every closed function is - closed.
iii) Every B¢ — open function is p- open.
iv) Every B'c — closed function is p- closed.
Proof:
i) Let F: X - Y beafunction.
Suppose that F open function and let A open in X.
Since F open, then F(A) open in Y, then F(A) -
openinY. ThusFis - open.
ii) Similarly part (i).
iii) Suppose FisB’c - open function and let A open
in X. Since F B'c - open, then F(A) B'c - openin Y,
then F(A) B- openinY. Thus Fis - open.
iv) Similarly part (iii).
The Converse above proposition is not true in
general.
Example (3.12):

In example (2.34)
Closed setin X are: @, X, {2,3} ,{1}.
Closed setinY are: @, Y: @, X, {b, ¢}, {ac},{c}.
pe(Y)={a,Y,{b,c},{a c}, {c}.{b},{a} }.
Bc(Y)={0,Y,{b},{a} }.
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Not that:
i) F B- open, but not open since A = {2, 3} open in
X, but F(A) not openinY.
ii) F B- closed, but not closed. Since A = {1} closed
setin X, but F(A) not closed setin'Y.
i) F B- open, but not B'c — open. Since A = {1}
openin X, but F(A) not B'c—opensetinY.
iv) F B- closed, but not B'c — closed. Since A = {2,
3} isclosed in X, but F(A) not B'c— closed in Y.
Remark (3.13):
i) The open function and B'c — open function are
independent.
ii) The closed function and B"c — open function are
independent.

We can showing that with two the
following examples.
Example (3.14):
i)Let F: X - Y befunctionandlet X ={ a, b, ¢}
t={0, X, {b}, {b, c}}, o (x) ={d, X, {b}, {a, b},
{b.c}}.
B co (X) ={0, X}.
Y={123},t={0,Y,{2},{3}.{2 3},{1, 2}}.
po(Y)={a,Y.{2},{3},{1, 2}, {2 3} }.
Bco(Y)={0,Y,{3},{1,2}}.

Define F(@) = 1, F(b) =2, F(c) = 3.
ii) LetF: X - Y beafunctionandlet X ={ a, b, ¢}
t={9,X,{b,c}}, Po(x)={@, X,{b},{c}, {a b},
{a g {bd}).
B co (X)={0, X}.
Y={1,23},t={0,VY, {1}, {3}, {1, 3}}. .
Po(Y) ={®,Y,{1},{3},{1,3}. {23} }, Bco(Y)
={0,VY,{2, 3}}.

DefineF(a) =1, F(b) =2, F(c) = 3.
In example (i). Note that:
1) F B- open, but not B'c — open. Since A = {b}
openin X, but F(A) not B'c— opensetinY.
2) F b'-closed, but not B c-closed. Since A= {a}
closed set in X, but F(A) not B'c—closed in Y.
In example (ii). Note that:
1) F B¢ — open, but not open. Since A = {b, ¢} open
in X, but F(A) not opensetin.
2) F B'c— closed, but not closed. Since A = {a}
closed in X, but F(A) not closedinY.
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4- Theinterior:
Definition (4.1):[1]

The union of al B - open set of atop. Sp. X
contained in A is called B- interior of A and denoted
A°B,

i.e
A°® = U{U:UcAandU p- open setin X}.
Definition (4.2): )

The union of al B C- open set of atop. Sp.
X contained in A is called B ¢ - interior of A and
denoted A°B"c,
i.e
A% = U{U:UcAandUBC-opensetinX}.
Proposition (4.3):

Let X be atop. Sp. and A < X. Then:
i) X € A°F iff 3 G - openin X3 x eG S A.[1]
ii) X € A°B°Ciff 3 GB'c-openinX3x € GS A,
Pr oof:
i) Let X € A°B'C
Since A’ C=U{G:GCSA,GisB'c-opensetin
X},
Thenze U {G: GCS A, GisB'c-opensetinX}.
Then3GBc-openinX 3 X e GCA.
Conversely .

LetXeGc AandGis Bc—openinx €
Gc A.Then
XeU{G:GCA, GisBc-opensetinX}.
There fore X € A°B'C,

Remark (4.4):
Let x be atop. Sp. and A < X. Then:
i) A° s B- open set and A°B'C isB’c - open set.
ii) A°F (resp. A°B°C) is the largest B- open (resp. B'c
— open) set contained A.
i) A°P € A also A € A°B'C,
Proof:
Clear.
Lemma (4.5): [1]

Let X beatop. Sp. and A € X. Then

i) [A%P]C = AC"

ii) [AP]€ = AC”?

Remark (4.6):

I) [AOB*C]C:FB*C

i) [AB"C1C = A,
Proposition (4.7):

Let X beatop. Sp. and A < X. Then:
i) A B- open set iff A = A°F [1]

ii) i) A B'c - open set iff A = A°B°C,
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Proof:
ii) Let A B'c — open set, then A B'c — closed set,
then by Remark (3.4) (iii), we have AC = AC" .
Since AT ¢ = [A9B°C]° by Remark (4.6) (ii), then
A =[A°PCI€ hence A = A°BC,
Conversely
Supposedly that A = A°B°C,
Since A°B°C js B'c — open set and A = A°B°C| then
B’c — open set.
Proposition (4.8):

Let X beatop. Sp. and A, B € X. Then
i) [A°P]°B = A°B [1].
ii) If A € B, then A°P c BB,
Proof:
ii) Let A € B. Since A°® C A € B, then A°? c B.
Since B°Fis the largest B- open set contained B,
them A°F < B°B,
Proposition (4.9):

Let X beatop. Sp. and A, B € X. Then
i) [AoB*C]oB*C = AOB'C
i) If A € B, then A°B°C c B°B'C,
Proof:
i) Since A°B°C is BC— open set, then A°B'C C B.
Since B°B°C s the largest B'c — open set contained
B, then A°B"C ¢ BoB'C,
Proposition (4.10):

Let F. X - Y be function. Then the
following statement are equivalent.
i) F - open function.
i) F(A°) € [F(A) ]°P v A S X.
i) [FYA)  c F'(AP)vACY.
Proof:
i) ------- i)

Let A € X. Since A’ open in X, then F(A®)
B- open in Y by (i). Then F(A°) = [F(A°)]°F c
[F(A) ]°P. Hence F(A°) < [F(A) ]°F.
i) ------- (iii)

Let ACY, then FY(A) € X, then F [(F
(A*))°] € [F(FY(A)) ]°Pby (ii). Then F [(F}(A))] €
A°F. Then [FY(A)]° € F* (A°F).
i) ------ 0]

Let A openin X, then A = A°. Let F (A) c
Y, then
[FYF (A)]° € F[ (F (A))°F], by (iii). Then A = A°
c F'[ (F (A)°F], then F(A) < [F(A)]°%. But
[F(A) ]°P € F (A), then F(A) = [F(A) ]°F. Hence F
(A) B- openin, there fore F - open function.
Proposition (4.11):

Let F: X — Y be function. Then the
following statement are equivalent.
i) F B c — open function.
i) F(A) S [F(A)]°BC v AcX.
i) [FYA)]° S F (AP C)vACY.
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Proof:
i) ------- i)

Let A € X. Since A° open in X, then F(A®)
B'c - openin Y by (i). Then F(A°) = [F(A°) ]°B'C
[F(A) ]°B°C. Hence F(A°) < [F(A) ]°B°C.

i) ------- (iii)

Let ACY, then FYA) c X, then F[(F
1(A))°] < [F(FH(A))]°P € by (ii). Then F [(F*(A))°]
C A°B°C hence [F*(A)]° € F* (A°BC).

iii) ------ 0]

Let AopeninX,then A = A°. Let F (A) <
Y, then
[FYF (A)]° € F[ (F (A))°®™C], by (iii). Then A =
A° € F[ (F (A))°B ], then F(A) < [F(A) ]°B"C. But
[F(A) ]°B°C < F (A), then F(A) = [F(A) ]°B"C. Hence
F (A) BC- open in Y, there fore F Bc- open
function.

Proposition (4.10):

A function F: X - Y is a B- closad iff
F(AP cFA)VACX.

Pr oof:

Suppose F is a p- closed. Let A € X, then A
closed in X, then F (A) isap- closed in Y.
ThenF(A)P € F(A)P=F (A).

Conversely

Let A be closed in X, then A = A Since
F(A)? € F (A) = F (A), then F(A)P € F (A). But F
(A) S F(A)®, then F (A) = F(A)P. There fore F(A)
isap- closed setinY. Hence Fisa 8- closed.
Proposition (4.11):

A function F: X = Y is a B'c- closed iff
F(A)Pc CF(A)VACX.

Pr oof:

Suppose that FisaB'c - closed.
Let A € X, then A closed set in X, then F (A) is a
B'c-closedinY.
ThenF(A)B'C € F(A)P'C = F (A).
Conversely

Let A be closed in X, then A = A Since
F(A)®'C c F(A) = F (A), then F(A)®'C € F(A). But
F(A) € F(A)P'C, then F (A) = F(A)B'C. There fore
F(A) isaB'c - closed set in Y. Hence FisaB'c -
closed.
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Abstract:

In this paper, we apply neura network for solve singularly perturbed Volterra integro-
differential equations (SPVIDE) and singularly perturbed Volterra integral equations (SPVIE).
Using Modification Of High Performance Training Algorithms such as quase-Newton,
Levenberge-Margaurdt, and Baysian Regulation. The proposed method was compared with the
standard training algorithms and analytical methods. We found that the proposed method is
characterized by high accuracy in the results, a lower error rate and a speed that is much
convergent to standard methods.
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Volterraintegral equations ,Singularly perturbed problems, neural network.
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1. Introduction:

In this paper we consider the numerica
discretization of (SPVIDE):

0'() £ (U,0'%) f M0t )O()de, % € [a, b]
D

with boundary condition U(a) = 4,0(b) = B.
And Volterraintegral equations (SPVIE)

e0(x) = fOO + [, MO, HU@®dt
[a, b] @)
with boundary condition U(a) = 4,0(b) =B ,
where € is a small parameter satisfying 0 < € < 1
called perturbation parameter , f and M are given.
An increasing interest in Voltaire's integrative
and differential equations that have small parameters
that stimulate this research. In the numerical
solution to the problems of the value of the single
hyper-limit of ordinary differential equations.
Nonlinear phenomena that appears in many
applicationes in scientifec fields, such as fluids
dynamics, solid state physics, plasma physics,
mathematics biology and chemical, can be modeled
by integral equations.. We are frequently faced with
the problem of determining the solution of integral
equations, one of these integral equations is SPVIE
[1].
IN [2] have proposed the HPM for solving the
SPVIEs, Alquran and Khair [3] solved the same
problem by DTM and VIM. Finaly, Dogan et a. [4]
used DTM to solve the presented problem. Liao
[5].[6],[7] successfully applied the HAM to solve
many types of nonlinear problems.

HE

This paper focus on building a new technique
by using neural networks to arrive at an approximate
solution to the integrated integrative and differential
integrality equation. This structure of artificial
neural networks (ANN) can caculate the
corresponding production of vector inputs. The error
function is now limited to the minimum in the
selection points. Thus, the proposed ANN uses a
training algorithm based on on quasi-Newton,
Levenberg-Marquardt, and Bayesian Regulation
algorithms used to modify the parameters (weights
and biases) to any degree of accuracy required.
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2. Modification Of High Performance Training
Algorithms:

In this section we will explicate how to modify
some of the training algorithms. And to avoid some
disadvantage that occurs in LM algorithm, we imply
singular value decompation( S V D )of Jacobian
matrix & and E1if &(w) is a rectanguler matrix or
singular, then we use SVD of(w). To avoid some
disadvantage that occurs in of quas— Newton
agorithm, we explicate Singular Vaue
Decomposition of Hessian matrix Hand H™1, which
is the mainly extensively use technique, and
specially, it is a high-quality technique for
illconditioned problems and to caculate the
pseudoinverse ofH and to calculate theminimum
error.  To over passing the drawbackof
BayesianRegulation algorithm, we imply SV D for
compute & and 71, which is a good quality
technique to calculate the pseudoinverse of ¢ and to
calculate the minimumerror.

3. Description of the M ethod

In this part we will explicate how our appear
be able to use find the approximate solution of
equations (1) and (2). To enter y (x) to the converter
to be calculated, U, (3¢;, p)Refers to the analytical
solution. In the proposed approach, the FFNF
experimental solution is used and the parameter p
correspond to the W,;and B;of the neurd
architecture. We choose a model for a pilot function
U;(3) to meet BC requirements. This is acheived
by writing it astwo parts:

U‘L’(%i' p) = A(%) + T(%, N(%' P, 8))(3)
where N(2,p, ) is the output of the neural
network with one input vector 3 .
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4. lllustration of the M ethod
To show the technique, we will consider the
equations ((1) and (2)) ,where x € [0, 1] and the BC

U 0 =Aad U (1) =B . The approximate
solution can be written:

U,(t;,p) = A+ (A+B)u + u(n —
DNGepe) @),

And the error quantety to be minimzed is given
by

d?U;

Elp] = (¢ 52 2k f (U0 Ut +
S MO, U (Dde} (5)
where the xi’s are points in [a, b].

5. Numerical examples
In this section we will present the numerical
results of some mathematical models from the
various examples of some cases of numerica
conditions of the proposed neural network where the
structure of the network consists of three layers. . In
hidden layers we used sigmoid(logsig) as an
1

O'(J’f) = m .
or each test problem, the analytical solution
v, (x)was defined in proceed. The accuracy of the
approximate solutions can be tested by using the
following equation AU(x) = |0, (0) —
O, ()l

In this section, there are three examples of
different cases and each example contains four
tables.
The first table shows the experimenta and
approximate solution of the high-level training
algorithms with the analytical solution. The second
table shows the error of the modified method and
the third table represents the accuracy of the
proposed method and the number of iterative
needed to reach the target.
And the fourth table represents the initial value of
W; and B;S Of the of the neural network. The
figure illustrates the exact and approximation
solutions in the training set

activation function that is

Example 1:
We consider the following linear SPVIE [8]

ey(x) = fox[l +t—y(t)dt

YD=y(x) =2~ e J (1 - e—z)
yx)=x+1-

and BC:

y(0)=0
which has the exact solution

e_g—s(l—e_g),£=0.25.
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Example 2:
We consider the following nonlinear
SPVIE [9]

y(x) = i(l —e*) + ifoxex‘t y2(t)dt

and the boundary conditions y(0)=0 ,
1(\/1+452)

y(1)=

2(1—ec
e(%(\/1+4£2)—1)e%("1+4£2)+§(\/1+4£Z)+1
which has the exact solution
2(1-e%%)

y(x) =
g(p—DeP*+p+1
where the parameters ¢ are defined as

¢ = -(V1+ 4&?) and £=0.75.

Example 3:

In this problem we consider the SPVIDE [10-
12]
s%y(x) =(l+eet—e—yx)+ f;(l +
&y(t)dt ,
with the boundary condition y(0)=1+e™?,

-1

y(1) =1+ e=+a and the analytic solution is

y(x) = e*1 + es(+9  we get e =2710,

6. Conclusion

This paper present new technique to solve 2™
singularly perturbed Volterra integro-differential
equations (SPVIDE) and singularly perturbed
Volterra integral equations (SPVIE). Using artificial
neura network which have the singularly perturbed,
using modification of high performance training
algorethms such as quase-Newton, Levenberge-
Marquard, and Baysian Regulation. The projected
construction of ANN is more professiona and
accurate than the other approximat method.
convenient outcome with a few hundred wieghts
prove that the Levenberge-Marquardt (trainim)
agorethm will have the highest convergence, then
trainbfg and trainbr. The performance of different
algorethms can be affect by the accuracyrequired for
rounding.
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Table I: prevents & comparison betneen the e«act and approximated solutions of example 1, ¢ =025

imput | Analytic solution Solumn of FFNN ytix, for training algorithm
i o TR T | ST T |
0.0 0 xmm [609EIST K1) bk ‘
ol 0 MT259965475271 | 0.34726281239442) 04475497 58463503 034724188 7278199
[ ) RO DR C) I TR T DAIIOONIEINEEEY | 08INITIEATON0E |
04 0.9985‘7611‘01003_ 0.998385206.‘83!88 0.598384506284737 0.998578£63013621
05T LIWERSYSTIST | LISPAYEsasT | LIRS0 | LIS
0.6 138196 153505294 TINTOINEIN8EET | 138103488 531aY . 281772
0.7 1.40429243303109 14043T009237511 140437701 536679 1. 4042825513667
(1] T S1943883701635 | 1926612973 1219437991913 |3 L A LA
pXj TESETI08I6eE | 168 X TA3539608 75351 J 9d
10 1.TI626327083345 1. 7362175919038 LSNITS5IS 1.73626101113071

Table 2: Accurncy of volutions of example |

The ervor Elx)=| ytix)-yalx)where ytix computed by the fellowing
troining algerithm
Trainlm Trainbfyg Trainbr
8.63846T04TTO1 2 3e. 06 6. mwzwuuu 3.3312719902660%¢.06
25574 2612 289207 3 7 .
A 471529144 4.3 4 '
000024553465 2065351 l.”)&ﬂ&d.\.‘l!l*—.! $ASR2LINI TR T 05
a 2 0 1787548 SIS -4

‘ B 3L CEERAL T S 2 E30% 3

‘Wbm TGS 0 | TT5068356 500108 0%
TD0OSSETBITI0DE | 9 BIBETINISRIe 6 | 9 TIRIREOS ISR B
3 51707526455075.06 6.112060162033680.05 £299773599692 2006
4.20316400732040¢-08 0000352002541 524994 2226712750 48220¢-06
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Table 3:The accuracy of the train of suggested FFNN.
Train function | Performance of train | Epoch | Time Msereg.
Tramlm 3.09e-33 95 | 0:00:01 | 8.634742679417933c.09
Trainbfg 1.60e-15 442 | 0:00:08 | 1.7T49442398773595.-08
Trainbr 7.19¢-10 301 | 0:00:04 | 2294226818490657e-09

Tabled: Initial weight and biasof FFNN

Imitial weights and bias | Mitial weights and bias | Initialweights and bias

for trainbn Lorm:mb (ormbr
NetdW T NeeLW T NeBIT | NetIW | Nee LWV 'éhfr N W T Ne LW [ Nee BIT
(L1) ) | ) L1 | &1 ) L1 1) l
L2691 | 09831 | 0.6981 | 0.7702 | 01759 | 0.6074 | 0.5523 | 0.049% | 01465
04223 | 03015 | 0.6665 | 03225 | 07218 | 01917 | 0.6299 | 0.4896 | 0.1891
B N OO Ol % e S
09437 | 06663 | 0.1350 | 0.4714 | 01537 | 03428 | 6.6147 | 04331 | 0.6353
04177 | 05391 | 6.9991 | 0.0338 | 0.5411 | 0.9174 | 0.3634 | 0.2035 | 0.2819

—+— analytic e
16 *+ - Trainkm od
“ Trainbfg od
14| —* Trainbr - g
-~
12 v
-
1F i R
08} o -
06 r -~ .
D4t -
-
02t -
& A A ' A A s A A A
0

o1 02 03 04 05 ©06 07 08 09 1

Figure(1) : shows a comparison between the exact solution and the approximate solution of the problem which is

presented in example 1 , with € =0.25.
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Table £: : presents a comparison between the exact and approximated solutions of example 2, z =072

Solution of FFNN
iuhl._
1.23206639564 785609 | 2.20553043240571e.10 | -6.7638461 1983760609

1 - - -~

D AIS073072238977 | -D.44S078030569028 | D.4S074072 108058 |

; DM III65II0 | DAY IENII066038

IR ST SRk T 5 1 2 N R 0T A Jok X S

101 107281604895 1.01107274692748 |
L 19473800790 88 1.

T T196363Y7
1768877551527 TS1765913453608
s 1859

Analvtic solution
40

_input orithm

x
0.0

) for lnl-h‘

1.
0.}
0.4
CER
0.0
0.7 A6 18063 |
0.8 15021 1190858548
0.9 o

1.0

i

-LSIT6S877352818

§

Tahle 6: Accuracy of sodations of example 2, 2 0,75

The error Elx)=| ytix)-yalr)where ytix)computed by
the following training algorithm
Trainbf,

Trainim
1232106639864 78 %09

e

Trainkr
6.76184612983760¢-09
IO IS |

2.29553043240871e-1
[ S06STISFITIERET 08 |
[ DIBTIIINI TS0 08 | L ISSISIINO0 NS D |

LSS TR [T 10 |
A M114824365065¢ :aﬁmm«
4

5351 28455526999¢-1
N T1715991320798¢-

[ 33473580208479 Te-

[ X T i

608493646149 76e-

17130066895¢-]

AS569338670240e-10 |
2ISIFAEETNE6T 9 |

TN o) T
[- 181377 de-
> -

L

BE9E9T003 443 T4

SASTESITO41 16607 | 2503391 071737510
| 131124545452596e.00 | 6.69394306251944e.09 | 2 S9S29S75605042¢.09 |

Table 7:The accuracy of the train of suggested FFNN, £ =075

Train function
Trainlm

| Lrainbly
L Trainbr

Performance of train

£.03e21
1.60e-15
$.19¢-18

Time

0:00:02
0:00:08
0:00:03

Msereg.

3.959872612109448-19
1.370004135922276-14
1.504156852367969¢-17

Epoch
228
42

286

Table §: Initial weight and bias of FFNN, 2 =0.75

Initial wetghts and bias
or tratnbn
Net.TW(| Net. LW{ Net.B(1

0.1478 | 0.4674 | 0.4278
0.0198 | 0.6367 | 02672
09643 | 0363 | 0.7537 |
09704 | 0.5 | 0.8987 |

0.1239 | 0.5581 | 0.7284 |

Inteial weights and bias
for trainbf,

Net IW{ Net.B{1
04504 | 0.4470 | 0.7462

04736 0.4679
09497 | 0.8776 | 0.5608 |
00838 | 04688
02798 0.4981

Initialweights and bias
[for trainbr

Ner.LW]| Net.B1)
06714 | 02794

05372 | 09462
O7TE | 09063
0365 | 0937
0.4503 | 0.0249

Net.IW Net.TW

3832




Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019
ISSN (Print): 2074 —-0204  1SSN (Online): 2521 — 3504

Khalid.M

w\. T ] T T T T T
" _\‘ —o—m
024 N —*+— Truinkn
- “ Trainbfg
04} o —*— Trainbr
D64 "‘~ -4
o8t NG d
1+ Y 4
12} - R
14 % d
..‘\
A6} =
.‘ 8 1 e ' 4 4 L L L 1 T
o 0Tt 02 03 04 05 06 07 08B 08 1

Figure2: shows a comparison between the exact solution and the approximate solution of the problem which is
presented in example 2, with £ =0.75.

Table 9: presents a comparisen between the evact and approsimated solutions of example 3,2 =10""*

input | Analytic solution Solution of FENN yt(x) Jor training algorithm
X ngxi T ratnim Tuulbﬁa Tratnbr ‘
0.0 NSNS EAEY R R AU 5T
X D A05300TT60338Y | S a0 TIOITEE | . e000aTIITI A0S | 0.4085550558%iea |
2 Q.449332315772970 9.447220714506900 044691 7028590653 0.449072090330214
[A) O A0BSSENOIIE | ADESSISSIINIEY | D OTOINIETST | 00606 RE |
DA | SEESTIRNEI0RNEY | O RIAI T | DRSNS | Y
0s 0.606230659712654 0.606598111288221 0.607065297795657 0.605991033696597
08 700358 | GATONITISESTION | OSESNAINEITAINE |
0F | T ETI0SIEEN0GSITIS | S0TEINI66T | OTWIDINIETESS | B iesiEs |
0.5 0.518730753077982 0.818759261704845 0.815267940190760 0.518711070837418
(X G.903837I18035560 | 0.90483857817481 | 090481 3903585550 |

(10 1 B999TSIRIZENAIRT | D.O98T6A0TAEANNT | 10033733016504F |

Table 10: Accuracy of sobutions of example 3, £ =10°*

The evror E(x) =] yt(x)—valx |where yr(x)computed by the

Sfollowmng tratnin hm
‘ Traimhm mmb!; Trambr
| 6.47953391341881e07 | 0 479631 | 393371538347189¢.06 |
[ 0.00124363111182108 |

6357189318008 | b} 000013281 7249284420 |
| 0.00211161096607059 | 0.00241329718231664 | 0.000260235422756383 |

[ ODOTINTEIEINITI0 | 0.00147933897405427 | 2.19961947854446e05 |
§.74515755664240e-05 | 0.000334345085002684 | 0.000539626016037282 |

[ 13140837 4383792608 | 0.000970794594434593 | 0.000584738184477796 |
[ VABNLPIE06IIe 03 | 000162687 10890287 | 0.000330833 7695108 |
[ TSR08634%6256 005 | 0.000463813887T23075 | 1 9GRITASENI0e03 |
LOSS02184987100.05 | 0.00109520848226119 | 2 S0141663692416e.05
[ DOITNZOIZASTEIET | 0.00887320163044
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Table 11:The accuracy of the train of suggected FENN, 2 <10

MSE of Nwmerical
Train function | Pevformance of train | Epoch Time Meareg. “'.,h:;) o
Trainim 3l3e-10 369 00096 4687 30491886953 Te07
Lrainbfg T Ade S 200 0:00:03 151963705501 23680.06 3.70e¢~-002
Iratobr 120022 373 0:00:04 2023133155881 496¢-06

Table 12: Initial weight and bias of FFNN, ¢ «10°*

Inditiod welghts and bios | Initinl weights ond bieas Initialweights ond bios
or trodnlm or truinbfy Jor tratnbr
Net, IW[l Net IW [ Net, D3] Not IW(| Net, LW ]| Not. B{A] Net IW{| Neot. LW { Net, B[ 1
0954} 01820 | 06427 | 04393 | D4XI) | 04340 | 001 04156 | on05)
05423 | 00930 | 00014 | 91T | OBNAZ | 03279 | 09000 | 01557 | 00672
05501 04634 0.0304 01816 03931 0D 0193 Ly I8 ) awson
03111 | ese09d L2083 | 07146 | 01790 | 09995 | 0.7544 08249 | 04976
00712 | 09150 | 0.4330 | 0s5TTY 06333 | 09510 | 008 0.7386 | 0.735]

\4" . v v v . v .

13\ o Traindm

,2_'| o Trainbfg
= Tradnhy

11-\ B

h\' /

0 9 ™ \ 2 .'/ -
0 8 ™ \ _1/ =
-

- \ -’/‘ R
07 | -
06} \ A -

-
os} e 4
|

0 ‘ L / i ’e L L i L A

0 01 02 03 04 05 06 07 08 09 1

Figure 3.: shows a comparison between the exact solution and the approximate solution of the problem which is
presented in example 3, with ¢ =2°°.
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Property of oscillation of first order impulsive neutral differential
equations with positive and negative coefficients
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ABSTRACT.

In this paper, necessary and sufficient conditions for oscillation are obtained, so that
every solution of the linear impulsive neutra differential equation with variable delays and
variable coefficients oscillates. Most of authors who study the oscillatory criteria of impulsive
neutral differential equations, investigate the case of constant delays and variable coefficients.
However the points of impulsive in this paper are more general. An illustrate example is given
to demonstrate our claim and explain the results.

Keywords. Oscillation, Impulses effect, Neutral differential equations.
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1. INTRODUTION

The investigation in the theory of impulsive
differential equations is now not only wider than the
theory of differential equations without impulses
effect, but it describes many phenomena and
processes more reality so it has a lot of applications
in many natural and industrial fields to study
different characters and it can used as a tool in
mathematical models for instance, in medicine [1],
control theory [2], population dynamics [3], in
neural networks [4] and etc. In fact, many evolution
processes are often developed for immediate
perturbations and sudden changes in specific
moments of time such as in biologica system in
heart beats. This period of change is very small
compared to the periods of operation, therefore the
situation is quite different from what it is in
differential equations without impulses in many
physical phenomena, and it appears as a sudden
change in its state. The consideration of oscillatory
solutions for impulsive neutral differential equations
is a new and wide object to find the qualitative
properties. There is a lot of research and
monographs that deal with the conditions to
guarantee the oscillation of all solutions the
impulsive neutral  differential  equations with
coefficients such as variable coefficients and
congtant delays see [5, 6]. There are some results of
oscillation for this type of equations [7-12] and we
noted that the search of oscillation with impulsive
neutral differential equations is more difficult than
the type without it. Shen etc. a [13-17] obtained
sufficient conditions for oscillation of al solutions
of first order impulsive neutral differential equation
of constant delay with positive and negative
coefficients are obtained. Consider neutra
differential equation:

[y(®) = POy(z®)] + 0®)y(a(®) = R®y(a(®)) = 0,
t£t, k=12,..

k=12,..
Where P € PC([ty,); Rt)andQ,R, €
C([to,);RT), and (), a(t),o(t) €
C([ty, ); R), lim;_,q T(t) = 00, lim;_,, a(t) =
o, lim;_,, 0(t) = o where 7,a,0 are  increasing
functions. The functions t=1(t), 0~ 1(t), a"1(t) are
the inverse of the functions

7(t), a(t), o(t) respectively.

}(1.1)
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2. SOME BASICLEMMAS
The following lemmas will be useful in the proof

of our main results: Throughout the paper we
assume that t(t), a(t),o(t) <t, for ¢te€e
(ttrerd ti = to, k=12, ...
Lemma 2.1. [8] Suppose that g,h € C(R*,RY),
h(t) <t for t=tg,
lim;_, h(t) = o and

g 1
f g(s)ds > S
h(t)

then the inequality y'(t) + g(®)y(h(t)) <0
has no eventually positive solutions.
Lemma 2.2. Let y(t) be an eventualy positive
solution of eguation (1.1) and there exists a
continuous function §(t) such that:
W(t)

—y(® - POY(E®) - | R @)

lim inf
t—>oo

(2.1)

a"1(5(0)
- f Q(u)y(cr(u))du (2.2)

Where 6(t) <tandt € (ty, trs1], 0 <ty <ty <
e <ty > 00 as k- oo,

Also a™1(8(6)) < tand 6~2(5(t)) > ¢, in addition
to the following assumptions:

H1:Q (a7(6(1)) (e7*(8(8)))’
~R(«(50)) (« (6®))’

>0,
t € (ty, iyl k=12,..
H2: There  exists two  positive  red

numbers a;, and b, such that
0<ak _bk < 1 ,k= 1,2,... And
P(t}) = (ay — bp)P(ty) for 7(ty) # t;,i <k,

Pt = P(ty) fort(t,) = t;,i <k,

ap — by
Whereak = ai_bk = bi when T(tk) = ti,i <k
H3: lirtn sup [P(t) + f;_l((s(t))R(u)du

o1 (8(t)
+f Qwdul <1, t
t

€ (ti, ties1]-
Then W(t) is eventudly positive and
nonincreasing function.
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Proof. Let y(t) be an eventualy positive
solution of equation(1l.1) that is y(t) >
0,y(t(®)) >0, y(a(t))>0 and y(a(t)) >0,

t = to,

Differentiate (2.2) for every interva (ty,txsq]
where k=1.2,..
and use (1.1) we get

w'(t)

=[y(®) — P@y(r(t))] — R(®)y(a(t))

+R(a ' (E(0))y (@) (a  (8(1))

— Qa7 (E®))y (@) (e~ (8(1)))

+ Q(®)y(a (1))

=—-Q®y(c(®) + R®y(a(®))
—R(®)y(a(®))
+R(@ (S (1)y (1) (a1 (5(1)))
— Qa7 (8())y () (e (8 (1))’
+ Q(®O)y(a(®))
=—[e(c*(6®)) @ ()’

~R(a(5®)) (a7 (6®)) | ¥(6®)

<0 (23
Hence W(t)is nonincreasing function on each
t € (ty, trqr JfOrk =1.2,...
To prove that W(tf) < W(t,) fork=1,2,..In
viewof 0<a,—-b,<1,k=12,.., we have
0 < a; — b, <1 and from (2.2) with regard to the
condition H2 when t(t,) = t;, i < k, then:

W(tg) = (a, — bi)y(te) — Pt (ax
— b))y (z(t))

—fk Ry (@) du
a=1(8(ty)

a1 (8(tr))
—f QWy(ow)du
- k

Yt — Pty (t) -

tk
fa‘l(é(tk)) R(U)Y(a(u))du
o7 1(8
— o gy (e w)du
= W(ty)
When z(t,) # t;, i <k thenfrom (2.2) with regard
to the condition H2:

W(te) = (a, — bp)y(ty) — Pty (T (ty))

—f Ry (a(w))du
“1(6(tk)

a

o~ 1(8(tk))
—f QWy(o(w)du

k

< (ax — by(ty) — (ax — bk)P(tk)y(T(tk))

Hussain .A/Ageel .F

tk

—(ay _bk)f-l(,;( ))R(u)y(a(u))du

a™1(8(tk)
—(ax — by) Qw)y(o(u))du

tk
= (ax — bW (&)
< W(ty) (2.4)
W (t)is non-increasing on [t,, ©).Hence —oo < L <
co. Where |L| = sup{W (t;}), lim 0 W (t,)},
t € [t;, 00)for some [ > t,. We claim that W (t,) =
0 for k=[,1+1,... . Otherwise there exists some
m = [ such that:
W(tm) =—-u<o,
fort > t,, since W(t)
[t;, )then for each
1,.. we get
y(@) < —p+P@)y(@®))
t

+ f Rw)y(a(u))du
a=1(8(t)

implies tha W(t) <—u
iS non-increasing on
t € (ty, tep L k=114

from (2.2):

a1(8(t)
+f Q(w)y(o(uw))du. (2.5)

So, we have two cases to consider:
Case 1. If y(t) is unbounded then there exists a
sequence of points {s, } such that

Sp = ty, limy(s,) = o and

n—-oo
y(sp) = max{y(t), t,, <t < s,}.
Then (2.5) reduce to:

Y(Sn) <—-u+ P(Sn)y(f(sn))
+J Rw)y(a(uw))du
a=1(8(sn)

o 1(8(sn))
+f QWy(ow)du.

n
Sn

< —u+{P(sy) + f R(u)du

a~1(6(sn))

a7 1(8(sn))
+_f Q) du}y(s,)

< —pu+y(sy)
Leadsto 0 < —u whichisacontradiction.
Case 2. If y(t) is bounded that is limsup y(t) =M <

t—-oo
oo.We can choose a sequence of points{s,} such
that
lim y(s,) =M and y(n(sy)) = max{y(0): p;(s,) <
n—-oo
t < pa(sp)}-
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t

Where py (s,) = min{r(s,), o(s,)}, timint [ [Q(o™ () (@ (B
p2(s,) = max{t(s,), a(s,)} it is obvious that 5(t)
limy,_,, n(sy) = o0 and limsup y(n(s,)) < M. = R(@ (8@ (S6N)][1 + P(S(s)
t—oo
8(s) o= 1(8(8(»)
y(sn) < —p JsrnP(sn)y(r(sn)) + f R(uw)du + f ( )Q(u)du] ds
+f R(wy(a(u)du HeEED °©
- 1(80sn) 1 (3.1)
o~ (8(sn)) e :
+| Q@)y(o(w)du
Sn o Where a1(5(t)) <t and o7 1(6(t)) > t, then
< —u+{P(sy,) + f R(u)du every solution of equation (1.1) oscillates.
a1 (8(sn)) Proof. Suppose that y(t) is eventualy positive

solution of (1.1) then by Lemma 2.2 it follows that

0'_1(5(5n))
d
+£ Qwduy(isn)) W(t) is positive nonincreasing function fort €

n

< —pu+y((sy) (tis trsn], k=1,2, ..., since W (t) < y(t), hence it
Taking the superior limit asn — oo, we get follows from (2.2):
M < —u + M, which is also a contradiction. y(&) = W) + P)y(z(®))
Combining the cases 1 and 2, we see that W (t) =0 ¢
for t € (b tisal, k=L 1+ 1, .o * L_l(a(t))R(u)y( a(w)du

Since W(t) isnonincreasing, so W (t,) = W(t) =
0fort € (ty, trsrl-

o 1(8(1)
[ ety
To prove W(t) > 0, we first prove that W (t,) > ¢

+
>W@E)+POW(®)

O0fork =1,2,.. . If it is not true, then there exists
some m = 0 such that W(t,,,) = 0, integrating (2.3) +f RW (a(w))du
on (ty, , tme] Yidd: a"1(s@®)

a71(8(t)
+j Q)W (a(w))du

W (tms1) = W(tr;) >W(t) + P(t)W(T(t))
tm+1 .
- f [@(e (6t)) (e (6 (1))’ +W(a(®)) L—l(s(t))R(u)du
T a”1(5(t)
= R@(6ON @ () ]y(6(0) dt +W (5 (1)) f Q(w)du

<W(tH) <=w(t,) =0

This contradiction shows that W (t,) > 0fork = = W)+ POW()

t

1,2.., a wedl a W(t) = W(tgeq) >0, for +W(t)f R(u)du
t € (ty, tys1l, k=12,... . Thus W(t) >0 for » a”t(8®)
t > t,. Theproof iscomplete. n LW J o 6Mm) 0(w)du
3. MAIN RESULTS "
The next results provide sufficient conditions =W()[1+P(t)
for the oscillation of all solutions of (1.1): t
Theorem 3.1. Let W (t) defined asin (2.2) and the + f . R@du
a"1(s@®)

assumptions H1 — H3 hold, and there exist a o=1(8(D)
continuous function §(t) < t such that + J- Q(uw)du]

t
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y(8@®)) =w(s®))[1+P(6(D))
f6(t) R
+ u)du
a=1(5(5(0)))

o~ (8(s(t))
+f Q(w)du] (3.2)
80
Substituting the last inequality (3.2) in (2.3) we get
w' ) < —[Q(a7(8(0)) (67 (8(D))’

R (a2(5)) (a7 (5®)) 111 + P(5)
+J-6(t) R(uw)du
a=1(&(8())

(s(s(0)
n f Qwdu] WD)
506

w'©) +[Q (a7(8(1))) (™ (8(8)))’
~R(a(5®)) (a*(6®)) 111 + P(5(0))

5(t)
+ J R(u)du
a=1(s(s(0)))

(s5(5(0))
+f Qwdu] W(s(®))
5@t

<0, (33)
By Lemma 2.1, and the condition (3.1) the last
inequality cannot has eventually positive solution,
which isacontradiction. The proof iscomplete. m

Corollary 3.2: Let W (t) defined asin (2.2) and the
assumptions H1-H3 hold, and there exist a
continuous function §(t) < t such that

[Q(a™"(5()) (e~ (1))’
—R(a™'(6(0)) (@' (8(0)))']
1

Where a~1(8(t)) <t and o~ 1(8(¢)) > t, then
every solution of equation (1.1) oscillates.
Proof. It is obvious that condition (3.4) implies that

L NG CONCCON)
t
— R@ L)) @ (5()) ]ds

1 1
e mintZtO{t—c?(t)} (t - S(t)) = ;'

Which leads to condition (3.1) holds. Hence
according to Theorem 3.1 every solution of (1.1)
oscillates.

49

Hussain .A/Aqed .F

4. EXAMPLE

In this section we give an example to illustrate
the obtained results.
Example 4.1.Consider
differential equation:

@ 5+ ey -2m)|

the impulsive neutral

+lg—en (t 5”) L ot —2m) = 0
g \PTy)Tge YT e =0

t + tk and k = 1,2,
y(&&) + bey(te) = ary(te), t=tc.and k=
1,2,. 4.2
Wherea;, = k— and b, = — we can see that

, 2k k_k<1
YT T Tkt 1 k+1

L PO ={ (§+%e‘f), t# ty

1
20k’ t =ty

o

Lets(t) =t ——,07(8(t)) =t +% and
al(6) =t —g to see condition H1

(71 (6®)) (02 (5’
~R(a(5®)) (a2(6))

1 —t-T 1 47
_5(8_6 4)—§e 7 > (0.5945.
Let t, =k, P(t) = P(k*) = lim,_,+ P(t) =

- -k
i) =G i)
b, )P P(k k 1
(ax = b)P(t) = P(k) = K+ 120k
0.025, and

k+1 1

k 20k

k+1
1

= 2okeD =

o Pt =P =

so H2 holds.

And the condition H3leads to
t

lim inf j[Q (67 (6®)) ™ (5®))’

5(t)

k+1
<0.1,
~ 202

R (a1 (5®)) («2(6®)) 111 + P(5®)
t o1 (8((®))

+ R(uw)du +
L_1(5(5(§))) e JzS(E)

t

Q(w)du]dg

1 1 1
—_1 e - -E+—
El)rg [8 e 4][1+9+99
on
=
1 (57 gy L =
+§ ton © u+§f 97T(8—e )du] d§
1 Ay
1
=11.3662 > ”
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Hence all conditions of theorem 3.1 hold, so all
solutions of equation (3.1) are oscillatory. For
sint, t <+t

instance the solution y(t) = 1 is
y(© {2+;, t=t,

such asolution.
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sets and strongly E-convex functions. In these generalized classes, the definitions of the
classical convex sets and convex functions are relaxed and introduced with respect to a
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some of their properties. Some examples to illustrate the aforementioned concepts and to
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1. Introduction and Preliminaries

Classical convex analysis takes a considerable role
in pure and applied Mathematics. In particular,
convex sets and convex functions are mainly
employed in optimization and operation research
[1]. Many researchers have extended and
generalized convex sets and convex functions into
other kinds of less restrictive convexity and applied
them into optimization theory. For example, convex
functions are extended to the class of invex
functions [2] and B-vex functions [3, 4]. An
important type of generalized convexity is E-
convexity. Youness [5] introduced E- convex sets,
E-convex functions, and E-convex programmings,
defined in finite dimensional Euclidian space. In
these classes, Youness relaxed the definitions of the
classical convex sets and convex functions with
respect to a mapping E: R® - R™. The research on
E-convexity is continued, improved and extended in
different directions. Further study of E-convex sets
are recently introduced by Sheiba and Thangavelu
[6] and Majeed and Abd Al-Majeed [7]. Y ouness [8]
studied some properties of E-convex programming
and established the necessary and sufficient
conditions of optimality for nonlinear E-convex
programming. Recently, Megahed et a. [9,10]
introduced dudity in E-convex programming and
studied optimality conditions for  E-convex
programming which has E-differentiable objective
function (see also [11], for more recent results on E-
convex functions and E-convex programming). The
initial results of Youness inspired a great deal of
subseguent work which has expanded the role of E-
convexity for which an extension class of the class
of E-convex sets and E-convex functions, called
strongly E-convex sets and strongly E-convex
functions, is established by Youness [12]. Some
results related to semi strongly E-convex functions
have established in [13]. The class of strongly E-
convex sets and strongly E-convex functions is
closely related to the class of E-convex sets and E-
convex functions in the sense that the new class
considers the effect of the images of any arbitrary
points x and y in R™with respect to a mapping
E:R™ - R™ as well as the two arbitrary points. To
the best of my knowledge, there is not much work
has been obtained for the class of strongly E-convex
sets and functions. This gives a motivation to study
further this class and try to extract new results and
notions.
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Therefore, in this paper, we continue studying
strongly E-convex sets by proving new properties of
these sets. In addition, we define strongly (resp., E-
convex hull , E-cone, E-convex cone hull) sets, and
we discuss some of their properties. We show that
many results of (resp., E-convex, E-cone) sets hold
for the class of strongly (resp., E-convex, E-cone)
sets. Some examples are given to illustrate some of
these concepts and to clarify the relationships
between them. In section two, we recall the
definitions of E-convex and strongly E-convex sets
introduced in [5,12] and some properties of strongly
E-convex sets. We prove some new properties of
strongly E-convex sets. For an arbitrary set, we
define strongly E-convex hull. In section three, we
introduce the definition of strongly E-cone and
strongly E-convex cone sets, and we deduce some
of their properties. We aso define strongly E-
convex cone hull and we show a characterization of
strongly E-convex cone. Some examples to discuss
the relationship between strongly (E-cone, E-convex
cone, E-convex) setsaregiven.

Throughout this paper, we assume that R" is the n-
dimensional Euclidean space, all sets we consider
are non-empty subsets of R", and E: R" —» R" isa
given mapping.

2. Strongly E-convex Sets

A sat § € R™ issaid to be convex in the "classical
sense” if the convex combinations of any two
elementsof S retainin S [1]. This concept has been
extended by Youness [5,12] in which E-convex sets
and strongly E-convex sets are, respectively,
defined, and some of their basic properties are
introduced. In this section, we first recal the
definitions of E-convex sets and strongly E-convex
sets and review some existing results of strongly E-
convex sets. Then, we prove new properties of
strongly E-convex sets. Note that some of these
properties are satisfied for E-convex sets [5,6].
Finally, we define strongly E-convex hull and
deduce a property of this set.
Definition 2.1 [5] A non-empty set Sis said to be
E-convex if Vs;,s, € S andfor every 1 € [0,1] we
have AE(s;) + (1 — D)E(s,) €S.
Definition 2.2 [12] A non-empty set S is said to be
strongly E-convex if and only if Vs;,s, €5, for
every 1 € [0,1], and ¢ € [0,1] we have

Alas; + E(s1)) + (1 — D (as, + E(sy)) €S.

The relation between strongly E-convex sets and
E-convex (resp., convex) setsis given next.
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Remark 2.3

Every strongly E-convex set is an E-convex

(Choose a = 0). The converse does not hold, in

general [Example 2, 12].

Every strongly E-convex set is convex (Choose

a = 0and E = I (the identity mapping)).
Proposition 2.4 [12] If aset S isastrongly E-
convex, then E(S) < S.

Proposition 2.5 [12] Let S; and S, be two strongly
E-convex sets, then

S1 NS, is E-convex set.

If E isalinear mapping, then S; + S, is strongly

E-convex set.

Remark 2.6 The intersection property, in the above
proposition, can be easily extended to an arbitrary
family of strongly E-convex sets.

The definition of strongly E-convex sets can be
generalized into the strongly  E-convex
combinations of any finite elements of these sets.
Definition 2.7 Let S ¢ R™. The set of strongly E-
convex combinations of p elements of S is denoted
by C(s,p) and isdefined as

C(s,p) = {s = X0 A(as; + E(sp): {sy, ., 5p} ©
S, a€[01], =0 adYl A =1}

Next, a sufficient condition, for a set S to be
strongly E-convex sets, is given in terms of the
strongly E-convex combinations of its elements.
Proposition 2.8 Assume that a set S < R™ and
C(s,p) be the set of E-convex combinations of p
elements of S defined in Definition 3 such that
C(s,p) €S Vp €EN. Then S is strongly E-convex
Set.

Proof. assume that C(s,p) S vp €N. In case
p = 2, then for each
s1,5, €S, a €[0,1]and A € [0,1] we have s =
Alas; +E(s1)) + (A =D (as, + E(sy)) €
S.Hence, SisE-convex. m
Proposition 2.9

If aset S isastrongly E-convex, then
as+ E(s) e Sforeachs € S anda € [0,1].

If Sisaconvex setand as + E(s) € S for
eachs € § and e € [0,1], then S isstrongly E-
CONvex.
Proof. The conclusion of part (i) directly follows
from the assumption, by choosing 1 = 1. To show
(i), let s4, s, € S and a € [0,1] then from the
assumption as; + E(s;) € Sand as, + E(s,) € S.
Since S is convex then for each A € [0,1] we have
Alas; + E(sy)))+ (1 — D(as, + E(sy)) €ESas
required to proof. m

54

Saba .N

Note that Proposition 2.9(ii) provides a
condition under which the converse of Remark
2.3(ii) holds.

Some algebraic properties of strongly E-convex
sets are given next.
Proposition 2.10
If Sisstrongly E-convex set,a€ RandE is
linear then aS is strongly E-convex set.
Assume that E;: R?P - RP and E,: R?7 — RY,
and E: RP*Y — RP*Y are mappings such that
E(s,5) = (E,(s),E2(5)) Vs €RP, Vs € RY.
Let S; € RP be a strongly E;-convex and
S, € RY be a strongly E,-convex. Then, S; X
S, € RP*1 jsstrongly E-convex set.

LetS; and S, betwo strongly E-convex
sets, then S; X S, isstrongly E X E-convex set.
Proof. To show (i), suppose that as,, as, € aS and
a, A € [0,1]. We must show that
Alaas; + E(asy)) + (1 — A)(aas, + E(as,)) €
aS. Fromthe linearity of E,

A(cxas1 + E(asl)) +(1- /1)(05(152 + E(asz))

= a[A(as; + E(sy))

+(1- /1)(0(52 + E(sz))].
Since Sis strongly E-convex set, the right-hand
side of the above expression belongs to aS as we
want to show. Let us proof (ii). Let
(51,82),(51,5,) €S, xS,, thus, s;, s;€S;, and
S,, §, €S,. Since S;(resp., S,)is strongly E;-
convex (resp., E,-convex), we have A(as;+
Ei(s1)) + (1 — D (as; + Ei(51)) € Sy and
Alas; + E5(s2)) + (1 — D) (as; + E5(52)) € Sz,
where A, a € [0,1]. Thus,
(A(asy + Ey(s1)) + (1 — D(as; +
Ei(51)), Aasz + Ex(s2)) + (1 — ) (as; +
E5(52))) €51 X S,.
In other words, A(a(sy,s,) + (E1(s51),E2(s32))) +
(1 =N (a(s1,52) + (E1(51), E2(52))) € Sy X S,
From the definition of E, the last term can be written
as
A(a(sy,s2) + E(s1,52)) + (1 — D) (alsy, sz) +
E(s1,5;)) € S; X S,, and this completes the proof.
Part (iii) can be considered as a special case of part
(iysuchthat E =E;, =FE,andp=q. =
Proposition 2.11 Assume that E;: RP — R? and
E,:RY - R, and F: R? — RY are mappings such
that F islinear and FoE, = E,oF. Let S € R? bea
strongly E;-convex. Then, F(S) € RY isastrongly
E,-convex set.
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Proof. Let F(s;),F(s;) EF(S)SR? and a,1 €
[0,1] then
A(aF (sy) + E;(F(s1)))

+(1- /1)(“1:(52) + Ez(F(Sz)))
= A(aF (s;) + (E;0F)(s1))

+(1- l)(aF(sz) + (EzoF)(sz))
From the assumption FoE, = E,oF, the last
expression becomes
= A(aF(sl) + (FoEl)(sl)) +(1- A)(aF(sz) +
(FoE})(s2)),
= A(aF(sl) + F(El(sl))) +(1- A)(aF(sz) +
F(E, (52)))-
Applying the linearity of F and re-arranging the last
expression, we get
= AF(as; + E1(s1)) + (1 = DF (as; + E1(s3)),
= F(/l(ocs1 + El(sl)) +(1- /1)((152 + El(sz))) €
F(S).
The last conclusion is obtained since S is strongly
E;-convex set. m
Proposition 2.12 Let § € R,,b € R", and E is an
idempotent and linear mapping then the upper E-
haf space S={seR": <E(s),b>= B} is
strongly E-convex.
Proof. Let s;,5, €S and a,1 € [0,1] we am to
prove  A(as; + E(s))) + (1 — D(as, + E(sy)) €
S.
ie, we show <EA(as;+E(sp))+(1-—
/1)(0(52 + E(sz))),b >> f,
where B eR, andb e€R" Since E
idempotent and linear mapping, then

< E(/l(ozs1 + E(sl))

+(1- A)(asz + E(sz))), b >
=< AaE(s;) + (1 — A)aE(s,),b > +

<AE(s)) + (1 —A)E(sy), b >
=la <E(s;),b>+1—-Da<E(sy),b>+A1

<E(s)),b>+(1-2)

< E(sy),b >
Since sy, s, € S, the last expression yield
> Aaf+(A=-Daf+AB+ (A -V =af +
B=p.
Note that the right most inequality follows because
BER,anda €[0,1]. m
Proposition 2.13 Let [ be an index set and 8; €
R,,b; € R*for dl i € I. Assume also that E is an
idempotent and linear mapping thentheset S = {s €
R": <E(s),b; >= B; Vi€l} is drongly E-
CONVex.
Proof. The conclusion follows from Proposition
2.12 and Remark 2.6 =
Proposition 2.14 Let S;,S,,...,S, be strongly E-
convex sets and E is a linear mapping. Then
S =y.8; + -+ y,S, is a strongly E-convex set
wherey;, ..., v, € R.

is an
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Proof. Let s,s € S. Then s = y;5; + -+ + y,5, and
S=V¥15 + - +Vy,S, such that s;s;€S Vi=
1,...,n.Fora,1 € [0,1] we have

A(as + E(s)) +(1- /1)(055 + E(E))

= Ma(yisy++ Vusp) + EQrasy + -+

ynsn)) + (1 - /1)(“()/15 + et yng) +

E(iSi+ -+ ¥a5p))

Applying the linearity of E to the last expression
and re-arranging it, we get

= ]/1(}-(“51 +E(sy)) + (1 — D (as; + E@))) +
et yn(l(asn + E(sp)) + (1 — D(as, +

E(g))) EViS i+ +VSp =S,
where we used the fact that S, ..., S,, are strongly E-
convex which implies that each A(as; + E(s;)) +
A-MD(as; +E(5))ES; Vi=1,..,n Thus,

Mas+E@B)+ A =D(as+EG)) €S,

therefore, S isstrongly E-convex set. m

We pointed out in Remark 2.6 that the
intersection of arbitrary strongly E-convex sets is
strongly E-convex. This fact is used next to define
the smallest strongly E-convex set containing a
fixed set.
Definition 2.15 The strongly E-convex hull of a set
S c R", denoted by s.E-conv(S) is the smallest
strongly E-convex set contains S, that is,
s.E-conv(S) = Nyos N, N are strongly E-convex
sets.

Next, we provide an example of a strongly E-
convex hull of anon-strongly E-convex set S.
Example 2.16 Let S = (—2,0) U[1,2) c R and let
E:R — R is given by E(x) = —x Vx € R. Note
that, S is not strongly E-convex set. For instance, let
x=-1y=121= ;anda = ; Then,
AMax+Ex)+ (A —-D(ay+E()=0¢S.
From Definition 215, s.E-conv(S) = (—2,2)
which is strongly E-convex. i.e., s. E-conv(S) is a
smallest strongly E-convex set in R contains S.
Indeed, for each x,y € S and a, A € [0,1], then

A(ax + E(x)) +(1- l)(ay + E(y)) =—(1-
aA)(Ax+ (A —-ADyES.
Remark 2.17 From the above definition, it is clear
that

s.E-conv(S) is strongly E-convex set and

S € s.E-conv(S).

If S isstrongly E-convex set then s. E-conv(S) =

S.

Proposition 2.18 Let S ¢ R™ and £ be the set of al
strongly E-convex combinations of elements of S.
That is

t=|Jeen,
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where C(s,p) is defined as in Definition 2.7. If
as+E(s)c L VseS and a €[0,1], then s.E-
conv(S) € L.

Proof. To prove s. E-conv(S) < L, it is enough to
show that £ isaconvex set. Indeed, if £ isaconvex
set and as+E(s)S L VseS. Then from
Proposition 2.9(ii), £ is strongly E-convex set. The
last conclusion with the fact that S € £ yield s.E-
conv(S) S L asrequired. Let us show that £ isa
convex set. Take x,y € L, then

x = Yo Aiax; + E(x)) andy =

Z vilay: + E(vi)),

i=1

where X1, s Xp, Y1, Y5} C© S and
{A1,.+, A, V1, e, ¥s} @€ NON-negative which satisfy

i Ai=landXiyi=1.
Fix u € (0,1), then the convex combination

D
pr L=y = ) Ailax +EC) + (1

=1

—1) ) viay + EG)

Note that
pX A+ —p) Yy =1

Therefore, ux + (1 —u)y € L. i.e, Lis a convex
set, and using the assumption as + E(s) € L Vs €
S yield Lis E-convex set. Because S € £ and
S € s.E-conv(S).Thens.E-conv(§) € L. =

3. Strongly E-cone and Strongly E-convex cone
In this section, we define strongly (E-cone, E-
convex cone, E-convex cone hull) of arbitrary sets
and we discuss some properties of these sets. We
prove a new characterization of E-convex cone sets.
Some examples, to illustrate the concepts defined in
this section and to show the relationship between
them, are given.

Definition 3.1 A set € ¢ R" is called strongly E-
cone if for every ce C,a €[0,1], and y =0 we
have y (ac + E(c)) € C. If C isstrongly E-cone and
strongly E-convex set, it is called strongly E-convex
cone.

Examples of strongly E-convex cone Set,
strongly E-convex set (not strongly E-cone), and
strongly E-cone (not strongly E-convex set) are
shown, respectively, next.

Example 3.2 Let C c R?be defined by C =
{(x,y) ER?:x,y 20}, and let E:R? — R? is
givenby E(x,y) = (x,0) Vx,y €R.

Forany (x,y) € C,a € [0,1], andy = 0, we have
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y(a(x,y) + E(x,y)) = (y(a + Dx,yay) € C.
Thus, C is strongly E-cone. Also, let (xi,y1),
(x5,¥,) € Cand A, a € [0,1], then
Ala(xy, y1) + E(xy, 1)) + (1 — D (alxz, y2)
+ E(x2, 7))
= ((a+ DA% + (1 = Dx),a(dy, + (1
—Dy)) €C
Thus, C is strongly E-convex set. Altogether, we
obtain that C isastrongly E-convex cone.
Example 3.3 Let C c R?be defined by C =
{(x,y)eR*: -1<x<1,-1<y<1},and let
E:R? — R? be given by
E(x,y) = (—x,—y) Vx,y €R.
Note that a(x,y)+E(x,y) = ((a - Dx, (a —
1)y) =—((1-a)x,(1—a)y)eC and C is a
convex set. From Proposition 2.9(ii), C is strongly
E-convex set. To show that C is not strongly E-

cone, take for example (1,1) € C,a = é and y = 5.

Theny(a(x,y) + Exy) = (2,2 ¢ C.

Example 3.4 Let C={(x,y) ER?:x <

-1,-1<y<1}u{(x,y) ER?:x>1,-1<

y <1}, andlet E:R? — R? begivenby E(x,y) =

(x,0). For each (x,y) € C,a € [0,1],andy = 0, we

havey(a(x,y) + E(x,y) = y((a + Dx,ay) € C.

Thus, Cis strongly E-cone.  However, take

(-1,1),(1,1) € C,and A = a = 3. Then

Aa(-L1) +E(-11) + (1 - D(a(1,1)
+E(1,1) =

1 31 + 1,31 ~ (0 1 c

3 (-23)+3(33) =09 @

Thus, C isnot strongly E-convex.

Remark 3.5
Every strongly E-coneisan E-cone. (Take
a =0).
Every strongly E-coneisacone. (Take

E=1La=0).

The converse of Remark 3.5(i) does not hold as
we show in the following examples.
Example 3.6 Consider C defined as in the Example
33 ie, C={(x,y)ER?*:-1<x<1,-1<
y <1}, and let E(x,y) =(0,0) Vx,y e R. We
show that C is E-cone but not strongly E-cone. For
any y =0 and any (x,y) € C, YE(x,y) =(0,0) €
C, thus, Cis E-cone. Now, if wetakey = 5,a = %
and (x,y) = (1,1) € C, then
y(axy) +E(xy)) = 5G (1,1) + (0,0)) =
CHec.
Thus, C isnot strongly E-cone.
Example 3.7 Suppose that E: R> — R? be defined
asE(x,y)=(x%y?) Vx,y€ERand C = {(x,y) €
R?2:x <0,y <0}
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We show that C is a cone but not strongly E-cone.
For any a > 0 and for any (x,y) € C, we have,
a(x,y) = (ax,ay) € C. Thus, C isacone. To show
C is not strongly E-cone. Let (x,y) = (—3,—5) €
C,a= %, and y = 3, then y(a(x,y) + E(x,y)) =

15 45 .
3 (77) ¢ C asrequired.
Proposition 3.8

If aset C isstrongly E-cone, then E(C) < C.

ii. If C be a convex cone and ax + E(x) € C for
each x € C and a € [0,1]. Then C is strongly E-
Convex cone.

Proof. First, let us show (i). Let E(x) €
E(C) suchthat x € C. Since C is strongly E-cone,
then y(ax + E(x)) €C Yy =0 and a € [0,1]. If
y=1and a=0,theny(ax+E(x)) =E(x) € C
as required. To prove (ii), it is enough to prove that
C is strongly E-cone since C is already strongly E-
convex by Proposition 2.9(ii). Consider x € C, then
ax+ E(x) eC . Since C is a cone, then (ax +
E(x)) e C ,foreachy = 0. Thus, C is strongly E-
conc. m

Remark 3.9 The converse of Proposition 3.8(i) is
not true in general (see Example 3.4).

Proposition 3.10 Let S be a strongly E;-convex
cone (resp., strongly E,-convex cone) such that E,
(resp., E;) is congtant, then S isa strongly (E;0E,)-
convex cone (resp., (E,0E;)-convex cone).

Proof. Assume that s;,s, €S, a,1€[0,1], and
y = 0. We must show that

/1(0(51 + (EloEz)(sl)) +(1- /1)(0552 +
(E10E,)(sy)) = Aas; + E(Ex(s1)) +

(1- /1)(0452 + El(Ez(sz)) €S, and y(a51 +
(EloEz)(sl)) = y(a51 + El(Ez(sl)) € S. Now, E,
isconstant, then E,(s;) = s; € Sand E,(s,) = s, €
S. Using the last assertion and the fact that S is
strongly E;-convex cone, A(as1 +E1(E2(sl)) +
(1- /1)(0452 + El(Ez(sz)) ES and y(a51 +
Ei(E;(sy)) € S. Similarly, one can show that S is
strongly (E,0E;)-convex cone. m

Proposition 3.11

i. Let{C;:i € I}beanon-empty family of strongly
E-cones, then U;¢; C; isstrongly E-cone.

ii. Let{C;:i € I} beanon-empty family of strongly

E-cones, then N;¢; C; isstrongly E-cone.

If C; and C, betwo strongly E-conesand let E is
alinear mapping, then the set C; + C, isstrongly
E- cone.

Let C be strongly E- cone, E isalinear
mapping, and a € R, then the set aC isstrongly E-
cone.

V. If C; and C, be two strongly E-cones, then

C, X C, isstrongly E x E- cone.

iv.
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Proof. We prove part (i) and in a similar way one
can show part (ii). Take an arbitrary x €
Uie; C; where C; is strongly E-cone for each i €
I. Then, for y = 0 and a € [0,1], we have y(ax +
E(x)) € C; for some i € I; hence y(ax + E(x)) €
Uie; C; . Thus, U, C; is strongly E-cone. The
proof of parts (iii)-(v) proceed in a way similar to
that of Proposition 2.5, Proposition 2.10(i), and
Proposition 2.10(iii), respectively. Hence, the proof
of parts (iii)-(v) are omitted. m
Remark 2.6, Propositions 2.5, 2.10(i) and 2.10(iii)
together with Proposition 3.11 yield the following
result.
Proposition 3.12
Let {C;:i € I} be a non-empty family of strongly
E- convex cone sets, then Ny, C; is strongly E-
convex cone set.
Let C be strongly E- convex cone, E is a linear
mapping, and a € R, then the set aC is strongly
E- convex cone set.
If C;and C,be two strongly E- convex Cones,
then C; x C, is strongly E X E- convex cone set.
Moreover, if E is a linear mapping then C; + C,
isstrongly E- convex cone Set.
Proposition 3.13 Assume that b € R™ and E is an
idempotent and linear mapping then the upper E-
haf space C={x eR": <E(x),b>= 0} is
strongly E-convex cone.
Proof. From Proposition 2.12 and by choosing
B =0, the set C is strongly E-convex. Hence, we
only need to prove that C is strongly E-cone. Let
x €C,y 20,and a € [0,1] we show that
< E(y(ax + E(x)),b >> 0.
Since E is an idempotent and linear mapping and
x € C, then
< E(y(ax + E(x)),b ><yaE(x),b >+
<yEX),b =
ya <E(x),b>+y <E(x),b>>0. m
Proposition 3.14 Let I be an index set and b; € R"
for al i € 1. Assume aso that E is an idempotent
and linear mapping then C={xeR": <
E(x),b; >= 0 Vi € I}isstrongly E-convex cone.
Proof. The required result follows from Proposition
3.12(i) and Proposition 3.13. =
The following proposition give an aternative
characterization of strongly E-convex cone.
Proposition 3.15 A set C is a strongly E-convex
coneif and only if C isastrongly E-closed (i.e., C is
closed with respect to the mapping E and an
arbitrary point in C) under addition and non-
negative scalar multiplication.
Proof. Assume that C is a strongly E-convex cone.
From the definition of strongly E-cone, we have
y(ax + E(x)) € C, foranyy =>0,a € [0,1], and
forany x € C.
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Thus, C is strongly E-closed for non-negative scalar
multiplication. Next, we show that C is strongly E-
closed under addition. Fix x,y € C which is
strongly E- convex set, then

u= %(ax+E(x)) + %(ay+E(y)) eC.

Hence, 2u = (ax+E(X)) + (ay+E(y)) €EC as
required. For proving the opposite direction,
assume that C is strongly E-closed with respect to
addition and non-negative scalar multiplication.
Then, C is strongly E-cone automatically holds. Let
ALa€f0,1]andx,y € C then
AMax+E(x)eCand (1 - N)(ay+EW)) €C.
This yield /1(0(x + E(x)) +(A-MD(ay+EW)) €
C. Hence, C isstrongly E-convex cone set. m
Proposition 3.16 Let ¢ be a subset of R™ and
K(x,p) is the set of strongly E-non-negative linear
combinations of p elementsof C. That is

K(x,p) =

{x =30 vilax; + E(x)): {x1, .., xp} € Cy; =
0,a €[01] }. If K(x,p) =C Vp€N then C is
strongly E-convex cone.

Proof. Assume that K(x,p)cC Vp€EN. In
particular, for each x;,x, €C, a=0,andy €
[0,1]we have x = y( ax; + E(x)) + (1 —
Y)(ax, +E(x;))eC  and  y(ax; + E(x;)) €
C. Hence, C isstrongly E-convex cone.

Next, we introduce a smallest strongly E-convex

conethat contains a certain set.
Definition 3.17 The strongly E-convex cone hull of
aset C, denoted by s. E-cone(C) is the intersection
of al strongly E-convex cone sets containing C; that
is, E-cone(C) = Nysc N, N are strongly E-convex
cone sets.

The following result is analogue to the one
introduced in Proposition 2.18 for strongly E-
COonvex sets.

Proposition 3.18 Let € ¢ R™ and J is the set of all
strongly E-non-negative linear combinations of
elementsof C. That is

5= Jxem,

PEN

where K(x,p) is defined as in Proposition 3.16. If
ax+E(Xx) €3 vxeC and a € [0,1], then s.E-
cone(C) € 3.

Proof. First, we show that J is a convex cone set.
To show that J is a convex s, follow similar steps
that is used in Proposition 2.18 to show that £ is a
convex set. Next, we show that 3 is a cone. Let
x €3, then there exists p € N such that x =
¥P L vilax; + E(x)) where {x,...,x,} € C,a €
[0,1], and {y;,..,¥,} are non-negative scalars. Fix
B = 0, then the non-negative E-linear combination
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P
Br =5 ) viax +E@))
i=1

P

= Zﬁ)’i(axi +E(x)) €3

i=1

Thus, 3 isaconvex cone set, and since +E(x) € 3
Vx € C, then from Proposition 3.8(ii), J is strongly
E-convex cone set. The last conclusion with the fact
that C € Jyield s. E-cone(C) < J asrequired. m
Conclusion
This paper proposes some strongly E-convex sets,
namely, strongly E-convex hull, strongly E-convex
cone, and strongly E-convex cone hull and discusses
their properties with examples to illustrate the
aforementioned concepts and to clarify the
relationships among them. These sets are considered
as extension to convex sets and convex cone sets.
For possible future work, we suggest studying non-
linear optimization problem in which the objective
function is either convex function or strongly
convex function and the constraint set is strongly
closed cone. In addition, we can study the optimality
criteria of this optimization problem.
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1. Introduction
Let $ denote the class of functions which are
analytic in the punctured disk U* = {z:0 < |z] <
1} of the form

QAo

f@) =

+ Z a,z", ag>0. (1.1)
z n=1

Suppose that $*denote the subclass of § consisting
of functionsthat are univalent in U*.

Further $;, denote subclass of $* consisting of
functions f of the form

o0
%o m+n
f(Z) = 7 + Am+nZ » Qo > 0' Am+n
n=0

>0meN (1.2)
Definition: A function f € $;, is sad to be
meromorphic starlike of order a in U* if it satisfies
the inequality

zf '(2) .
Re{f(z)}> —a,z€ W,0<a<1 (13)

On the other hand, a function f € §;, is said to be
meromorphic convex of order a in U* if it satisfies
the inequality

zf '(2)
f'@)

Re{1+ }>—a,z€ UL0<a

<1 (14)

Various subclasses of $ have been introduced and
studied by many authors see [1], [2], [5], [7], [8],
[16],[17],[19], [20], [21] and [23] In recent years,
some subclasses of meromorphic  functions
associated with several families of integral operators
and derivative operators were introduced and
investigated see [7] [8], [18] and [4],[15]. The first
differential operator for meromorphic function was
introduced by Fraisin and Darus [10]. Ghanim and
Darusintroduced a differential operator [11]:

I°f(2) = f(2),
, 2a,
I'f(2) = zf (2) + —
1@ = A1) +

_ " 2a9
I'f(@) = 2(1%Vf(@) + =2
wherek € N, = NU{0},z € U"*.
For a function f in %, , from definition of the
differential operator I*f(z), we easily see that
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a
ka(Z) = 70+ Z nkam+nzm+n! Qo > 0! Am+n
n=0
>0,m €N,k e N, = NU{0}, z
€ UuU. (15)

By using the operator I*, some authors have
established many subclasses of meromorphic
functions, for example [9], [11],[12] and [13]. With
the help of the differential operator I*, we define the
following new class of meromorphic univalent
functions and obtain some interesting results.
Let H,, x (1, 0,9), denote the family of meromorphic
univalent functions f of the form (1.2) such that
zz(lkf(z))’+ a,
1922(1"f(z))’ —ay+ (L+9)na,
For 0<7<1,0<60<1 0<9<1, keN,=
NU{0},and z € U".
For a given real number z,(0 <z, <1). Let
Hmi(i =0,1)be a subclass of $;,satisfying the

<0, (16)

condition z,f(zy) =1 and —z,%f'(z,) =1
respectively.
Let
Sbim-,k(n, 0,9,20) = 35fn,k(n, 6,9)
N Hmi, (@ =0,1). .7

For other subclasses of meromorphic univalent
functions, one may refer to the recent work of Aouf
[2], Aouf and Darwish [3], Cho et a [8], Joshi et a
[14], Srivastava and Owa [21] and [22]. Also we
prove a necessary and sufficient condition for a
subset C of thereal interval [0, 1] should satisfy the
property UerC 5z):no,k (77' 9'79' Zr) and
Uzec Dm1(, 0,9,2,) each constitute a convex
family.

2. Coefficient I nequalities

In this section, we provide a necessary and sufficient
condition for a function f meromorphic univalent in
U* to bein 9,,.(,60,9), Dmor(® 60,9,2,) and
35:n1,k(77! 6,9,2).

Theorem 2.1: A function f(z) € $;, defined by
equation (1.2) is in the class %, ,(,6,9) if and

only if

oM+ n)(1+ 90)apn < 0a,(1 —
ma+9), (21
where 0<n<10<6<1, 0<9<1 ke

N, = NU{0},andz € U".
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Theresult is sharp for the function given by
fa,(1 — 1+9
f2) = Qo ao( m( )

m+n

Z T rm+ A+ 90)

>1 (22)
Proof: Assume that the condition (2.1) is true. We
must show that f € $;,,(,6,9) or equivalently
prove that

, n

zz(lkf(z)),+ a,
922(If(2)) — ao + (1 +9)na,
ZZ([kf(Z))’+ a,
922(If(2)) — ao + (1 +9)nay

ap+ (—ap+ Yy-(m+ n)nkam+nzm+n+1)
I(—ay + Yoo (m +n)nkan, ,z™"*H) —ay + (1 +9)nay

<@,

Trzo(m + m)n‘ay, 2™+

I(=ay + Xno(m + mnkay, ., zm+1) —ay + (1 + 9)na,
<

| S o+ W) .y
|19(_‘10 + Yoo(m + mnkay,,.) —as + (1+ 19)’]“0' .

Thelast inequality istrue by (2.1).

Conversely, suppose that f € $;,,(n,0,9). We
must show that the condition (2.1) holds true. We
have

zz(lkf(z))'+ a,
922(If(2)) — ao + (1 +9)na,

< 6.

Thus
| TE0(m + WINEay 2™ |
|19(—a0 + Y o(m +n)nkay, ,zmm ) —ay + (1 + 19)r]a0|
<é6.
Since Re(z) < |z| for dl z, we have

e S & a2
9(=ag  Tiizg(m & ¥ 1) —ag + (1 + )1
<.

Now, choosing values of z on the real axise and
alowing z — 1 from the left through real values, the
last inequality immediately yields the desired
conditionin (2.1).
Finaly, it is observed that the result is sharp for the
function given by

a | Bag(1-n)(1+9)
f@ =t v ma + 99

zmtn o > 1.

Theorem 2.2: A function f(z) € $;, defined by
equation (1.2) isin the class $,,, (1, 6,9, z,) if and
only if
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» [nk(m+n)(1+ 96)
n=0] g(1-n)(1+9)
z0m+"+1] Amin <1, (2.3)
where 0<1<10<6<1, 0<9<1 ke

N, = NU{0},andz € U".
Theresult is sharp for the function given by
n*(m+n)(1+ 98) + 6(1 — n)(1 + 9)zm+n+t
f@&= rmTma+ 00+ 6= DA+ 9z ]’
meNn=>1 (24)
Proof: Assumethat f € $;,0,(1,6,9,2,), then

f(zo) =

o0
Qo
+
Z_ + Z am+nZ0m " ap >0, amin
0
n=0

>0meN

0
+n+1
ap + z AminZo™ T, Qo > 0,Amyn
n=0

>0meN

zof (20) =

0
1= Qo + Z am+nzom+n+1' ap > 0, Am+n
n=0

>0meN

0

— +n+1
ap=1- Z AminZo™ " Qo > 0,Aman

n=0
>0,meN, (25)
Subistituting equation (2.5) in inequality (2.1), we
get

0

z n*m+n)(1 + 99)a,.n

n=0
<0 (1 _ Z am+nzom+n+1> (1
n=0
-l +9),
Z n*(m+n)(1 + 98)a,,.p
n=0
+ 2 6(1—-nQ
n=0
+ ﬁ)am+nzom+n+1
<O01-nA+9)
Thus,
o [k (m+n)(1 + 90
) O I P
61— nA+9)

Hence the proof is complete.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019

ISSN (Print): 2074 — 0204

ISSN (Online): 2521 — 3504

Theorem 2.3: A function f(z) € $;, defined by
equation (1.2) isin the class $,,, (1, 6,9, z,) if and
only if

- nk(1+96)
Sieo(m + 1) [FE 0 —
2™ @ < 1, (26)

where 0<1n<1,0<6<1,
N, = NU{0},andz € U".
Theresult is sharp for the function given by
f@

0<9<1 ke

n*(m+n)(1+ 98) +6(1 — n)(1 + 9)zm™n+t
T ZmA L+ 90) — 01— ML+ Dz
eENn=1 (27)
Proof: Assumethat f € 97,4 ,(1,6,9,2,), then

0

Qo
f(ZO) = Z_ + Z am+n20m+n' Ao > 0' Am+n
0

n=0

>0meN

o0
2 — +n+1
—zo2f'@0) = ay + Z(m+n)am+nzom " oag
n=0

> 0,04 >0meN

o0
1= ay+ Z(m + M) Apinzo™, ag

n=0

>0,ap4n >0meEN

o0
ap=1- Z(m + M) AminZo™ Y, ag

n=0
> 0,034 >0,m
EN, (2.8)
subistituting equation (2.8) in equation (2.1), we get

Z n*(m+n)(1 + 90)apin,

n=0

<6 (1 - Z(m + n)am+nzom+n+1> 1- 77)(1
n=0
+9)
and,

0

Z n*m+n)(1 + 99)a,n

n=0
£ 00m+m( -
n=0
+ 9)Aminze™
<6(1-)A-mMA+9I)
Thus,
o nk(1+ 96) m+n+1
Yn=o(m +n) [m - Z ]am+n <1

Hence the proof is complete.
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From Theorem 2.2 and Theorem 2.3, we have the
following results:

Coroallary 2.1: If afunction f(z) € $;, defined by
(L.2)isintheclass $y,0 (1, 6,9, z,), then

Amin <

nk(m+n)(1+ :«9()1+9n()1(—1;1)9()1+19)20m+n+1' (2-9)
where0 < <1,0<6<10<9<1, keN;=
NU{0},andz € U*.

Corollary 2.2: If afunction f(z) € %, defined by
(1.2) isintheclass $y,1 (1, 6,9, z,), then

Amin <

0(1-n)(1+9)
(m+n)[nk(1+ 96)— 6(1— ) (1+9)zoM++1]’ (2.10)

where0 <7 <1,0<6<10<9<1 keNy=
NU{0},and z € U".

3. Covering theorems

In this section, distortion theorems will be
considered and covering property for functions in
the classes $0 (1, 6,9,20) and $r,1,(1,6,9, 2,)
will also be given.

Theorem 3.1: If a function f(z) € ;, defined by
equation (1.2) isin the class $,, (1, 6,9, z,), then

If (2)]

m(1+ 99) —6(1 — p)(1 + 9)rm*?

T rm@+ 99) +0(1 — (A + 9)zymH]
where 0 <7 <1,0<0<10<9<1 keN,=
NU{0},and 0 < |z| < 1.

The result is sharp with the extrema function f

given by

m(1+ 98) +6(1 — n)(1 + 9)rm*?
f@ = T+ 99) + 00 = DA+ Dz 1]
Proof: Since f € $y,0x(1,6,9, 25), by Theorem 2.2
we have
m(1+90)+6(1—n)(1+
Nz X0 a,,,, < Do (m+n)(1+
90) +0(1 — (1 +9)z™ " ta <
61— m@A+9),

NgE

Amin
=0

S

01— n)(1+9)
m(1+ 98) +60(1 — N1+ 9)z™+"

IA
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Also we have

00

— +n+1
a=1- Z am+nzom e, ap >0, amin

n=0
>0,meN,
- m(1 + 69)
“m(+ 90)+6(1 — n)(1+I9)zymH
Thus from the above equation we obtain

0

4o m+n
If ()| = 7 + Am+nZ

n=0

>0meN

o0

Z—=T Am+n
r

n=0
m(1+ 99) —0(1 — p)(1 + )r™m*!

T rim(+ 99) +0(1 — p)(1 + 9)zym*1]
Hence the proof is complete.

Theorem 3.2; If a function f(z) € $;, defined by
equation (1.2) isin the class $;,, (1, 0,9, z,), then

If (2l

m(l+ 99) +6(1 — n)(1 + 9)rm*?

T rlm+ 99) +0(1 — (1 + 9)zy™m 1]
where 0<11<1,0<0<10<9<1 keN, =
NU{0},and0 < |z| = r < 1.

The result is sharp with the extremal function f

given by

m(1+ 99) +6(1 - n)(1 +9)rmt?
f@ = la+ 98 + 00 = A + Dzg™ ]
Proof: Since f € $;,1x(1,0,9,z,) by Theorem 2.3
we have
m(1+ 96) +6(1 — n)(1 +
Nze™ ! X0 Ay < Zmmon (M +n)(1 +
90) + (1 — M(1+ )z a <
61— mMA+9),

[oe]

» Ao > 0' Am+n

Am4n
=0

3

01— nA+9)
m(1+ 98) —6(1 — n)(1 +9)z,™*t
Also we have

IA

a, =1+ Z(m + M) apinzo™ T, ag
n=0
> 0,040 >0 meN,
< (1+69)
TA+99)+0(1— (A +9)zymH
Thus from the above equation we obtain
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0

Ao
G, Z @z ™
z

n=0

>0meN

0

aO m
<—+r Amin
T

n=0
m(1+ 99) +6(1 — p)(1 +9)rm+?
~ rm[(1+ 96) +0(1 — n)(1 + 9)zym+1]
Hence the proof is complete.
Corollary 3.1: The disk 0 < |z| <1 is mapped

onto a domain that contains the disk |w| <
m(1+960)-6(1- n)(1+9)rm+1
[m(1+ 90)+6(1— ) (1+9)zo™+1]

f € ‘5;(110,16 (77; 9; 19' ZO) .

If (2| =

» Ao > 0: Am+n

by any function

4. Extreme Points

The extreme points of the class 9, ,(1,6,9,2,)
and $7,1.(1,0,9,2,) are given by the following
theorem.

Theorem 4.1: Let f,(z) = 5

and
fm+n(Z)
_ nfm+n)(1+ 90) + 0(1 — (1 + 92"
z[n*(m +n)(1+ 90) + 6(1 — n)(1 + 9)z,m+1]’
n=0
then f(z) is in the class $y,,,(,6,9,z), if and
only if it can be expressed in the form f(z) =
2n=0Ynfmsn(2) where Ynz0y;=0(0=
1,2,...m—1m=2)and Y7oV, = 1.
Proof: Suppose

F@ =) Yafmin(
n=0

Yo
z

o0

nm+n)(1+ 99) +6(1— n)(1+9)z™" 1y, ..
ZO z[nk(m+n)(1+ 90) + 6(1 — n)(1 + 9)z,m+n+1]

1
—Z}’o

o0

n*(m +n)(1+ 96)Vimsn
Z nkm+n)(1+ 90) +60(1 — n)(1 +9)z,m+n+1

n=0
o]

Z (1 — TI)(l + ﬁ)ym+nzm+n+1

0n"(m +n)(1+ 90)+0(1 — n)(1 + 9)zym+n+1’
n=

Then, we have

[oe]

n*m+n)(1+ 96) +6(1 — n)(1 + 9)z,m"*!
Z 61— n)(1+9)

?’>l<=0
9(1 - U)(l + 19)]/m+n
nk(m+n)(1+ 90) + 6(1 — n)(1 + 9)zym*n+1 )’
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ZYmﬂl =l-y =<1
n=0
Now, we have

ZOfm+n(Z0) =1L
Thus,

ZOf(ZO) = Z ym+nZOfm+n(ZO) = Z Ym+n = 1.
n=0 n=0

Thisimpliesthat f € Hpox-

Therefore f € 97,01, 6,9, 7).

Conversely, suppose f € Hi0x (1, 6,9, 2,). Since
61— (1 +9)

<
Imin = Sl tm+ m)(L+ 98) + 0(1— n)(L+ 9)z™ "+’

n=0.
Set
Yman
_ [nk(m +n)(1+ 99)+6(1— 1+ 19)Z0m+"+1]
B 01— +9) _—
>0,
andy, =1— X720 Vim+n:
Then

f&) = nh@).
n=0

This completes the proof of Theorem 4.1.
Theorem 4.2: Let f,(z) = é,
and

fnan(2)

B n*(m+n)(1+ 98) + 6(1 — n)(1 + 9)zmn+t

T zm+n)[nk(+ 98) — (1 — n)(1 + 9)z,mH]’

n=0

Then f(z) isin the class $;,,,(,6,9, z,), if and
only if it can be expressed in the form f(z) =
2in=o0Ynfn(2) where m=0y,=00=
1,2,...,m—1m=2)and YooV, = 1.

Corollary 4.1: The extreme points of the class
Dmox ™, 0,9,2y) are the functions
fo(@), fmo fins1> fmns2s - iINTheorem 4.1,

Corollary 4.2: The extreme points of the class
D1k, 6,9, 20) are the functions

fo@), fi fins1> fins2s - IN Theorem 4.2,

5. Closure Theorems

Theorem 5.1: The class $;,0(1,0,9, z,) is closed
under convex linear combination
Proof: Suppose that the
Dmox (M, 0,9, z,) defined by

functions f,g €

a
f(@ = 70 + Z ApanZ™ ™ ag > 0,04, > 0,2
n=0

€ U
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and

be
g9(2) = " + Z bsnz™", by > 0,bypin > 0,2
n=0
e U
respectively, it is sufficient to prove that the
function H defined by
H(Z) = of(2) + (1 -w)g(2),
isalsointhe class 0 (1, 6,9, z;).
Since

0 w<sl)

(,Uao + (1 - (,U)bo

VA

H(z) =

+ Z(wamm + (1 = @bpyin )2™™M, aq

n=0

> 0,ap4n >0,z € U

we observe that

Z[nk(m +n)(1 + 96)
n=0

+ Zom+n+1](0)am+n
+ (1= 0)bpin ) < 61— m(1
+9),
with the aid of theorem 2.2.
Thus H(z) € $70x(1,0,9,20).
This completes the proof of the theorem.
In a similar manner, by using Theorem 2.3, we can
prove the following theorem.

Theorem 5.2: The class $;,, x(1,6,9, z,) is closed
under convex linear combination.

Proof: The proof is similar to that of Theorem 5.1.

Theorem 5.3: Let the function

0,1,2, ..., q defined by

fi(@), 1=

0
Ao,
— , m+n
fl(z) - 7 + Z am+n,lZ » Qg > 0' am+n,l
n=0

>0,z€ U*
bein the class $;,0x (1, 6,9, z,). Then the function
q
0@ = ) afi@, (@20
=0
is aso in the class $p,0x® 0,9,2,), where

q -
=o€ = 1.
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Proof: By Theorem 22 and for every [=

0,1,2,..,q wehave

Z[nk(m + 1)1+ 96) + 2™ apin,
n=0

<0(1-n@A+9),

o0
Z am+n,lzm+n>v (Cl = 0)

n=0

Then,

q
Qo1

= — +
0 (@) q( ;

=0

©o q
o,
— , m+n
- + ClAmint | Z '
V4
n

=0 \=0
Since

0

Z[nk(m +n)(1 + 90)

n=0
q
m+n+1
+ 2 ] (Z Clam+n,l> )

=0

q oo
= c [n*(m + n)(1 + 96)

+ ZOm+n+1] am+n,l>v

q
< (Z cl> 0(1— n)(1 + ),

=0

= 61— nA+9),
Then, ¢(2) € H70,(,0,9,20).
Theorem 5.4: Let the function
0,1,2,...,q defined by

fi@), 1=

0
Qo1
- 20 m+n
filz) = 7 + z Am+n,12 y o >0, Apyiny
n=0

>0,z€ U
bein the class $;,, (1, 0,9, z,). Then the function

q

0@ = Y afi@, (@20

=0
is also in the class $,1,(,6,9,2,), where
Tioa=1
Proof: The proof is similar to that of Theorem 5.3.
6. Convex Family
Definition 6.1: The family  $7,0.(1,60,9,C) is
defined by

55:n0,k (,6,9,C) = U.ec g):no,k (,6,9,z,),

where C is a nonempty subset of the real interval
[0,1] and $Hy0x(m,0,9,C) is defined by a convex
family if the subset C consists of one element only
by Theorems 5.1 and 5.3.
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Now, we have the following results:

Lemma 6.1: Let z;,z, € C be two distinct positive
numbers  and f(2) € Hmox(®,0,9,25) N
Hinosc(1,0,9,2,), then £ (z) = =

Proof: Suppose that f(z) € Hy0.(,6,9,2,) N
55:n0,k(71' 6,9,2,),

we have
oo
ay, = 1— Z Ay Z1m+n+1
n=0
oo
=1- Z AppinZ m+n+1
n=0
Also
o0
)= 24 min, gy > 0
f z) = 7z Am+nZ P » Amtn

n=0

>0,meN
Thus,a,,.n =0,V n >0, because ayy, = 0,21 >0
and z, > 0, hence

1

fl2) = 7
This completes the proof of the Lemma.
Theorem 6.1: Suppose that C c [0,1], then
Drmox(®,0,9,C) isaconvex family if and only if C
is connected.
Proof: Assume that C is connected and z;,z, € C
with z; < z,.

[ee]

— m+n+1
ap=1- Z Am+nZo

n=0
(o]
— m+n+1
=1- E by nzy :
n=0

Suppose that the functions f € $7,0,(®,6,9,2,)
defined by

%o m+n
f(Z) = ?+ Am4+nZ , 09 > 0, Aman > O,Z
n=0
e ur
and g € Hrox(,6,9,2)

0

9(2) = % + Z boenZ™™, by > 0, byysn > 0,2
n=0
€ U

it is sufficient to prove that the function H defined
by

Hz) = wf@)+ 1-w)g(z), (O w<l)
that there exists a z,(z, < z, < z;) isdso in the
class 70k (M, 0,9, 23).
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Then
K(z) = zH(2)
K(z) = way+ (1 —w)by

+ Z(wam+n + (1= w)byin )zm+”, a,

n=0
> 0,am4n >0,z € U
=1
0
+ w Z(zm+n_ Zom+n )am+n
n=0

+(1-w) Z(zm’“"— Z1™" ) bypyns G > 0, Qi
n=0

>0,z€ U”

since z isreal number, then K (z) isalso rea number
also we have

K(z,) <1and K(z;) = 1, there exists z, € [z, 2],
suchthat K(z,) = 1.

Therefore,
z,H(z,) =25, (20 < 7, < z9)
thisimplies that
H(z) € S0 -
We observe that

7o m +n)(1+ 960) + 2™ ) (wamen +
(1 - w)byin )

= w Z[nk(m +n)(1+ 90) + zy™ " apin

n=0

+ (1 - w) Z[nk(m +n)(1+ 99)
n=0

m4n+1
+ z; 1 bysn

+6(1 - n)(1

+ 19)(1) Z(Z2m+n+1_ Zom+n+1 ) Apin
n=0

+0(1 - A +9)(1

co
- ) Z(zzm+n+1_ Zlm+n+1 ) Dman
n=0
oo

=w Z[nk(m +n)(1+ 90) + zo™ " apyin

n=0

+(1-w) Z[nk(m +n)(1+ 96)
n=0

m+n+1
+ z; 1 bisn

<01 -NA+9+1—-w) 01— n+9)
=0(1— n)(1+9).
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With the aid of theorem 2.2.
Thus, H(z) € 10k, 6,9,25).
Since z;and z, are arbitrary numbers, the family
Dmox (™, 0,9,C) isconvex.
Conversely, if the set C is not connected, then there
exists zy,z, and z, such that z,,z;, € C and z, ¢ C
and z, < z, < z.
Now, let f(2) € H70.(®,0,9,2), and g(z) €
55:n0,k (,0,9,2,)
Therefore,

K(w) = K(z;, w)

0
— m+n+1 m+n+1
=1+ wz:(z2 A )am+n
n=0

oo
+(1 _ w) Z(zzm+n+1_ Zlm+n+1 ) bm+nf a,
n=0

>0,am4n >0,z€ U
for fixed z,and 0 < w < 1.
Since K(z,,0) <1 and K(z,,1) > 1, there exists
wy;0< wyg <1, such that K(zp,wy)=1 or
7,K(z;) = 1,
where K(z) = wof(2) + (1 — wy)g(2).
Therefore K (z) € 9,01, 60,9, 20)
Also K (z) & Hmox(®,0,9,C) using Lemma6.1.
Sincez, € C and K(z) # z.
Thus the family $7,0,(,6,9,C) is not convex
which isa contradiction.
This completes the proof of theorem.
Conclusion: The main impact of this paper isto is
to introduce a new subclasses of meromorphic
univalent functions, and study their geometrical
properties , like coefficient estimate, distortion
theorem, extreme points and convex family.
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1.Introduction.

Differential equations (DES) have an important

value in many applications relating to various fields
such as engineering , physics, chemistry, biology
and economics, however many mathematical models
of physical systems are given as DE first-, second-
or  higher-order. Two  types  of DEs
which depends on the domain of definition of DE
we classified them as complex Des (CDEs) and real
DEs (RDEs) each of them classified as follows
firstly: Ordinary differential equations (ODES)
which have the branches: delay differential
equations (DDEs), fractional differential equations
(FrDEs), fuzzy differentia equations (FDES).
Secondly: Partial differential equations (PDES),
which have the branches: DDEs, FrDEs and FDEs.
Thirdly: Stochastic differential equations which
have the branches: DDEs, FrDEs, FDEs. Johy[12].
The ODEs of first- or second order have many
applications in branches of mechanical engineering,
electrical, civil, chemical and others. The subject of
PDEs has a long history with an active
contemporary phase. An early phase with a separate
focus on string vibrations and heat law through solid
bodies. A stimulated of great importance for
mathematical analysis to al manner of
mathematical, physical and technical problems
continues. Such stimulated is a wider concept of
functions and integration and the direct relevance of
PDEs.
In this paper, Haar wavelet functions used to
approximate the solutions of typical ODEs or of
fractional-order. Haar wavelets can be written as a
family of functions constructed from transformation
and dilation of a single function. Haar wavelet
transform method is powerful numerical method to
useit in solving DEs. Haar wavelet function and its
properties are studied and used in solving of the
DEs. The useful  properties of Haar wavelet
transform are studied in solving the DEs. The
solutions of them are approximated by the
summation of constant multiples of the Haar
functions. The other terms of the DE usually found
out using some properties of integrating and
differentiating . Many researches studied Haar
waveletslike Berwal et a. [3] studied the solution of
DEs based on Haar operational matrix, Sahoo[23]
studied the solution of DEs using Haar wavelet
collocation method, Shi et a. (2007) studied the
numerical solution of DEs by using Haar wavelets,
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Chang &Piau.[4] used Haar wavelet matrices
designation in numerical solution of ODEs, Chen [5]
used Haar wavelet approach to ODEs, Li & Hu [16]
solved the fractional Riccati DEs using Haar
wavelet while Mechee&Senu[17] studied the
fractional DEs of Lane-Emden type numerically by
method of collocation. Shah & Abbas [24] used
Haar wavelet operational matrix method for the
numerical solution of fractional order DEs,
Saeed&urRehman[21] used Haar wavelet-quasi
linearization technique for fractional nonlinear DEs
and Lepik[14] applied Haar wavelet transform to
solving IEs and DEs. Weilbeer[29] introduced
efficient numerical methods for fractional DEs and

their analytica background. Haar wavelet
operational matrix and its
application for the approximated solution of

fractional Bagley Torvik equation has been used by
Ray [19], while Shiralashetti
et al. [26] used Haar wavelet collocation method for
the numerical solution of singular initial value
problems. Kilicman & Al Zhour [13] introduced
Kronecker operational matrices for fractional
calculus and some applications, Hosseinpour &
Nazemi [10] solved fractional optima control
problems with fixed or free fina states by Haar
wavelet collocation method, Hsiao [11] constructed
Haar wavelet direct method for solving variational
problems, Hariharan et al. [8] used Haar wavelet
method for solving Fisher’s equation, while Aziz &
Amin [2] introduced numerical solution of a class of
DDEs and DPDEs via Haar wavelet. Recently, we
have studied implementation of different tested
problems DEs which are used as mathematical
models in many physically applied science and
important fields. The approximated solutions of DES
have been derived using Haar wavelet and B-spline
basis which shows to be more suitable to
approximate the solutions of DE.

2 Preliminary

2.1 Haar Wavelet Functions

Haar functions have been used since 1910, when
they were introduced by Hungarian mathematician
(Haar (1910)). The orthogonal set of Haar function
is defined as square waves with value of +1 in some
interval and zero elsewhere. Then, hy(x) = 1
during the whole interval 0 < x < 1. The second
curve hy(x) is the fundamental square wave
function which also spans the whole interval [0;1].
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All the other subsequent curve are generated from
hi(x) with two operation translation and dilation,
h,(x) is obtained from h,(x) with dilation, i.e.,
hq (x) is compressed from the whole interval [0;1] to

half interval [0;%] to generate h,(x) , h;(x) isthe
same as h,(x) but shifted to the right direction
by % Similarly, h,(x) is compressed from the half

interval to a quarter interval to generate h,(x) . The

function h,(x) istrandated to the right by i ,% ,% ;

to generate hs(x) , he(x) and h,(x) respectively.
In general, we have the following:

ho(x) = h;(27x — ) wheren =2/ +J,j 20
0<k<?2. Q)

This orthogonal basis is a reminiscent of the
Walsh basis, in which each Walsh function contains
many wavelets to fill the interval [0,1] completely,
and to form a global basis. While each Haar function
contains just one wavelet during some subinterval of
time, and remains zero elsewhere the Haar set form
alocal basis. All the Haar wavelets are orthogonal to
each other:

270,i=j=2J%k

1

However, the functions give a very good transform
basis. To obtain a good time resolution for high
frequency transients and good frequency resolution
for low frequency components, Marled (1982) first
introduced the idea of wavelets as a family of
functions constructed from trand ations and dilations
of a single function called mother wavelet and
defined by

1 t—b
Hgp (1) zﬁH<T) ,a+0, a€Rr (3)

where a is scaling parameter measures degree of
compression and b is the trandation parameter
determines time location of wavelet.

Definition 2.1. (Haar functions)[13]
The Haar wavelet functions defined as follows on

[0.X].

1

hO(X)=\/—M , 0<x<X (4—)

X

(1, OSXSE

1

h = — X 5
1) VM |-1, o Sx<X ®)

kO ,0.W
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1
\/E k_1<x<k_7X
’ 27 R
hj(x)—\/_ k_% L ©
27, 7oK Sx <X
L 0 ,0.W

For i=123,...m—1,M=2/and i=2/+k-
1.
We say that h, (x) is mother function and

hy(x) = 22hy (2/x — k) 7)
Fori=1,2,3,...m—1
Note that:
(hp(2), hg(x)) = [} by (x), hg(x)dx (8)
Z  p#q
=1lm 9
{0, P=q ( )

To approximate the function f(x) using Haar
functions consider

m-—1

f0) = ah @

=0

[ reoneax
0

= Z a; f xhi(x) hj (x)dx, (10)
i=0 "0

=q; xhjz (x)dx, (11
0
Where

S F G0 hy()dx
="

Jo W (x)dx

m X
=% | reomeoax

2.2 Spline Functions

The spline functions are used in applications of
numerical analysis due to they have awide class of
smoothness. One of these applications is data
interpolation. The data structure may be either one-
dimensional or multi-dimensional. In  the
interpolation, spline functions are normally
determined as the minimizers of suitable measures
of roughness subject to the interpolation constraints.
Smoothness splines may be show as generalizations
of interpolation splines where the functions are
determined to minimize a weighted linear
combination of the average squared approximation
error over observed data.
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The spline functions are constructed to be finite
dimensional in the applications. Here, we have focus
on one-dimensional, polynomial B-splines and use
the term B-spline in this restricted sense. The base
P(x) = { P1(x), P2(x), ..., Pp(x)}
is called B- spline base of order n if the basis
functions satisfy @;(x) € €™ (o0, —o0)for i =
1,2,..,n
First of all, we will partition [0,1] by choosing a
positive integer n and defining h = ﬁ.This
produces the equally-spaced nodes x; = ih, for each
i =1,2,..,n + 1. Then, we have defined the basis
funcnons{cb ()} ontheinterval [0,1].

2.2.1Linear Spline

The simplest spline is a piecewise polynomia
function, with each polynomial having a single
variable .The spline S takes values from an interval
[a,b] and maps them to M| where S: [a,b] >
NSince S is piecewise defined, choose k
subintervals to partition [a,b]. The simplest choice
of spline functions basis involves piecewise-linear
polynomials. The first step is to form a partition of
[0,1] by choosing points xg,x,...,X,.Let h; =
Xi41 — x;,for each i =1,2,..,n.We have defined
the basis functions {®,(x),®,(x),...,P,(x)}.
Linear splineis linear polynomial S(x) which satisfy
S(X)€ Cy(e0, —0)To construct linear spline base in
which satisfy the boundary conditions &;(0) =
®;(1fori1,2,..,nWe have constructed the

following component linear spline functions:
0, 0<x<x_4
1
n (x—x_1), %1 <x < x5
11_1 (12)
F(le —x) % <X < Xjyq
L

O;(x) =

0, Xipp <x < 1.
foreach i = 1,2,..,n.We can prove that the
functions are orthogonal because @;(x) and

@, (x) are nonzero only on (x;_;, X;41) such
that &;(x)®;(x) = 0 and @;(x)®;(x)=0if i #
Jj,i —1,j — 1.Consequence &;(x) € C (o0, —o0).

2.2.2 Quadratic B-Spline

Quadratic B-spline base is quadratic B-Spline
polynomials S(x) which satisfy S(x) € C3 (0, —0)To
congtruct quadratic spline base in which satisfy the
boundary conditions®;(0) = &;(1) for i=1,2,... n
We have constructed the following component
quadratic spline functions:
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T + 3(xy, — x)z s [Xm—15 Xm]
T; [xm; xm+1] (13)
(xm+2 - x)z; [xm+1; xm+3]
0 o.w.
Where T = (X2 — %)* = 3(msq — %)°

Qm(x) =

2.2.3 Cubic B-Spline

Many researchers used B-cubic spline in numerical
analysis. We have defined B cubic spline base as
follows:

s(x)
{ 0, x <=2
| 2+x)3, —-2<x<-1
=1{(2+x)3—4(1+x)3,—1SxS0 (14)
4] 2-x)P3-41-x)30<x<1
| 2 —x)3, 1<x<2
t 0, x> 2

Conseguence S(x) € C2(—oo, ). To construct cubic
spline base in which satisfy the boundary
conditions@;(0) = @;(1) fori = 1,2, ...,n. We have
constructed the following component cubic spline
functionson theinterval [x;_,, x;;,] asfollows[1]:

?;(x)
s(%)h—%(x:hzl, i=0
X — X+
S( h )_S< h ) (=1
_1 s(x_lh>, 2< i<n

(x—nh) <x—(n+2)h>’ _—

S(x—(n+1)h> 4s(x—(n+2+h>

2.3 Fractional Derivatives

The fractional integrals have been defined by many
researches as follows:

The left hand Riemann-Liouville fractional
derivatives of order « > 0; n € N (N isnatura
numbers set), is given by:

DEf(x) = — 14t (16)

1 f@®
—a) dx"f (x — t)* (x — pya—n+1

2.3.1 Operational Matrix of the Fractional-Order
Integration of the Haar Wavelet

Shiralashetti & Deshi [26] had introduced the Haar
wavelet operational matrix FH, of integration of the
fractional order a is given by

, i=n+1

(15)
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k k+0.5 0, 5 x < =2
fl,xe[a, - X —2<x<-1
k+05 k+1
FH,, = {f2*€l————) (17) X3 — 6(x — 1)7*3, —1<x<0
’ k+1 3 (20)
fa,x €[—,0 ) Ex0‘+3—6(x—1)0‘+3+9(x—2)0‘+3. 0<x<1
m
0; o.w a+3 6(X 1)a+3 + 9(X _ 2)a+3 _ 6(X _ 3)a+3’ 1<x<?2
Where
0, x> 2
fikx) = Tn = )( ——)

3 Analysisof Collection Method[1]
Define the collocation points x; = a + ihfor

) 2=

1
) =t ((

1 PN K+ 05\ i = 0,1,2,...,n discretize the functions;
A0 = e ——((x-) —2(x-=2) $0O) = ($1(0), 3200, b3 (s e, ()
+(x—kj)a Suppose
m n

2.4 Operational Matrix of the Fractional-Order
Integration of the B-Spline Bas
2.4.1Linear Spline

y(x) = Z cihi (x)

i=1

We have introduced the linear B-spline operational
meatrix FSa of integration of the fractional order as

follows:

1
JZ,00) = NCED)

0, 0<x<x_4

Put the approximation of y(x) at the point x;in the
DE, we get the function coefficient
matrix ®; ;(x)=®;(x;) and &, ;(x) = ;(x;) The
matrix of coefficients has the dimension nxn. Any
function y(x) which is sguare integrable in the

interval (0,1) can be expressed as an infinite sum of
Haar wavelet. The above series terminates at finite
terms if y(x) is piecewise constant or can be
approximated as piecewise constant during each
subinterval [1].

e (r—x ) Sx < x
i—1 (18)

1
n (= x )" + ™ (hia(x —x)* = (x = x)"x; S x < xpyq
i-1 i

0, x;40 <x <1

2.4.2 Quadratic B-Spline
We have introduced the quadratic B-spline
operational matrix FS, of integration of the
fractionaorder as follows:

3.1 The Quadratic B-Spline Base
Consider the quadratic B-spline Base

s(x) = {51(x), 52 (%), $3(%), ..., Sn (2]}

JE1€9) Suppose  y(x) = XL, ¢;s;(x) The general ODE of
. 2(x = 1)**?, [L2] first-order has the following form:
2(x — 1)%+2 — 6(x — 2)%+2, (23]
19,@®)y' (@) + a; (O)y(t) = f(8), 0<t<1,(21)
T@+3) 2(x =D =60 = )T + 6(x —3), (23] sut())Ject to the |n|':|a| condition isy(0) =

0, o.w

2.4.3 Cubic B-Spline Problem 3.1
y(t) =y(t) =sin(t) +cos(t), 0<t<1.

We have introduced the cubic B-spline operational
meatrix FSa of integration of the fractional order as

follows: subject to the initial condition is y(0) =0, The

1 coefficients areay(t) =a,;(t) =1 and f(t) =
T(n+3) sin(t) + cos(t) Consider the quadratic B-spline
base, Then, The matrix of coefficients has the
following formula:
Ail' = Si'(t]') + Sl(t])

JE) =
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And b; =sint; + cost; for i,j=1,2,..,n. By
solving the system of coefficients Ac = b we will
obtain the coefficients of approximation where
c=[.1,.2,-.1,.001,4].

3.2 TheHaar Wavelet Base

We introduce the Haar wavelet technique for

solving general linear first-order ODEs.

3.2.1First-Order Linear First-Order ODEs

Consider the following general linear first-order

ODE:

y@®+fOy®) =g®,0<t<af()*0,(23
y(0) =p. (24)

Substituting t = ax in Equation (23) which reducesto

y(x) + af (ax)y(ax) = ag(ax),0 < x <

a,f(x) #0, (25)
y(0) = B. (26)
We assume that y'(x) = Y%, ¢;h; (x) (27)

where ¢;s are Haar coefficients to be determined.
Integrating Equation (27) with respect to x, we get
the following
y(x) =B+ X, cipai(x) (28)
Substituting Equations (27) and (28) in Equation
(25), we get the following system of equation:

Ky cihi(x) + af () (B + Zhey ip1,i(0)) = ag(x)
(29)
Putx = ¢; for j =1,2,..n.in Equation (29), we
get linear system in which the matrix of coefficients
has the following formula:
A=A +af@)h(t) and b; =ag(t)
for j,i = 1,2,...n By solving the linear system of
coefficients Ac = b we obtain the coefficients of
approximated solution.

3.3 Fractional Differential equationswith Haar
Base

We will introduce the Haar wavelet technique for
solving FrDEs

Problem 3.2. Consider the genera fractional-order
linear DE

yi(t) +A() + By () = C(®)
0<tsagn-—-1<a<n (30)
subject to initial conditions y;(0) = a; for
j=0,1,2,..,n-1 where A(t),B(t) and C(t) are given
functions , a';s are arbitrary constants and o is a
parameter describing the order of the fractional
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derivative. The general response expression contains
a parameter describing the order of the fractional
derivative that can be varied to obtain various
responses. Substituting t = ax in Equation (27)
which reducesto

y*(ax) + aA(ax) + aB(ax)y(ax) = aC(ax)

0<x<Ln-1<a<n (31)
y;(0) = a;
We assumethat y*(x) = Y5, c;h;(x) (32)

If a= % ,integrating Equation (28) once, we get
y(x) = ay+ Xl CiFH%,i(x) (33)
Substituting Equations (32) and (33) in Equation
(31), we get

k

k
Z cihi(x) — aA(x) — aB(x) (ao + Z cl-FHli(x) >
i=1 z

i=1
=aC(x)
If a= Z ,integrating Equation (28) once, we get

1
Y300 = @y + T 6FHa () (34)
2
And
y(x) = ag+a;x + Xi, ciFHs (x) (35)
:

Substituting Equations (32) and (35) in Equation
(31), we get

Yk cihi(x) — aA(x) — aB(x) (ao +a;x+
(36)
in Equation (35) in

1 . . . 3
case @ = -,0r in Equation (35) in case a = S we

S ¢iFHs () ) = aCx)
Put x =t forj =1,2,...,n.

get the linear system in which the matrix of
coefficients has the following formula:
and

b; = c(t]-) + aA(tl-) —aaoB(t;)

for i,j = 1,2,...,n. By solving the linear system of
coefficients, we obtain the coefficients of
approximated solution y(t)of Equation (31).

3.4 Fractional Differential equationswith B-
Spline Base

We will introduce the B-spline technique for solving
FrDE (31). Consider the quadratic B-spline base

S(x) = {Sl (x), SZ (x)! S3 (x)! ey Sn(x)}
Suppose y(x) = XL, ¢si(x)

We assume that y%(x) = ¥, ¢;5;:(x) (37
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If a= % ,integrating Equation (37) once, we get
y(x) = ao + X, CiFS%,i (x) (38)

Substituting Equations (37) and (38) in Equation
(31), we get
k >

Z ¢;S;(x) — aA(x) — aB(x)

i=1

k

(ao + ; Cl-FS%’i(x)
=aC(x)

If a= ; ,integrating Equation (31) once, we get
y(x) = ag+a;x + X, ciFFSs (x) (39)
>

Substituting Equations (32) and (39) in Equation
(31), we get

Yk ¢Si(x) — aA(x) — aB(x) (ao +ax+
(36)
in Equation (39) in

1 GiFSs () ) = aC o)
Pt x=¢ forj=12,..,n
case a = %,or in Equation (35) in case a =% we

get the linear system in which the matrix of
coefficients has the following formula:

Aij = h'l(t]) + aB(t])FS,,_l(t])

and

b; = c(tj) + aA(tj) —aagB(t))
for i,j = 1,2,...,n. By solving the linear system of
coefficients, we obtain the coefficients of

approximated solution y (t)of Equation (31).

4 Lane-Emden Fractional Differential Equation
We generdlize the definition of Lane- Emden
equations up to fractional order as following:

DY) + e DFY(O) + F(1,3) = (O
0<t<1, k>0. (40)
with the initial condition y(0) = 4;y,(0) = B
where 1 <a<2,0<pB<1 and AB ae
constants
and f(t; y) is a continuous real-valued function and
g(t;y) € [0,1]: The theory of singular boundary
value problems has become an important area of
investigation in the past three decades. One of the
equations describing this type is the Lane-Emden
equation. Lane-Emden type equations, first
published by Homer Lane (1870), and further
explored in detail by Emden [6], represents such
phenomena and having significant applications, is a
second-order ODE with an arbitrary index, known
as the polytropic index, involved in one of its terms.
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The Lane-Emden equation describes a variety of
phenomena in physics and astrophysics.
Mechee& Senu[18] imposed the Lane-Emden DE of
fractional order and the approximate solution is
obtained by employing the method of power series
and a numerical solution is established by the least
sgquares method
for these equations. Mechee& Senu[17] approximate
the solution of DE by employing the method of
power series and the numerical solution is
established by collection method.

5 Analysis of the Method of Solution Lane-
Emden of Fractional Order

Berwa et a. [3] studied the solution of DES based
on Haar operationd matrix,  Sahoo[23]
studied the solution of DEs using Haar wavelet
collocation method, Shi et a. [25] studied the
10numerical solution of DEs by using Haar
wavelets, Chen [5] used Haar wavelet approach
toODEs, Li & Hu [16] solved the fractional Riccati
DEs using Haar wavelet while Saeedi et a. [22]
introduced an operational Haar wavelet method for
solving fractional Volterra integral
equations, Lepik[15] solved fractional integral
equations by the Haar wavelet method, Saeed
&Rehman[20] used Haar wavelet-quasi linearization
technique for fractional nonlinear DEs,Lepik[15]
solved the fractional integral equations by the Haar
wavelet method, Wang et al. [28] used Haar wavelet
method for solving fractional PDEs numericaly. In

Equation (40), consider o >b, f(t,y) = —— y(t) and

tO(
git)y=0 However, DEW (t) = ah(t) =
Xty cihi(x) and

,DW () = (1 FD*)W (t) + WP (0)
= aP* Bh(t) + WE(0)

W(t) = (I*DY)YW(t) + W(0)
=aP%h(t) + A
Hence,
k
ah(t) + prar ap®Ph(t) + WA(0) + ap®h(t) + A
= ch(t)
If we consider a = gand B= 1;We solve the system
obtainthe coefficients

of  equations to

(€0» €1, Cqy ooy Crp)-
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6 Comparison Study Using Numerical Collection
M ethod

Collocation method for solving DEs is one of the
most powerful approximated methods. This
method has its basis upon approximate the solution
of FrDEs by a series of complete sequence of
functions, a seguence of linearly independent
functions which has no non-zero function
perpendicular to this sequence of functions. In
general, y(t) is approximated by Mechee& Senu [17]

y() = Xizq a:6;(x) (41)
where gq;for i = 0,1,2,..,nare an abitrary
constants to be evauated and e;for i =

0,1,2, ..., naregiven set of functions. Therefore, the
problem in Equation (40) of evaluating y(t) is
approximated by (42) then, is reduced to the
problem of evaluating the coefficients for . i =
0,1,2,..,n Let {t, t,, ..., t, }isapartition to interval
[0,1] and t;= jhandh = n and j = 0,1,2,...,n See
the comparison of absolute errors of the problem
using numerical collection method with polynomial
basis and Haar wavelet basis.

7 Discussion and Conclusion

The numerical solutions of ordinary differential
equations of fractional order using Haar wavelet
and B-spline bases have been studied. Haar wavelet
technique is used to approximate the solution of the
differential equations. The algorithm of collection
method is updated for using the two basis. An
application of Lane-Emden has been studied
numerically. The numerical results have clearly
shown the advantage and the efficiency of the
modified method in terms of accuracy and
computational time.
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Table 1. Absolute Errors of Examplel Using
Numerical Collection Method with (a) Polynomial
Basis (b) Haar wavelet Basis
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Abstract

In the submitted search ,by making use of Differential operator ,we drive coefficient
bounds and some important properties of the subclass T;(n,p,q,a, 1) (p,jEN =
{1,2,..};,q,n € Ny =NU{0};0 < a < p — q) of analytic
and multivalent function with negative coefficients .Distortion property for functions in the class Tj(n,p, q, a, 1)

are investigated once by using the composition involving an integral operator and certain fractional calculus

operator and other once by using the composition involving an integral operator and certain fractional calculus
inverse operator .

Keywords. Multivalent function, Coefficient bounds ,Distortion inequality , §- neighbourhood , Differential
operator, integral and fractional operators .
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1-Introduction

Let T(j,p) betheclassof analytic and multivalent

functions f(z) inthe open unit disk

U={z:z € C:|z| <1} that defined by
f@) =27 = Lijp 2"

0;,pEN={12,..1} . (1)

Let T(j, p) the class consists of function of the form

(ak2

a(z) = _yoo K

f ( ) (p Y Zk:]+p (k—-q)! axz
(a,=20; geNy=NU{0}; p>¢q)

)

The Differential operator for afunctionin T(j,p) is

define by

ZP=1 k-q

D{;l(fq(z))

p! n _
o-0° = Zizjsp (k- q)‘( )
(,jEN={12,..}; q,neNo, p>q)
3

The operator Dy was studied by M.K. Aouf [5] and
Altintas et a. [7] , ealier by Owa
[13] ,Yamakawa[9] ,Owa[12] ,Srivastava Owa[4] .

It iseasytoseethat

Dpf(z) = @

By using the operator Dyfi(z) Given by (3) ,a

function f(z) belonging to T;(n,p,q,a,4) if and
only if
Dp*(f9(2)) ) '
((1—A)Dg(fq(z))+a DEFL(£4(2) >a (peEN;qnE

No=NU{0};p>q), (5

forsome a (0 < a <p)andforal zeU.

Next the following earlier investigations by Osman
Altintas,Huseyin Irmak and H.M.Srivastava[6] ,

when f(z) € T(j, p) we define the § - neighborhood
by

Ns(f) = {g 9E€Ty,p)g(2) =2zP -
Yhe =j+p ka
and Zk—]+p klay
(6)

So that ,obvioudly ,

Ns(h) ={g9:9 € T(j,p),9(2) = z° -
Dk=j+p by z"
And Y jiplbil < 683 (7)

Where, and in what follows,

h(z) = 2P (k=zj+p;np€eEN;q€EN, =
N U {0}). (8)

we using the familiar operator J., defined by
Bernardi [10], Libera[8] and Srivastave et a. [2] as
follows

Uep)(2) = S [Fte1f(Ddt
T(j,p);c>—-p;p €N),

—bel <6}

(f(2) €
9)
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and fractional calculus operator DY Srivastave [11] ,
Srivastava et al.[3] that known as the form

D (zP) = L@+ p-p (p > —1; ueR)

F(p—p+1) (10)

2-Coefficient Inequalities

We drive sufficient condition for f(z) that defined
by using differential operator .

Theorem 1. Assume that f(z) € T(j,p) . Then
f(2) € Ty(n,p,q,a,2) if and only if

k— k—
2100 (5" (9 - e (142052 -
1)) st < - 5.0
O<a<p—q;pjEN; q,nENy;p>q)
(1

Where

5(p,q) = =

(P=1)...(p=q+1)
il A (12)

q+0
q=0

Proof. If f(z) € Tj(n,p,q,a,1) ,then

Dyl (r9(2) 3
(- A)Dg(fq(z))MD{}“(fq(z)) =
k=
R( T q)' ~Zik= J+p(k q)l( " kP )
p! k—q.n P
(p—-q)! ~Zi= JH+P = q)l( 7 - l+l( )]akz p

k— q)n+1 Zk-p

e e

k_
(1= 50> B ()" ((ﬁ)ma—a—
k=a\\ K kep
Aa (p—q)) gy B2

. _ k—q k—q
Since z - 1~ ,we have iy (" (—) -
Zk—]+p(p_q) p—q

a (1 +2 <(:%Z) - 1)) 50k, Q)apz"P < (1 —

)6, q)
Conversely ,assume that inequality (11) holds
true ,since

l
{ (p q)' Tk =j+p(k— q)'(

kK k—q
(p q)' 2k =j+p(k- q)'( )n[l 1= A(

R(w) > a ifandonly if | e 20{)| <1
Since
DB (ri(2)
(1-)DR(F9(2)+1 DR (£ (2))
DTL+1 q
BH(£4(2)) (1-20)

(1-HDR(fA@)+A Dt (r4(2))
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Then S (EO | () -af 1+
_ (A-DDFF(F1(2)~(1-1) DR(FU(2)) k=j+p \p_4 Iy
T la+a-2a)DP (FI@)+(1-2a)-A(1-2) DR (fU(2))

| -T2 Jﬂ,(k"'q),(" otynot_p(K20) 4 pjagatP | A <(ﬁ) -

— k— k—
o q),u a)+2k_,+p<k q),( Sy 2a+a-2al- 1—p—q—/1( ")+zm1( N P|

[
I

T 2(1-a) =

I 1+p(k q)n[(}; Z) l(’; g) 1+A](k q)‘u"zk Y 1)) 5(k; Q)(Uk

1
(1-a)8(p.9) i
PR Rl (e sw(¢) o

o _ = Yk=j+p 01 —)8(p, q)
Putting j =1,n=1,q=0and 1 =0 in Theorem =(1-w,)1—a)s®,q)

1,we have the following corollary : < (1 - a)s(p,q)
Thus it follows from Theorem (1) that f(z) €

Corollary 1. Let the function f(z) € T(j,p) . Then Lp.qad).
f(2) € C(p, ) if and only if ??nvefse'y » Suppose  that  f(z2) €
j Yy Y4y ,Snce
Zf=1+p§[§—a]ak<(l—a) 0<ac< AL
p;p€EN) . (-25@.0) S
Not that this result obtained by Salagean et a[1] . S L) P+t afsGrpa kzjtp.
) ) We define
Corollary 2. Assume that the function f(z) defined
by (2) beintheclass Tj(n,p,q, a, 1) .Then o] .
—-q —-q -9
S5 Bk, @) < —— 10000 6= ((ﬁ)‘“<l”<(ﬁ>‘1)>>“"‘”
(ﬁu) <(ﬁ(1—a2))+(1—a)) Wy = FEpnY T ay
(13) (k=j+p).
(kzj+p;p,jEN;q,nENy; p>q). And Wy =1 =Nl jp g by smple
Theresult is sharp for the function f(z) given by calculation ,we get
f(2) = 2P = i jip 2"
f(2) =
70—
N (1-a)sp,q) gk
— (1—0:)5(17.:) 2 (k>j+ k=r+p (;‘)%g)n ((H) <1+,1((k Z) )))6(k,q)
N I ) g
p;p,jEN;q,nENy;p>q). (14) Yi=j+p 0 f(2) .
Thus we get the result .
3-Extreme points
Theorem 2. Let f,(z) =zP and fi(z) = zP — 4-Neighbouhoods for the function class
T;(n,p,q,a,2)
s In this section ,we conclude the neighborhood
(1-2)dp.a) z*, properties for each of the following slightly mutated
('I%Z) (C%Z)_“(”’1((’;%2)_1)))5(""“ _funcpon_ in the. class T}(n,p,q,a,l,y_) .Our first
implication relation including the §- neighbourhood
for k=j+p ad p>q . Then f(z) € Ns(h) isgiven below in the following Theorem .
Tj(n,p,q,a,4) if and only if it is of the form Theorem 3. |If f(z) belonging to
f(2) = Xi=p Wi fr(2) where w, =0 for all Ti(n,p,q,a, 1) ,then
k=j+pand ¥, w, = 1. Ti(n,p,q,,A) € Ng(h) . (15)

Where h(z) isdefined as (8) and
Proof . Suppose that f(2) = Xi=p wifi(2) =
Oy fp(2) + iz jup Orfi(2) 5= —— (l_fx)ts(p'q)
=z p+ Y (k=j+p)io [w_k (11— (p]Tq"'l) <(ﬁ(1—al))+(1—a))
)8, )/ (((k=a)/(p—a))"n ((k—aq)/( -
D) —a@+A(((k=q)/(p—q)) -
DNk, @) 2k ] .
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Pr oof . For f(2)eT(,p) ,Theorem _ s (/'“’)!(ﬁ’f1)n[ﬁ(1—“l)+(l—“)]
(1) immediately yields . <(,- ) (la+1) ((ﬁ(l - a/l)) +- a)>> G+p) = (1= D8G. )G +p - )
J n J _ _ . _
P, q) Xi=jip < (1 —a)d(p.q) , Provided that y is given properly by (16) .Thus we
so that 85U+ 0@ Xk=jip kar < have f(z) € Tj(n,p,q,a, A,y) for every y given
by (16).This obviously completes the proof of
(1-0)8(p.9) Theorem (4).
(#+1)n<<#(1—aﬂ)>+(1—0{)) o )
5- Propertiesinvolving the operator J., and DY
Thus we have - Lemma 1.[6] let the function f(z) € T(j,p).then
Dk=jip kar < DX _
(1-a)8(p.9) z (]c,pf(Z) )
- n - - = 6 . r(p+1) Zp_ﬂ _ ZOO . ( (C+p)r(k+1) )a Zk—”_
75+ ((/Tq(l_“l))*'(1—11))5(1"*'17,‘1) F-w+D k=i+e \eriore—prn)
This complete the proof . (HER;c>—pijp EN) an
A function f(z) € T(j,p) is said to be in the class
P . her functi And
Ti(n,p,q,a,A,y) if there exists another function (D" ( )) T
g(Z) € Tj(n' p.q, a,/l, V) such that ]C,p z f z - (p—pu+c)r(p—p+1) z
f@ _ . o (c+p)r(k+1) k—u
9(2) 1| <p-y (zeU:0=y<p) Zic=jp ((k—,u+c)l“(k—u+1)) Az
(LER;c>-p;j,PEN) (18)
Theorem 4. Let g(z) € Tj(n,p,q,a,4,y) .Suppose
also that Provided that there are no zeros appear in the
denominators in (17) and (18) .This in genera ,the
y = operators
p— Jep @d D} are non-commutative .
G o +1)n<< i (1—al)>+(1—0[)> So as to give growth and distortion proper'qes for
8 p—a b= functions in the class T;(n,p, q,a, 1) including the

j+p (ﬁﬂ)n((ﬁu—am%(1—a)>(j+p)!‘(1‘“)5(7"‘7)(f+p‘q)! operators J., and D4 ,we find it to be convenient to
use the order operation exhibited by (18) and (19) as

Then(16) we shown in the following Theorems.

Ns(g) € Tj(n,p,q, @, 4,v)

Theorem 5 .If isin the class T;(n,p,q,a, 1),
Proof . Suppose that f(z) € Ng(g) ,we then find r@ i, g )

then
from (6) that
Zi=jipklag — bl <6
Which readily implies the following coefficient F(p+1)
inequality 5 ro—p+1)
Yicjeplax — bl <m0 (,p EN;p>q)
Next ,since g(2) € T;(n,p, q, @, 1) ,we have ,
Ry T Y DT ReD) 2/ 1z|PH <
k=j+p D = — ; ; ; ) _
(p]Tq+1)n<<pJTq(1—al))+(1—0£))(j+p)1 (]_4’—1p+c)1’(]+p+;4+1)(p_q+1) ((p_q(l al)>+(1 a)>
So that ID;#Uepf (@)
f@ | She j+plak—bl
9@) 1-53 1 b =
/ \ r(p+1)
< 8 1 r(p—p+1)
=G+ | 1 TEi—a)S(p.q)(jw—q)!
(55+1) ((z)]Tq(l—al)>+(1—a))(j+p)!
(c+p)r(+p+1)(1-a)8(p,q) |z|J b |z|PHH
(j+p+c)F(j+p+u+1)(%_‘q+1)n(<ﬁ(1—al)>+(1—rx)>
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(zeU;0fa<p—q; u>0;n,q€
No; j,p€EN,c>-p;p>q)

(19)

The result is sharp for the function give by

Jep(f(2)) =

4P _ (f:+p)(711—a}6(p.q) 2P
(j+p+c)(p]Tq+1) (p]Tq(l—al)+(1—a))

(20)

Proof . It follows from Theorem (1) that

(L + 1)" ((ﬁ(l — aﬂ)) +(1- a)) SU+0,0) Xiejup W <

R

sA-a0épq -

Which readily yields

=

k=j+p

Zloiozj+p ak S
(1-a)8(p.q)

(ﬁ+1)n<<#(1—al))+(1—a)>5(j+p,q)
(21)

Assumed that the function defined in U by
F( ) _ (F(p+u+1)) _,,LD u(]c,pf(z))

T'(p+1)

_.p _ ) (p+c)T(p+u+1)I(k+1) k

=2z = Xi=jsp ((k+c)l"(p+1)l"(k+u+1))

=8, )77 = it () a2 (z€U)
(22)

. (p+c)T(p+pu+1)T(k+1)

if we set H(k) - (k+)T(p+1)T(k+u+1) (k =
j+pij,pEN) . (23)
Then it is easily seen that 6(k) is decreasing

function of k when u > 0 ,and hence
0<8k)<6(+p)=

(p+AT(p+p+DI(+p+1) . s

(i+p+OT(P+ DT +p+u+1) (c>-p:u>0jp€

N)). (24

Where

Dz_u(]c,pf(z) ) =

P+

@+Or @+p+Dr(j+p+1)(1-a)5(®.9)

asz+p+u
7
Up+r(p+DrGp+u+D(31+1) ((p’fq(l—al))+(1—a)>5(j+p.q)

By using (21) and (24), we deduce that
|zIP — 0 + )|zl "P X jup ax < [F(2)] <

|zIP + 0G + ) zl*P X i

Zainab .O/ Kassim .A

That is
|z|P —
P+ P+u+ I (j+p+1)(1-a)8(p.q) |z]J*P <
(j+p+c)1"(p+1)F(j+p+;4+1)(p+'q+1)n<<p+'q(1—al)>+(1—a))6(j+p,q)
IF(2)| <
|z|P +
(p+o)l (p+u+Dr(+p+1)(A-a)8(p.q) |Z|j+p
(i+p+C)F(p+1)F(i+p+u+1)(p%'q+l)n(<p%'q(1—al))+(1—a))5(1'+p,q)
Which yields inequality (19)
Theorem 6.If f(z)isin T;(n,p,q,a, 1), then
rp+1)
r(p—p+1)
(c+p)r(j+p+1)(1-a)5(p,q) |Z|] |Z|p—ﬂ <
(j+p+c)1"(j+p—/1+1)(#_.q+1)n(<p;_'q(1—a}t)>+(1—a)>
|D5(]c,pfq(z) )l
<
I'(p+1)
I(p- u+1)
(c+p)T(j+p+1)(1-a)8(p.q) |Z|] |Z|p—u
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(j+p+c)F(j+p+u+1)(p#_'tzﬂ)"((p;_"z(l_a,l))ﬂka))
(zeU;0<a<p-q;0<u<1nq€Nyjpe€E
N,c>-p;p>q). (25)

Theresult is sharp for the function give by (20) .

Proof . It follows from Theorem (1) that

Zl’?:j+p kak S
(+p)(1-a)6(p,q) ©
(L.{_
p-q

1)"((ﬁm—aa))m—a))a(ﬂp.q)
p:0<u<1l;j,peN), (26)
suppose that the function defined in U as follows
r
G(z) = D 2k Dk (., f(2) )

T'(p+1)

<a<

(p+o)r (p—p+1)r(k)

k
(k+c)F (p+1)I (k- #+1)) Az

=Zp_21c?]+p(

= 2P — Y i () kay 2" (zel) ,
@7

. (p+o)I (p—p+1)r (k)

It we set ]9( ) T (k+o)r(p+1)r(k—p+1) (k =
j+p;,0<u<1;j,peEN) . (28)
Then it is easily seen that 9(k) is decreasing

function of k when u < 1 ,and hence
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. (p+o)r (p—p+1)r(j+p)
< =
0 <90k) <9G +p) (+p+o)r(p+)r(j+p-p+1)

(c>-p;p,JEN;0<Su<1). (29

By using (26) and (29), we deduce that

|2IP =9 + )|zl *P T jip kay < |F(2)] <
2P + 9 + )|z P T jup kax

That

|Z|P —

(c+p)T(p—pu+ VI (+p+1)(1-a)5(p.q)

ie)'((
G+p+Orp+DI(+p-p+1)(51+1) <<ﬁ(1—a/1))+(1—a)

IF(2)| <
|z|P +

(c+p)T(p—u+ VI (+p+1)(1-a)5(p.q9)

Jj "M
(j+p+c)F(p+1)F(j+p—/.t+1)(ﬁ+1) ((H(l—al))+(1—a)>

Which yields inequality (25) .
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Abstract:

The aim of this paper isto study the omega limit set with new concepts of the prolongation
limit random sets in random dynamical systems, where some properties are proved and
introduced such as the relation among the orbit closure, orbit and omega limit random set. Also
we prove that the first prolongation of a closed random set containing this set, the first
prolongation is closed and invariant. In addition, it is connected whenever it is compact
provided that the phase space of the random dynamical systems is locally compact. Then, we
study the prolongational limit random set and examined some essentia properties of this set.
Finally, the relation among the first prolongation, the prolongational limit random set and the
positive trgjectory of arandom set is given and proved.

Keywords: random dynamical system, tragectories,Omega-Limi set, prolongations and

prolongational limit of random dynamical system.
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1. Introduction.

Random dynamical systems arise in the modeling of
many phenomena in physics, biology, economics,
climatology, etc. , and the random effects often
reflect intrinsic properties of these phenomena rather
than just to compensate for the defects in
deterministic models. The history of study of
random dynamical systems goes back to Ulam and
von Neumann in 1945 [1] and it has flourished since
the 1980s due to the discovery that the solutions of
stochastic ordinary differential equations yield a
cocycle over a metric dynamical system which
models randomness, i.e. a random dynamical
system. Arnold and 1.D. Chueshov (1998) [2]
presented the universal view of an order-preserving
random dynamical system, offered several examples
and studied the chattels of their random equilibria
and attractor. Son (2009)[3] studied the Lyapunov
exponents for random dynamical systems. Yingchao
(2010)[4] used the theory of random dynamical
systems and stochastic analysis to research the
existence of random attractors and also stochastic
bifurcation behavior for stochastic Duffing-van der
Pol equation with jumps under some assumptions.
Kadhim and A.H. Khalil(2016)[5] they define the
random dynamical system and random sets in
uniform space are and proved some hecessary
properties of these two concepts. Also they study the
expansivity of uniform random operator.

The structure of this paper is as follows: In Section
2 we recall same basic definition and facts about
random dynamical. In Section 3 we study the
definition of trgjectories in random dynamical
system. In Section 4 we recall some basic fact about
omega-limit random set in random dynamical
system. In Section 5 will be devoted to the concept
of prolongations and prolongational limit random
sets under a random dynamical system. We define
the first prolongations and prolongationa limit
random sets of random dynamical system
(Definition 5.1,5.5) .If M(w) isinvariant. We have
first prolongations and prolongationa limit sets of
random  dynamical system  so  invariant
( Theorem5.3, 5.7 ). the first prolongation and the
prolongational limit random set are closed sets
(Theoremb5.2 ,5.6) .If X islocally compact. We have
first prolongations and prolongational limit sets of
random dynamica system are connected
( Theorem5.4, 4.13).

2. Notation and basic definitions

In this Section we recall some basic definition and facts
about random dynamical system and notation .

2.1. Notations

(1) G =locally compact group.

(2) X=metric space with metric d.

(3) (O, F, P) isaprobability space.
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(4) X = the set of all measurable functions from Q to
X.

(5) S[A, 7]
(6)H(A, 1)

theset{y:d(y,A) < r}.
theset{y:d(y,A) =r}.

2.2. Basic definitions
Definition 2.2.1 [6-7]:The metric dynamical system
(MDS) isthe 5-tuple (G, Q, F,IP, 8) where (Q,F,P)isa
probability space and 0:6xQ-Q is (B(GQ@)®
IF, F) —measurable, with
0) (e, w) = Idg ,
(i) 0(g *h,w) =6(g,0(h,w)) and
(iii) P(6,F) =P(F) ,VF EFVw EG .
Definition2.2.2[6]: The MDS (G, Q,F, P, 0) is said
to be topologica metric dynamical system (TMDYS)
if Q is topological space and 6:G x Q- Q is
continuous.
Definition2.2.3 [6-8]: The mapping ¢: G X O X X =
X is said to be measurable random dynamical
system on the measurable space (X, 8(X)) over
an MDS (G, Q, F, P, 8) with if it has the following
properties.
() ¢ iIsB(@)IFRL(X), B(X) — measurable.
(i) The mappings ¢(t,w) = ¢(g, w,): X - X
form a cocycle over 6(-), that is, Vg,h € G,w € Q
they satisfy
p(e,w) =idy Vo € Q, (2.2.1)
¢(g*hw)=¢(g,6hw)ephw)  (222)
The RDS (G, Q,X, 6, ¢) shal denoteby (6, ¢).
If the function ¢(,w,)TXX-X, (tx)+
¢(t, w,x), is continuous for every w € Q then the
measurable dynamical system is caled continuous
or topological R
Definition 2.2.4 [9]: Let (6,¢9) be a measurable
RDSand C c O X X aset.
(i) C iscdled forward invariant if for t > 0
C(w) € p(t,w) 1C(O(t,w))P —as.
equivaently

o(t,w)C(w) c C(O(t,w))P —as.
(ii) Ciscaled invariant if forall t € T

C(w) = p(t,w) 1C(0(t,w))P —as,
for two-sided time equivalent to

o(t,w)C(w) =CO(t, w)P —a

Definition 2.2.5 [9-10]: Let (Q,F) be a measurable
space and (X, d) be ametric space which is considered a
measurable space with Borel ¢ — algebra B(X). The set-
valued function A4: Q - B(X), w — A(w) , issaid to be
random set if for each x € X the function w+—
d(x,A(w))is measurable. If A(w)is closed (connected)
(compact) for dl w € Q, it is caled a random closed
(connected) (compact) set.
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Definition 2.2.6 [10]:
An RDS (6,¢) is said to be asymptotically
compact in the universe D, if there exists an
attracting random compact set {B,(w)}, i.e., foe any
D € D andfor any w € 2 we have

lim,_, o dx{p(t, 0(—)w)D(8(-)w/
By(w)} =0, (223
where dy{A/B} = sup,e,4 dist(x, B).

3. Definitions and char acterizations
In this section we study the trgjectories in random
dynamical system. First we shall state the definition
of trgjectories in random dynamical system and We
describe  some measurable properties of the
trgjectory of random dynamical system.
Definition 3.1: Let D:w+— D(w) be a
multifunction. We call the multifunction
@ = Y5 (@) = Uz 9(1,6_;0)D(0_, )

the tail (from the moment t) of the pull back
trajectories emanating from D. If D(w) = {v(w)} is
asingle valued function, then w — ¥, (w) = y3(w)
is said to be the (pull back) trgectory ( or orbit)
emanating from v. That is w~— y,(w):=
UrzO (p(T' 9_.[(0)17(9_.[&))
Definition 3.2: Let v € X3 and ¥, ¥, and y,; be
the mappings form X into 2% defined as follows
(D) v(w) ={p(, 0_w)v(0_ w):t € R}
2) v (w) ={p(t,0_1w)v(0_1w): t € R*}
Q) vy () = {p(t,0_,w)v(6_tw):t € R}
For every v e Xy, the sets y,, y5, and y, are
respectively called the trgectory, the forward semi-
trajectory and backward semi-trajectory.
Definition 3.3: Let x € X. and v,, v, and y; be the
mappings form X. in to 2% defined as follows
(D) vx(@) ={p(t, w)x:t € R}
) 75 (w) = {p(t, w)x:t € R}
) vx (0) = {p(t, w)x:t e R}
For every x € X, the sets y,, y;, and y, are respectively
called the trgectory, the forward semi-trgectory and
backward semi-trajectory.
Proposition 3.4: For and v € X.2, the sets y,,, .5, and
¥, areinvariant random sets.
Proof. Let v € X.&. To show that y, is an invariant. Let
x € yp,(w) and t € R. Thenthereexists s € R such that
x =@(s,0_s0)v(0_;w). Now
P{w: ¢(t, w)x € ,(0,w)} =
P{w:x € p(—t,0,w)y,(0,w)}

= P{w: ¢(s,0_sw)v(0_sw) €
(=t 60,0y, (6, w)}

= P{w: v(0_;w) € ¢(—s,w) o
(=t 60,0y, (6, w)}

= P{w: v(0_sw) € p(—s,w) o
o (—t,0,w)y,(6,w)}

= P{w: v(0_sw) € @(—s,0_1w") o
(=t 0Dy (@)}
where w’ = 6, w.
= P{w:v(0-sw) € p(—s — t, 0y, (")}
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=P{0_ 0" v(0_,0_10") € p(=s — t, 0" )y, (w")}
= P{w":v(6,0") € o(r,w)y,(0")},
r=-—s-—t.

=P{w": o(-7,0,0)v(0,0") € y,(w)} = 1.
Thusfor every x € y,(w) and t € R, we have

P{w: ¢(t, w)x € y,(6,w)} = 1.
This means that the set y,(w) is an invariant. In a
similar way we can show that y,f, and y,, are invariant
random sets.

4. Omega-limit set in random dynamical system

In this section, we state the definition of omega-limit set
in random dynamical system is due to [10-11].Thus, we
give some basic properties of omega-limit set in random
dynamical system.

Definition 4.1: The multifunctions
N (w) = {y € X::

w —>

there is a sequences {t,,} in R and {x,,}in M(6_, o) with t, —

+o0 and ¢(ty,, 0_;, w)x, — y for all w}

w— Iy(w)={yeX:

there is a sequence {t,,} in R with {x,}in M(0_, w) t, —

—o and @(ty,, 6_¢, (w))x,, — y for all w}
are said to be the omega (alpha) -limit set of the
trajectories emanating from x respectively.
If M = {x}, thewe have
[ w—T)] x*"+ (w)={yeX
: there is a sequences {t_ n} in R witht_n
— 4ooand p(t_n,0_(f —t] -n)w)x — yforall w}
w— Iy (w)={ye
X.:there is a sequence {t,,} in R with ¢, —
—o0 and @ (ty,, 0_¢, (w))x — y for all w} .
The following assertion gives another description of
omega-limit sets.
Theorem 4.2: Let I (w) be the omega-limit set of
the trajectories emanating from M. Then
Ty(w) = Neso V5 (W) =
nt>0 Urzt 90(‘[' Q—Tw)M(Q—Tw)
Proof. Suppose that y € I, (w), the for any t > 0
there exists {t,} in R and {x,,} in M(6_,,w) such
that  @(t, 0_¢,w)x, —y. Hence X, €
Uzse M(6_;w). Thus
(p(tn' g—tnw)xn € Urzt (p(T' H—Tw)M(e—‘L'w)

c Urzt (p(T' e—rw)M(g—rw)-

Therefore
YV € Upsr (7, 0_;0)M(6_,0), foral t > 0.

Thus y € nL’>0 Utzt ¢(T' H_Ta))M(Q_Ta)).
To prove the converseinclusion, let
Y € Neso Uz 9(7, 0 0) M (0_ )
then y € U.s: (7, 0_r0)M(6_,w) for all
In particular,

VE Upne(, 0_;0)MO_,w) for adl n=
1,2, ...

t>0.
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Therefore there exists a sequence {y,} in
Uzsn @(7, 0_;w)M(6_,w) such that y, — vy . Thus

Vn € Upsn @(7,0_;0)M(6_;0) and d(y,y,) <
1/n, n =12, ... It follows that there exists t, = n
and x, € M(6_,w) such that y,, = <p(tn, Otnw)xn.
That is  ¢(t,0,,w)x, —y. Consequently,
y € Iy (w).

Iy (@) = Neso yDt (w) =
Neso Urse (1, 0 0) M (6_,w).

Ty (@) = Neso Vi (@) =

r]1.“>0 Urzt (p(Tr Q_Ta))M(H_Ta)).SinCG ylg ((’J) iS
closed an invariant, then so is Iy, (w) = Neso V5 (w).
Theorem 4.3: Let I} (w) is arandom closed set,
then the proof is devided in two parts:

1. Indirect Proof. By above theorem we have
Ty (w) = Neso v5(w) =

nt>0 Urzt (p(T' g—rw)M(e—rw)-

Since yj(w) is closed an invariant, then so is
Ty (@) = Neso V5 (@).

2: Direct proof. Let y € [t (w). Then there exists
{y,} in be asequencein T (w) suchthat y, — y.
We wish to show that y € I} (w). Indeed for each
positive integer k, there is a sequence {t¥} in R and
{xi} In M(_jxw) with tf¥ — +o and
@(t, 0_x(w))xs — ¥y . We assume without loss
of generality that d (yk,q) (tﬁ,@_t;ﬁw) x,’{) <1/k
and tf > k for n > k. Consider now the sequence
{t,} in R with ¢, =t} and a sequence {x,} in
M(6_;, @) with

X, =x,. Then t, — 4+ and we clam that
) (t,’f, H—tk“’) x,, — y.To seethis observe that

d((p(tn, H_tnw)xn,y) < d((p(tn, H_tna))xn,yn) +
d(Yn,¥)

<1/n+dOmny)-

Since 1/n and d(y,,y) tend to zero we conclude
that

d((p(tn, H_tna))xn,y) —0
Consequently <p(tn, H_tna))xn —y ad yEe€
I (). Thus T (w) = T (w), i.e., Tif (w) isclosed.
Theorem 4.4: Let X. be any metric space and
x € X.. Then

IH(O,w) = o(t,w)I (w) forevery t € R.
Proof. To prove TI;(0,w) = @(t,w){(w) .Letz €
I} (6,w).Then
there is a sequences {t, } in R with t, —
+oo and @(t,, 0_;,0,w)x — z
Pty +t—1t,0_,0w)x — z
ot w) p(t, —t,0_,0w)x — z
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Oty —t,0,, Wx — @(t,w) 'z  where
t, —t — +oo. Thus we have o¢(t,w) 'z € T (w).

Thenz € ¢(t, w)I} (w)

Then T} (6,w) € o(t, )} (w) .Now letze
o (t, ) (w). Then there
isy € I (w)suchthat z= ¢(t,w)y .Then
there is a sequences {t, } in R with t,, —

+o0 and ¢(t,, G_tn)x — y. By continuity ¢(t, w) ,

Pt 0)9(tn, 0, w)x — ¢t @)y ot
th O0_¢,W)x — z

@(tn +1t,0_1_, 0w)x — z Thus we have
z € I} (6,w) .Then

o(t, )T (w) € T (0,w) Thenlf (6,w) =

ot )T (w).
Theorem  45.If (t,x) — @(t,0_w)x is
continuous, then
(@) = i (@) U T ().

Proof. First, note that yh(w) cyh(w) . By
Theorem (4.2), we have I () € v (w).
Therefore v (w) 2 yi(w) U Ty (w). To prove the
converse inclusion, let y € y);(w). then there exists
a sequence {y,.} in v} (w) such that y, — y. Now
Vn € Uz 0(7,0_;0)M(6_,w), then there exists a
sequence {t,} with t, >t for every n and {x,} in
M(6_,,w)such that v, = ¢(t,, 0_,,0)x,. We
have two cases:

Case |: The sequence {t,} has the property that
T, — +oo, inwhichcase y € I (w).
Case |1: There is a subsequence {7, } in R* such
that 7, — t € R* (as R* is closed). But then

) (‘rnk. G_Tnkw) x — @(1,0_;w)x €y (w) (since
(t,x) — @(t,0_.w) (since (t,x) — @(t, 0_ w)x is
continuous). Since (‘rn w0,
the uniqueness of the limit we have ¢(t,0_,w)x =
y € y4(w). From Case | and Case Il, we have
y € y5(w) U Ty (w). Hence

i (@) < vy (@) U T (w).
Therefore vy (w) = v (w) U Ty (w)
Corollary 4.6: For any x € X..y; (w) = yf (w) U
I (w) and y; () = ¥ (@) U T (w) .
Proof. By the definition we have v, (w)U
I (w) € v (w).To show that y}(w) € yf(w) U
I} (w) let y € v (w).Then there is a sequence { y,,}
inyS (w) such that y, >y . Sincey, in
Y& (@) .Then  y, = ¢(t,,6_,,w)x for at, in
R*.Either the sequence {7,} has the property that
T, = +0o,in which case y € I} (w), or there is a
subsequence T, » t € RT(as R* is closed).But
then (T, G_Tna))x - ¢(1,0_,w)x € yf (w), and
since aso ga(rnk, Q_Tna))x -y we
havep(t,0_,w)x =y € yf(w).Thusy (w) S
¥x (@) UTY (w).Thusyyf (w) =7y (w) VT (w).m

kw) x — vy, then from
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5. Some Properties of the Limit Random Sets

in Random Dynamical Systems.

the concepts of prolongations and prolongational
limit sets are played an essentia role. In the
deterministic  dynamical system the formal
definition of prolongation is due to Ura[12] and the
concept of prolongational limit set is due to Bhatia,
Szego [13]. By following this line of investigation,

the present paper introduces the notions of
prolongations and prolongational limit random sets

of random dynamical systems. We simplify several
concepts and effects of reclusiveness and
depressiveness from Bhatia and Szegd [2]. We
consider (6, ¢) random dynamica system then we
define the first prolongations and prolongational
limit random set of M .we prove some new
properties of the studying of prolongations and
prolongational limit random sets.

Definition 5.1: Let M:w+— M(w) be
multifunction. The multifunction w — D (w),
where

Dy (w) = {y €X.

: there is a sequences {t,,} in R* and {x,}in M(6_, w )
with ,x, = x €

Np=1 M(6_¢,w ) and @(t,, 0_,w)x, — yforall w} , is
said to be to be first positive prolongation of M. If the
set R replaced by R~ in above we get the notation of
first negative prolongation of M and shall denoted by
Dy (w).

If M = {x}, thewe have

Df(w) ={y eX:

there is a sequences {t,,} in R* and {x,}in X with ,x, —z, = @(t, — t,0_; 4+ ©)x,.

x and @(t,, 0_, w)x, — y for all w}
Theorem 5.2: D} (w) isclosed.
Proof. To show that D;;(w) isclosed. Let y € D} (w),
then there exists sequence {y,} in Df;(w) such that
¥, — v. Since y, € D};(w) for every n. Then by
definition of D}, (w) there exists sequences {t¥} € R*
and {xi} €M(0_yxw) such tha xy—x€
N1 M(0_xw)  and o(tk, Q_trzgw)x,’f — y.. We
assume by taking subsequences if necessarily that
t >k, d(xk,x) < 1/k and d(o (t5,0_xw) x5, 30 <
1/k for n = k. Now consider the sequences {x]'}, {t"} .
Clearly x; —x €Ny M(6_snw) and {t;} € RT,
Note that

d((p(trr)}' 8—tﬁw)x‘rrlll y) S d((p(tfr:l g—trlw)x;lll Yn) +
d(yn, y)

<1/n+dQ,y).
Since {1/n} and d(y, y) tend to zero, then

o(en, 9-1;;;(0)?63 — vy, then y € D} (w). This means
D} (w) = Dj;(w) and so Dj;(w) is closed.

Theorem 4.3: If M isinvariant, then sois D} (w) .
Proof. We need to show that ¢(t, w)D}(w) =
D (6w ).
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Let z € o(t,w)Df;(w), then there exists y € DF;(w)
such that
z=¢(tw)y.
To show that z € D} (6,w ).Since y € D} (w), there
exist sequences {t,} in R* and {x,} in M(6_; 6. )
withx,, — x € Ny=; M(6_,,w ) and
@O (ty, 0_¢,w)x, — y. Since @(t, ) is continuous,
then
P(t, ) o @(tn, 0, w)x, — @(t, )y, then
p(t+ty, 9—t—tn °0iw)x, — @(t,w)y
for and y € Dj;(w) by Definition. According to Def.
z=@(t,w)y € D} (0w). then  @(t,w)Df(w) c
D (6,w). To prove the converse inclusion, let z €
D} (6, w). by Def. there exist sequences {t,,} in R* and
{y,}in M(B_tnGtw ) with
Yn =Y €Ny M(6_,6,0 ) and so
y€EM(0_,6,w ) for dl n. Since M is an invariant
Yn € M(6_;, 00 ), then
Yn € @(t,0_,w)M(O_, w ), then there exists x, €
M(0_;,w ) such tha  y, = @(t,60_,w)x,, then
Xn = @(—t,0.0_; w)y,. Now,
Y € Ny=y @(t,0_, 0)M(0_, @ ).
Theny € ¢(t,0_,,0)M(6_, w ) forall n.
Then there exists x € Ny, M(0_,, @ ) such that
y=9¢(0_,0)x for al n. Snce y,—y, ie
@(tn, O, w)xy — @(t,0_, w)x
P (tn, 0-,0:0) Yy — 7.
P, w) e p(ty —t,0_¢ 40Xy — 2
= ¢(t,w) z, — z, with
(5.1
From (2.2.3) we have that z, — By(w) as n — oo.
Since B, (w)is compact, there exist {n,} and b € By(w)
such that z, — b a k — o. Moreover by Def.
b € D} (w). From (5.1) we obtain that z = ¢(t, w)b.
Therefore D, (0,w) < @(t, w)Di(w) for al t >0 and
w € Q. Thus Dj; (w) isinvariant.
We now discuss about the connectedness of the First
Prolongation .

Theorem 4.4: Let X. belocally compact. Then D3, (w)
is connected whenever it is compact.

Proof. Let Df;(w) be compact but disconnected. Then
there are two compact non- empty setsP and @ such
thaa PU Q =Df(w) and PN Q =@ .Since P and Q
are compact d(P,Q) > 0.Thus there is r > 0 such
thatS[P,r] , S[Q, r]are compact and digoint .Now x € P
or x € Q .Let x € P .Then thereis a sequence {x,} in X
and a sequence {t,} in R*such thatx, — x,and
@(tn, 0, w)x, — y € Q Wemay assume x,, € S[P,7]
and @(tn, 6_,w)x, €S[Q,r] .Then the trajectory
segments (s, 0_5, w)x, ,0<s, <t, intersect
H(P,r),and therefor is a sequence {t,,}, ,0<71, <t,
suchthat ¢(t,, 0, ,w)x, € H(P,7).Since H(P,r)is
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compact we may assume that ¢(t,,0;,w)x, — z €
H(P,7).Then zeDj(w)but z¢PuU Q as zE€
H(P,r) .Thus contradiction shows that Df;(w) is
connected.
Definition  5.5: Let M:w+— M(w) be
multifunction. The multifunction w — J (w), where
Ii(w) ={y eX.
: there is a sequences {t,,} in R* and {x,}in M(6_, w )
with ¢, — +o,x, — M(w)and ¢(t,, 0_, w)x, —
yforallw} , is sad to be to be first positive
prolongational limit set of M. If the set R* replaced by
R~ in above we get the notation of first negative
prolongational limit set of M and shal denoted by
In(®).
If M = {x}, then the definition of J;(w) becomes

Ji@) ={y X

: there is a sequences {t,,} in R* and {x,,}in

X with t,, — +oo,

Xn, — x and @(t,, 0_, w)x, — y for all w}.
The following result show that the prolongational limit
set is closed and invariant.

Theorem 5.6: J;;(w) is closed.
Proof. To show that J;;(w) is closed. Let y € J;(w),
then there exists sequence {y,} in J;;(w) such that
v, — y. Since y, € J{(w) for every n. Then by
definition of J;;(w) there exists sequences {tf} € R*
and  {x;} €M(0_ygw) such tha x;i— M(w),
tk — 400 and o(tk, B_t;ga))x,’i — y,. We assume by
taking subsequences if necessarily that tf >k
d(xf,x) < 1/k and d(g (th,6_yw) xk, i) < 1/k for
n = k. Now consider the sequences {x/}, {t}} . Clearly
x — M(w) and t¥ — +oo. Note that

d(p(t, 0_mw)xl,y) < d(e(th, 0_mw)xt, ) +
AW, y)

<1/n+dmy).
Since {1/n} and d(y,y) tend to zero, then

o(tn,0_nw)xy —y, then y € [ii(w). This means
Ji(w) = Ji(w) and so /5 (w) isclosed.

Theorem 4.7: If M isinvariant, then sois /i (w) .
Proof. We need to show that  ¢(t, w)/i(w) =
Jn (6w ).

Let z € @(t, w)/j (w), then there exists y € J (w) such
that z = @(t, w)y.

To show that z € J(0,w ).Since y € J# (w), there exist
sequences {t,} in R* and {x,} in M(6_ 6.w ) with
X, — M(w), t, — 4o and O (tn, O_,0)x, — y.
Since @(t, w) iscontinuous, then

p(t,w) o @ty O, w)xn — @(t,w) y.
By the cocycle property, we have

ot + ty, O_i—t,° Orw)x, — ¢(t,w)y
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for and y € Jk(w) by definition. According to
definition. z = @(t,w) y € J§(6,w). then JH(w) c
Ji1(6,w). To prove the converse inclusion, let z €
Ji7(6,w).By definition there exist sequences {t,} in R*
and {x,,} inM(6_,, 6w ) with x,, = M(w), t, — +oo
and  @(t,, 6_¢,0.w)x, — z. By the cocycle property
we have
(p(t’ (1.)) ° (p(tn -t e—tn+tw)xn —z

= ¢(t,w) z, — z, with
Zn = @(ty — t, g—tn+tw)xn- (5.2)
From (2.2.3) we have that z, — By(w) as n — oo.
Since By (w)is compact, there exist {n,} and b € By(w)
such that z, — b as k — c. Moreover by Def.
b € Ji;(w). From (5.2) we obtain that z = ¢(t, w)b.
Therefore J4(0,w) € @(t, w)/i;(w) for dl t >0 and
w € Q. Thus J(w) isinvariant.
Theorem 5.8: Df;(w) = yi(w) U JiH(w).
Pr oof. yi (@) U J#(w) € Df;(w). To prove the
converse inclusion. Let y € Df;(w) by Def. there exist
sequences {t,} in R* and {x,} in M(6_, w ) with
X, — M(w) and @ (tn, O_,w)x, — y. We may
assume that either t, > t€R* or ¢, — 4o, if
necessarily by taking subsequences. In the first case
@(tn, 0_¢,0)x, — @(t,0_,w)x (since ¢(,w,):RX
X — X is continuous for every w € Q). By uniqueness
of the limit we have ¢(t,0_w)x =y € vyt (w). Inthe
second case y € Ji(w) by Def. of Jf(w). Thus y €
Ya' (@) U [ (w). Hence D} (@) = i (w) U Jfi (w).
Corollary 5.9: D (w) = v (w) U J{ (w).
Proof. By definitions y,f(w) U J{(w) c Df (w). . To
prove the converse inclusion. Let y € D (w) by Def.
there exist a sequences {t,,} in R* and a sequences {x,,}
with x,, — x such that @(tn, 0_¢,w)x, — y. We
may assume that either t, — ¢t € R* or t, — +oo, if
necessarily by taking subsequences. In the first case
O(tn, 0_¢,w)x, — @(t,0_w)x (since ¢(,w,):RX
X — X is continuous for every w € Q). By uniqueness
of the limit we have ¢(t,0_.w)x =y € y,' (w). In the
second case vy € J{ (w) by Def. of Jf(w). Thus y €
¥x (@) UJ5 (w). Hence
D} (@) =75 (@) U J{ ().
Theorem5.10: L et

x,y € X with the property that

x = @(t,0_,w)y, forevery t in R and
w € Q. Then y € J}(w) if and only if
x € J; (w).

Proof. Suppose that y € Jf(w). Then there exist
sequences {t,} in R* and {x,} in X with x, — «x,
th = 4+ and  @(ty, 0_,w)x, — y. Set 7, = —t,
and y, = @(t,, 0_,w)x,. Then {z,,} is a sequence in
R~ with 7, — —c0 and {y,} isasequencein X and
In 2V
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Finlay we need to show that ¢ (t,, 6_;, @)y, — x.
d(‘p(fn' G—an)Yn'x) =
d((p (Tn' H—an) ° (p(tn' H—tnw)xn' X)

d(@(tn, 0-2, ) © @(tn, -, )%, 9(Tn, 0, )y),

= d(q)(tn' e—tnw)xn' Y) —0

Then we have ¢(t,,0_,, @)y, — x .Thus x € J; (w).
Similarly we can prove the converse.

Theorem 5.11: J}(0,w) = ¢(t, 0)]{(w)
Proof. To prove Ji(6,w) = ¢(t,w)/f(w) Let
z € JF(0,w) . Then there is a sequence {t,} in R"
witht, — 400 and a sequence {x,,} in X with x, — x
such that (p(tn, H_tnetw)xn -z,

Pty —t+60_, 0,0)x, — z

@(t, 0)p(tn = t,0p_, 0)x, — 2

P(th —t, 0, 0)x, = @(t,w) 'z \Wheret, —t
— 400,
Thus we have ¢(t,w) 1z € Jf(w) . Then Z€E

o(t, w)]{(w),

, then J¥(6,w)
converse inclusion
Let z € o(t,w)/} (w). Then thereis

y € I (w) with z = ¢(t,w)y and a sequence {t,} in
R* with t, — +o and a sequence {x,} in X with
X, — x such that <p(tn, Q_tna))xn —y. By the
continuity of o(t, w),
<p(t’ 0)) ° (p(tn' H—tnw)xn - (p(t! (l))y

(p(t +t, H_tnw)xn — z

(p(t + tn, H_t_thtw)xn — z
t,+t — 4+ ,x, — x.
Thusz € J{ (6,w),we have
o(t, w)J7 (W) € J7(6,w)
ThenJf (6:w) =o(t, )7 (w).
Theorem 5.12: If X. is localy compact.Then

I (w) # @ whenever Ji (w) is non-empty and
compact.

Proof. If possible let T;i(w ) = @ .Then we claim that
yi(w) is closed and digoint with/; (w).Thaty;(w) is
closed follows from y;:(w) = yii (w) U T (w)=y (w)
as If(w) =0 ,Tha Ty (w) N JiH(w) = 0 follows from
the fact that if T (w ) N Ji;(w) # @,then by invariance
of JH(w), Ti(w) C Ji(w).Since J(w) iscompact ,we
will have T3 (w) # @ and compact(remember that any
sequence{ y,}in a compact set Q has a convergent
subsequence ). This again contradicts the assumption
I (w)=0 .Thusy;;(w) isclosed and T3 (w ) N Ji(w) =
@ .Since J(w) is non-empty and compact we have
dyh (), Ji;(w)) =0 .thusthereisa r >0 such
that S[Ji(w),r] iscompact and digoint with

C ¢(t,w))}(w) . To prove the

, Where
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yi;(w) . Now chooseany of y € Ji(w). There
is a sequence {x,} in M(6_,,w) and a sequence
{t,} in R* suchtha x,->x€enM(b_, w) and
ty > +o0  and, ¢(t,, 6_, w)x, — y .We may assume
that x ¢ yj(w) , <p(tn, O_tnw)xn € S[JH(w),r] for
al n .Then the trajectory segments ¢(s,, 65 w)xy,
with0< s, <t, , intersect H(J;;(w),r) and therefor
there is a sequence {7,} , 0< 1, <t,,such that
(p(rn, G_Tna))xn € H(Jf (w),r) .Since HJ}(w),r) is
compacte we may assume that  ¢(t,, 0., w)x, — z €
H(J}(w),r) .By taking subsequences we may assume
that either t, >t € R* ort, >+ . If1, >t
then by the continuity axiom  ¢(t,, 6_, w)x, —
pt,wx =1z e z€yh(w) which contradicts
yi(@) n SJH(w),r] =0 M 1, -5 40  then
z € JH(w) ,but thiscontradicts z € H(J; (w),r) as
Ju(@) N H(y(w),7) =0.
Theorem 5.13. Let X. be locally compact. Then
Ji(w) isnon—empty
And compact if and only if  Dj;(w) is compact.
Proof. Let J4(w) benon-empty and compact .Then
[;7(w) isnon empty and compact .But then y,}(w) is
compact(y,f (w) is closed with X be localy
compact).Hence Df(w) = y;7(w) U Ji(w)

= yp(w) U Ji(w)is compact .Now Dg(w) is
compact . Since [ (w) € D (w) .Then/h(w) s
compact.
Theorem 5.14: If X islocally compact. Then Jj(w) is
connected.
Proof: Let J(w) be compact . If J(w) =0 there is
nothing to prove. So let JH(w) =0 If JH(w) is
disconnected ,then there are non-empty compact sets
P,Q such that JH(w)=PuUQ and=PNQ =@ .Since
Ii(w) is non- empty and compact ,hence
connected ,we have Tj(w) c P or Tji(w)cQ .Let
fw)cP Snceyg(w)UP = yh(w) UP
aslf(w) c P and y,(w) is compact. Then
yi:(w) U P is compact. Now let Q N (yf (W) UP) =@
@nyipu@nP)+=0 then Qny;; #@.But Q
must be invariant .Thus will show that Tji(w) c
Q,aconradiction .Then yj(w)UP is compact and
digoint from Q , Dy(w)=ys U/y(w) = (v (@) U
P)uQ .since yi(w) UP and Q are digoint compact
sets we have Dj;(w) is disconnected. Thus is a
contradiction . Then J;7(w) is connected.

6. Conclusion

This paper has been studied the concept of Prolongation
Limit Random Sets in Random Dynamical Systems. we
prove that the First Prolongation of a closed random set
containing this set, the First Prolongation is closed and
invariant, also it is connected whenever it is compact
provided that the phase space of the RDS is localy
compact. Then we study the Prolongational Limit Set for
RDS and proved some essential properties of this set.
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Where we prove that the Prolongational Limit Set for
RDS s closed and invariant. Also the relation among the
the First Prolongation, the Prolongational Limit Set and
the positive trgjectory of a random set is given and
proved. Also if the phase space of RDS is locally
compact then the following statements are true : if the
Prolongational Limit Set for RDS is nonempty and
compact, then the omega-limit set is non-empty; the
Prolongational Limit Set for RDS is nonempty and
compact if and only if the the First Prolongation is
compact. Finally the Prolongational Limit Set for RDSis
connected.
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1-Introduction :
Let H=H(U) be the class of anaytic functions in
the open unit disk U={z€e C:|z| <1}.For n a
positive number additionally a € C. Let H[a, n] be
the subclass of H entailing of functions of the form:
f(z)y=a+a,z"+
apy zZM+ . (aeC). 1.1
Too, let A be the subclass of H entailing of
functions of the form:
f(2)=z+33,a z¥.
(1.2
Let f,g € H. The function f is said to be
subordinate to g, or g issaid to be subordinate to f,
if there exists a Schwarz function w analytic in U
withw(0) = 0 and W(2)] < 1 ( z € U), to such an
extent that f(z) = g(w(z)), In such a case we
compose f<gorf(z)<g(z)(zel). If g is
univalent function in U, then f < g if and only if
f(0) =g(0) and f(U) < g(U).
Let phe€ Hand Y(r,5,t,z): C3xU—-> C. If p
and  Y(p(2),zp'(2),z%p" (z); z) ae  univalent
functions in U and if p fulfills the second-order
differential superordination.
h(z) < Y(p(2),2p'(2),2°p" (2); 2),
(1.3)
then p is caled a result of the differential
superordination (1.3). ( If f issubordinate to g,
then g issuperordinate to f) . An analytic function q
is caled asubordinant of (1.3) , if q < p for very the
functions p filling (1.3).
An univalent subordinant g that fulfillsq < g for all
the subordinants q of (1.3) is called the best
subordinant. Miller and Mocanu [5] have gotten
conditions on the functionsh, q and  for which the
accompanying ramifications holds:
h(z) < Y(p(2),2p'(2),2°p" (2); z) -
a(z) < p(2). (1.4)
Forfe A ,Al-shags [2]
following integral operator:
Fef (g) = (1+0)°05(c;2) * f(2)
- “F(g Jy 7 (log D> f(tz) dt, (c >
0,6 >1andz € U). (1.5
We adso note that the operator F2f(z)
characterized by (1.5) can be communicated by the
arrangement development as pursues:
Fof(2) = 2+ T (o) arz™.
(1.6)
In addition, from (1.6), it pursues that
2(FeTf(2)) = (c + DR (z) — cFE* f(2).
.7
Ali et al.[1] gotten adequate conditions for certain
standardized scientific capacities to satisfy
zf'(z)
f(@

defined the

q:(2) < < qx(2),
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where gq,and q,are given univalent functions in U
with q,(0) = q,(0) = 1. Additionally, Tuneski [9]
acquired adequate conditions for starlikeness of f in

"
relations of the amount ~ (f(,z()z’;)(zz) Recently,

Shanmugam et a.[7,8], Goyal et a .[4] also gotten
sandwich consequences for certain classes of
analytic functions.

The principle question of the present paper is to

discover adequate conditions for  certain
standardized systematic capacities f to fulfill:
0@ < LD < q,(),
and
13 _ 8
1(2) < (t FC+1f(Z)+(1 t) Fcf(Z)))L < qz (Z),

A

wherever g, and g, are known univalent functionsin
U with g;(0)= g(0)= 1.
2-Preliminaries:
With the end goal to demonstrate our subordination
and superordination result , we require the
accompanying definition and lemmas.
Definition 2.1 [5] : Denote by Q the set of al
functions f that are analytic and injective on
U\ E(f), where
E(f) = {£€dU:
(2.2)
and are such that f'(&) #£0 for E€0U \ E(f).
Lemma 2.1 [5] : Let q be univalent in the unit disk
U and let 6 and @be anaytic in a domain D
containing q(U) with @(w) # 0 when w € q(U).
Set Q@) = zq'(2)8(q(z)) and h(z) =
8(a(2)) + Q).
Suppose that

0] Q(z) isstarlike univalent in U,

1imz—>£f(z) = OO}

zh' (z)

(i) Rl

}>0 forz € U.

If pis analytic in U withp(0) = q(0),p(U) c
D and

8(p(@) + zp'(@0(p(2)) < 8(a(@)) +
2q'(2)0(q(z) (22

then p < q and q isthe best dominant of (2.2).
Lemma 2.2 [6]: Let q be convex univaent in
functioninU andlet « € C, 8 € C /{0} with

zq" (2)

Re(1 +~os (B)).
If pisandyticin U, and

ap(z) + Bzp'(z) < aq(z) + Bzq'(2),

(2.3
thenp <q
(2.3).

—) > max(0, -

and q is the best dominant of
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Lemma 2.3 [6]: Let g be convex univalent in U and
let B €C , further assume that Re () >0 . If
P € H[q(0)] n Q and p(z) + Bzp'(z) isunivalent in
U, then
q(z) + Bzq'(z) < p(z) + Bzp'(2),
(2.4
which implies that
subordinant of (2.4).
Lemma 2.4 [3]: Let g be convex univaent in the
unit disk U and let 8 and @ be analytic in domain D
containing q (U) . Suppose that

() Re {Z((;((ZZ))))} >oforz €U,

(i) Qz) = Zq’(z)(b(q(z)) is starlike

g<p and q is the best

univalent in U.
If
p € H[q(0), 1] n Q with p(U)
c D,6(p(2)) + zp'(2) ®p(2)
isunivaent in U and

8(a(@) +29'(@)8(a(@) < 8(p(2)) +

zp' (2)@(p(2), (2.5)
theng <p and q is the best subordination of
(2.5).

3- Subordination Consequences:
Theorem 3.1 : Let g be convex univalent function
in U with gq(0)=1 0% e C,A >0also,
assume that q satisfies:

zq'' (z) A
Re(1 + e ) > max(0, — Re (E)) .
If f € A satisfies the subordination

(1-%(c+1D) (%)X +

s+1p \M /g8
v+ D (L) () <a@ + F2a @),

(3.1)

z Fe*f ()
32)
then
8 A
(9) <a@. @3

and q isthe best dominant of (3.2).
Proof : Characterize the capacity p by

F‘g*’l Z A
p(2) = (ﬁ) . (3.4)
Differentiating (3.4) with admiration to z
logarithmically, we get
' (@) _ 4 (2F @) )
p(2) _}\( Fetlf(2) 1) (35)
Presently , in perspective of (1.7), we get the
accompanying subordination

2'() (C< RfG) 1)
@ )
F2f (2)
<F€+1f(z) - 1)) ’
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) z FoHf(z)

1)+
Ff(z)
(FE“f(z) 1>)'
The subordination (3.2) from the speculation moves
toward becoming

vy vy
p(2) + 52p'(2) < q(2) + 5-29'(2).
An request of Lemma 2.2 with g = % anda=1,
we get (3,3)
Putting q(z) = (1—3) in Theorem 3.1 ,we get the

1
following
Corollary3.1:Let0 # W € C,A > 0aso

Re {1+ -2} > max{0, —Re()}.
If f € A satisfies the subordination

8+1 A
(1-W(c+1D) (—F° Zf(z))

' 5+1 A 5
therefore 22 _ (FC ! (Z)) (c( Fer (@)

+ ¥(c
F*f(2)\" [ FSf(2)
“)( 2 ) (Ff?“f(Z))
1—22+2%z
A-22 |

then

FS*f(2)\'  /1+z
< z ) = <1 - Z)'
and q(z) = (g) is the best dominant.
Theorem 3.2 : Let q be convex univalent function in

U with q(0) =1,q(z) # 0(z € U) furthermore,
accept that g fulfills

A, 24"
Re (1 s e )>0, (3.6)

whereW € C/{0},A>0andz € U.

Supposing that -Wzq'(z)is starlike univalent
functionin U, if f € A fulfills:

O, 8,c,¥;z) < Aq(z) — Yzq'(2),

(3.7

where 0(A,8,¢,¥;z) =

N (tF?“f(z)+(1—t>F§f(z))A B

z

A
tFS*1f(2) + (1 — OF¢f(z
NP( e f(@) i )cf()>
(tF§f<z>+(1—t)F§-1f(z) _ 1)
tF+1£(2)+(1-)FEf(2) !
then
(tF?“f(z)+(1—t)F§f(z))"‘ <q()

Z

(3.8)

(3.9

and q(2)isthe best dominant of (3.7).

Proof: Express the function p by
p(z) = (tF§+1f(Z)+(1—t)F§f(Z))A’

Z

(3.10)

by setting :
O(w) =Aw and d(w) = -¥,w # 0.
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We see that 6(w) is analytic inC, @(w) is analytic
inC/{0} andsoon@(w) # 0,w € C* .
Too, we get
Q(z) =1zq'(2)9q(2)
and

h(z) = 6q(z) + Q(2) = Aq(z) — ¥zq'(2).
Itisclear that Q(z)isstarlike univalentinU ,

= —Wzq'(2),

zh'(z) zq" (2)
Re = Re{l — = + > 0.
ORI 7@
By a draightforword computatlon ,  we

obtain\p(z) —W¥zp'(z) = 0, 8,¢, ¥;z), (3.11)
where @(}, 8, ¢, W; z) isgiven by (3.8).

From (3.7) and (3.11), we have

Ap(z)— Wzp'(z) < Mq(z) —¥zq'(2).

(3.12)

So , by Lemma 2.1, we become p(z) < q(z). By
using (3.10) , we get the result .

Putting q(z) = igz ((1 <B<A<1)in Theorem

3.2, we obtain the next corollary :
Corollary3.2: Let-1 < B < A < 1 while
Re {1 — 28 450,
e T A+82)
where¥ € C/{0} and z € U, if f € A contents
1+Az A-B
B(,8,c,¥;2) < (A () = Wz ghps):

1+Bz

and @(A, 6, ¢, ¥; z) isgiven by (3.8),
C@ﬂﬂ@+ﬂ—0@ﬂ@y<

1+ Az
1+ Bz

Z

while q(z)- 1o

4-Superordination Consequences :

Theorem 4.1: Let g be convex univalent function in
U with q(0)=1,A>0andRe{¥} > 0. Letf €
A satisfies

(22) e ng), 1100

and

(1-w(c+ 1))( f(z)) +
o\ (e

Ye+D ( ; ) (F§+1fz(z))'

exist unlvalent inU.If

q(z) + —zq '@ <(1-¥(c+1D) ( f(Z)) +

Fe @)\ (_F2f(2)
ch+1)( ) (), @
then

F+1 A
@< (L2), @

and q is the best subordinant of (4.1).
Proof: Expre$ the function p by
p(2) = ( /@ ) .43

D|fferent|at|ng (4.3) with
logarithmically , we get

respect to z
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zp’ (2) 2(F&1f ()
b A( FEF () _1>'

(4.4

After some computations and using (1.7)
(4.4), we obtain

5+ A
(1-¥(+1D) (@)
+¥(c

Fe*1f(2)\" [ Fef(z)
“)< ” )(F§+1f(2)>

=p(z) + 5 2p'(2),
and now , by using Lemma 2.3, we get the desired
result .

Putting q(z) = g in Theorem 4.1 , we acquire the
accompanying corollary :

Corollary 4.1: Let A > 0 and Re {¥} > 0
A satisfies:

F8+1 A
(%) € H[q(0),11nQ
and

(1-W(c+1) (—“) +

A
Fetif(2) Fér(z2)
Wle+ 1)( ) (nglf(Z))'

, from

Iffe

be univalent in U f

1-2242%5
A
() <
(1-¥w(c+1) ( f(z)) +
5+1 A s
Wic+1) <F f(Z)) ( Fef(2) )

Fotif(z)

then

(1 + z> - (F?“f(z) )7‘

1—z z ’

and q(z) = E is the best subordinant.

Theorem 4.2: Let g be convex univalent function in
U with q(0) = 1, also, accept that g fulfills

Re {24@ 248>, (4.5)

Wheren € C/{0} and z€ U.

Assume that - Wzq'(z) is starlike univalent function
inU, let f € A satisfies

5+1 —t)F8
£ f(Z)+Z(1 t)Fcf(Z)) € H[q(0),1]1 nQ,

and @(A, 8, ¢, ¥; z) isunivalent function in U , where
B(A, 6,c,¥; z) isgiven by (3.8). If

Aq(z) — Wzq'(z) < O(A, 8,c,¥; 2), (4.6)
then
5 —oF F(\
q(2) < <th+1f(Z)+Z(1 DFSf( )) _ “.7)
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and g isthe best subordinant of (4.6).
Proof: Express the function p by

S+1 _\rd A
p(z) = (th f(@)+1 t)Fcf(Z)) '

Z

(4.8)

by setting

o(w)=Aw and Oo(w)= -¥ ,w=0,

we seethat 8(w) isanalyticin C,@(w) isanaytic
inC*andthat @(w) #0 ,we C*.Too, we get
Q(2) = zq'(2)0q(z) = —¥zq'(2).

It is clear that Q(z)is starlike univalent function in

U ' ’
e (Go)

e[,

By a straightforword computation ,we obtain
O, 8,¢c,¥;z) = Ap(z) — Wzp'(2),
4.9
where @(2, 8, ¢, ¥; z)is given by (3.8).
From (4.6) and (4.9) , we have
Aq(z) — ¥zq'(z) <Ap(z) — ¥p'(2)

(4.10)

So , by Lemma 2.4, we become q(z) < p(z). By
using (4.8), we get the outcome.

5-Sandwich Consequences :

Concluding the consequences of differential
subordination and superordination we arrive at the
next "sandwich consequence”.

Theorem 5.1 : Let g; be convex univalent function
in U with gq0)=1,Re {¥}>0 and let g, be
univalent in U ,gx(0)=1 and fulfills (3,1), let
f € A satisfies :

S+1 A
(=L2) enpinq,
and

8+ A
(1-¥(+1D) (@)
+Y¥(c

5+ T
+1) (Fc 1f(Z)> ( E:{(Z) )
z FeTf(2)

beunivalentinU . If

91(2) +% zq',(z) < (1 -¥(c+1)) (F?“f(z))}‘ +

zZ
we+ 1 () () <

v,
q2(z) + 7 24 ,(z),then

F§+1 A

0@ < (L) <00,
and q;andq,are correspondingly
subordinant and the best dominant .
Theorem 5.2: Let g; be convex univaent function
in U with q;(0)=1, and fulfills (4.5), let g, be

the best

100

Waggas .G//Sarah .A

univalent function in U gx(0)=1, satisfies (3.6), let
f € A satisfies

tFO1£(2) + (1 — OFSF(2)\

< ¢ f(2) i )cf(z)> €H[11]NQ.
And @(A,8,c,¥;z) is univaent in U . Where
DA, 6,c,¥;z)is given by (3.8) If Aq.(2) —
¥zq',(z) < 0(A, 8,¢,¥;2) < Aqx(z) — Yzq',(2)

then
5+1 RS A
oo < (FLOHAIRIOY )

In addition q,and q, are correspondingly , the best
subordinant and the best dominant .
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Abstract:

Our goal in the present paper isto recall the concept of general fuzzy normed space and
its basic properties to define the general fuzzy bounded operator as a background to introduce
the notion general fuzzy norm of a general fuzzy bounded linear operator. After that we proved
any operator from a general fuzzy normed space into a general complete general fuzzy normed
space has an extension. Also we prove that a general fuzzy bounded operator on a general
fuzzy normed space is equivalent to ageneral fuzzy continuous. Finally different types of fuzzy
approaches of operators is introduced in order to prove that the general fuzzy normed space
GFB(V,U) is general complete when U is general complete.
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General Fuzzy bounded operator, General Fuzzy normed space.
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1l.Introduction. Zadehin 1965[1] was the first
one who introduced the theory of fuzzy set. When
Katsaras in 1984 [2] studying the notion of fuzzy
topological vector spaces he was the first researcher
who studied the notion of fuzzy norm on a linear
vector space. A fuzzy metric space was also studied
by Kaleva and Seikkalain 1984 [3]. The fuzzy norm
on a vector space have been studied by Felbin in
1992 [4] where Kaleva and Seikkala introduce this
type of fuzzy metric. Another type of fuzzy metric
spaces was given by Kramosil and Michalek in[5].

Certain type of fuzzy norm on a linear space was
given by Cheng and Mordeson in 1994 [6] where
Kramosil and Michalek present this type of fuzzy
metric. A finite dimensional fuzzy normed space
was studied by Bag and Samanta in 2003 [7].
Saadati and Vaezpour in 2005 [8] where studied
complete fuzzy normed spaces and proved some
results. Also Bag and Samanta in 2005 [9] were
studied fuzzy bounded linear operators on a fuzzy
normed space.

Again Bag and Samanta in 2006 and 2007 [10],
[11] used the fuzzy normed spaces that introduced
by Cheng and Mordeson to prove the fixed point
theorems. The fuzzy topological structure that
introduced by Cheng and Mordeson of the fuzzy
normed space was studied by Sadeqi and Kia in
2009 [12]. Kider introduced a new fuzzy normed
space in 2011 [13]. Also he proved this new fuzzy
normed space has a completion in [14]. The
properties of fuzzy continuous mapping which was
defined on a fuzzy normed spaces by Cheng and
Mordeson was studied by Nadaban in 2015 [15].
The concepts of fuzzy norm is developed by a large
number of researches with different authors have
been published for reference one may see [ 18, 19,
20, 19,22, 23, 24, 25].

In this paper first the definition of genera fuzzy
normrd space is recalled and also its basic properties
in order to define the general fuzzy norm of a
general fuzzy bounded linear operator from a
general fuzzy normed space V into another general
fuzzy normed space U.
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2.Basic Properties of General Fuzzy Norm
Definition 2.1:[10]

A binary operation © : [0,1] x[0,1]—[0,1]
satisfying

(D) a®b=b®O a

(2)bO1l=b

(3) a®O[bO t] = [a® b]Ot

(4 if b<aandt<sthenbOt<a®s

for al a,b,s,t €[0,1] iscalled a continuous
triangular norm [or t-norm].

Example 2.2:[11]

()Let m® n=m. nfor al n, m € [0,1] wherem .nis
multiplication in [0,1]. Then & is continuous t-
norm.

(2)Let mQ n=m A nfor al n, me[0,1] then ® is

continuous t-norm.

Remark 2.3:[24]

(Dfor al n > m there is k with n® k >m where n,
m, k €[0,1].

(2)thereis g with g® g = nwheren, g €[0,1].

First we need the following definition

Definition 2.4:[26]

Let R be a vector a space of real numbers over filed
R and O, be continuous t-norm. A fuzzy set Ly
:Rx[0,00) is called fuzzy absolute value on R if it
satisfies

(A1) 0 £ Lr(n,a) <1 foralla>0.

(A2) Lg(n,a) =1 < n= 0 for all a>0.

(A3) Lr(n+m, a+b) = Lg(n, a) O Lk (m, b).

(A4) Lg(nm, ab) = Lr(n,a) ® Lr(m, b).

(A5) Lg(n, ):[0,00)—[0,1] is continuous function
of t.

(A6) lim,_,, Lg(n, a) =1.

For all m , n €R and for all a, b €[0,1]. Then (R,
L, ©,Q) is called a fuzzy absolute value space.
Example 2.5:[26]

Define Lg(a, t) = %H for adl a € R then Ly is a

fuzzy absolute value on R wheret ® s=t-sandt
®s=t-sforadlt s €0, 1] wheret - sisthe
ordinary multiplication of t and s.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019
ISSN (Online): 2521 — 3504

ISSN (Print): 2074 — 0204

Example 2.6:[28]

Define L;: Rx [0,0) »[0,1] by
0 if a<|u

La(u, 8= {1 if a> ||u||

then L, isafuzzy absolute valueon R . L, iscalled

the discr ete fuzzy absolute value on R.

Definition 2.7:[28]

Let V be avector space over thefiled R and O,®
be a continuous t-norms. A fuzzy set G,:Vx[0,0) is
caled a general fuzzy norm on V if it satisfies the
following conditions for al u, veV and for all
a €ER, s te[0,m):

(G1) 0< Gy (u, s)<1 for al s>0.
(G2) Gy(u, 9)=1 < u=0for al s>0.
(G3) Gy(au, st) > Lg(a, ) ® Gy(u, t) for al a #0
eR.
(G4) Gy(ut v, s +t) > Gy(u, 5) © Gy (v, ).
(G5) Gy(u, .) : [0,0) — [0,1] is continuous function
of t.
(G6) lim;_,,, Gy(u,t)=1
Then (V,Gy,©O,®) is caled a general fuzzy
normed space.
Example 2.8:[28]
Define G))(u,@)= for all

(R ,G};,©,Q) is agenera fuzzy normed space with
sOt=stand t®Q s=tsforal st e[0,1]. Then
G|, is called the standard general fuzzy norm
induced by the absolutevalue |.|.

Example 2.9 :[2§]

If (V, |I.1) is normed space and Gy : V X [0,00) =
[0,1] isdefined by :

Gyuad = —— then (V,G; ,© ,® ) is generdl

a+| ul|
fuzzy normed space where sOt=sAtand tQ s
t. s for al t ,s € [01]. Then G is caled the
standard general fuzzy norm induced by the
norm ||.||-
Example 2.10 :[28]

Let (V,|| .]) be vector space over R, define

1 if |lull<t

Galut)= {0 i; lull > ¢
Where u©@ v=u® v=uAvforadlu,ve[0]1]
and u® v=u . v for al u, ve [0,1]. Then G, is
called the discrete general fuzzy normon V.
Proposition 2.11:[28]

Suppose that (V, |.|) is a normed space define
Gy(u, 9 = S+iu” for all u €V and 0< s. Then (V,

Gy,©O,®) is general fuzzy normed space where a
Ob=a®b=a.bforal a be[01].

a

ueR .Then

a+|ul
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Lemma 2.12:[28]

Gy(u, .) is a nondecreasing function of t in the
general fuzzy normed space (V, Gy,©,Q) for al u
€V this means when 0< t <s implies G,(u, t) <
Gy(u,s).

Remark 2.13:[28]

Assume the general fuzzy normed space
(V,G6y,0,). Thenfor any u € V, >0 ,0<n<1.
1-If Gy(u, 9=(1—n ) we can find 0< t< s with
Gy(u t)> (1—n).

2- If Gy(u, 9=(1—n ) we can find 0< s< t with
Gy(u t)> (1-n).
Definition 2.14:[28]

If (V,Gy,0,®) is a genera fuzzy normed space.
Then GFB(u ,n ,s) ={
m €V: Gy(u—m, 9)>(1—n) } is caled a general
fuzzy open ball with center ueV radius n and s>0
and GFB[ u, n,s] ={m €V : Gy(u—m ,s ) > (1—n)}
is caled a general fuzzy closed ball with center
ueV radius n and s>0.
Definition 2.15:[28]

Suppose that (V, G, ,©,Q) is a genera fuzzy
normed space and M<S V. Then M is cdled a
general fuzzy open if for any u € M we can find 0<
n<l, s>0with FB(u,n,t) € M . A subset W € V is
called a general fuzzy closed set if W€ isagenera
fuzzy open.

Definition 2.16:[28]

Suppose that (V,G,,©,Q) is a genera fuzzy
normed space. A sequence (u,) in V is said to be
general fuzzy approachesto uif every 0 < e <1
and O< sthereisN € N such that G, (u,, —u,s) > (1
—¢) for every n> N. If (u,) is genera fuzzy
approaches to the fuzzy limit u we write lim,,_,,, u,,=
uoru, - u Also lim,_,Gy,(u, —u,s)=1ifand
only if (u,,) isgeneral fuzzy approachesto u.
Definition 2.17:[28]

Suppose that (V,Gy,O,Q) is a genera fuzzy
normed space. A sequence (v,)in V is caled a
general Cauchy sequence if for each0 <r <
1 ,t > 0 there exists a positive number N € N such
that Gy[vy —vp, t] > (1 —r1) forallm,n > N.
Definition 2.18:[28]

Let (V,G,,©O,Q) be a generd fuzzy normed
space and let M< V. Then the general closure of M
is denote by MG or GCL(M) is smallest general
fuzzy closed set contains M .
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Definition 2.19:[28]

Suppose that (V,G,,0,Q) is a genera fuzzy
normed space and let MS V. Then M is said to be
general fuzzy denseinV if MG =V
Lemma 2.20:[28]

If (V,Gy,©,Q) isageneral fuzzy normed space
andlet M € V. Thenm € M¢ if and only if we can
find (m,) in M such that m, —» m.

Definition 2.21:[28]

Suppose that (V,G,,©O,®) is a genera fuzzy
normed space A sequence (v,)in V is caled a
general Cauchy sequence if for each0 <r <
1,t>0wecanfind N € N with Gy[v; — v, t] >
(1 —r)foradlj, k=N.

Definition 2.22:[28]

Let (V,G,,©O,Q) be a genera fuzzy normed
space. A sequence (u,,) is said to be general fuzzy
bounded if there exists O< q <1 such that G, ( u, ,
s) >(1—q) for al s>0 and ne N.

Definition 2.23 :[28]

Let (V,G,,0© ,Qand (U,G,;,,O,Q) be two
general fuzzy normed spaces the operator S; V— U
is called general fuzzy continuous at v, €V for
every s>0 and every 0 <y < 1 there exist t and there
exists § such that for al veV with Gy[v — v,,s] >
(1 —6) wehave Gy[S(v) — S(vp),t] > (1 —yp)ifS
is fuzzy continuous at each point veV then S is
said to be general fuzzy continuous.

Theorem 2.24:[28]

Suppose that (V, Gy,® .Q) and (U, Gy,O,Q) are
general fuzzy normed spaces. Then S:V- U isa
general fuzzy continuous at u € V if and only if
u, ~uinV impliesS(u,) -»S(u) in U.

Definition 2.25:[28]

Suppose that (V,Gy,O,®)and (U, Gy,O,Q ) are
general fuzzy normed spaces. Let T:V - Uthen T
is called uniformly general fuzzy continuous if
fort > 0and for every0 < a < 1 there is B and
there iss>0 withGy[T(v) — T(w),t] > (1 —a)
whenever Gy[v —u,s] > (1 —B) foralv,u € V.
Theorem 2.26:[28]

Suppose that (V, Gy,®,®) and (U, Gy,O,Q ) are
two general fuzzy normed spaces. Let T:V -»U be
uniformly general fuzzy continuous operator. If (u,)
isageneral Cauchy sequence in V then (T(u,)) isa
general Cauchy sequencein U.
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Definition 2.27:[28]

Suppose that (V,Gy,®,Q) is a genera fuzzy
normed space. Then V is called a general complete
if every general Cauchy sequence in V is general
fuzzy approachesto avector in V.
3.General Fuzzy Bounded Linear Operator
Definition 3.1 :

Suppose that (V,Gy, ©,®) and (U,Gy, O, ®) are
two general fuzzy normed spaces. The operator
S:D(S) »U is caled general fuzzy bounded if we
canfind a, 0 < a < 1 with

Gy(Sv,)=2(1-a) ....(32)

foreachv € D(S) andt > 0

Notation :

Suppose that (V,Gy, ©,® )and (U, Gy, O, ® )are a
general fuzzy normed spaces. Put GFB(V,U) =
{SV-U:Gy(Sv,) = (1 —a)} with0 <a <l
Proposition 3.2

If (V,Gy,®,®)is a general fuzzy normed space.
Then the sum of any two general fuzzy bounded
subset of V is again general fuzzy bounded also the
scalar multiple of any general fuzzy bounded subset
of V by a real number is again a general fuzzy
bounded.

Proof :

Suppose that A < V, B € V are genera fuzzy
bounded we will prove that A + B and aA are
general fuzzy bounded for every a #0. By our
assumption A and B are genera fuzzy bounded so
there is p,0<p <1 and q,0 < q <1 such that
Gy(at)=(1—p) for adl aedand t>0 dso
Gy(b,s) = (1—q) for adl b€ B and s > 0. Now

Gy(a+b,t+5) = Gy(a, t)OGy(b,s)
2(1-po1-9
Put(1-pO©1—-q)=(1-r)forsomer,0<r<
1
Hence Gy(a+b,t+s)=(1—-r) so A + B is
genera fuzzy bounded. Similarly Gy(aa,ts) =
Lr(o,)® Gy(a,s)) put Lr(a, t)=(1—pB). Now
choose 0 <6 <1 with that (1-8)® (1—p) =
(1-6). Thus Gy(aa,ts) = (1-8). Hence aAis
genera fuzzy bounded
Lemma3.3:
Suppose that (V, Gy, ©, ®) and (U, Gy, ©, ®) aretwo
general fuzzy normed spacesthenT; + T, € GFB(V,
U) and aT € GFB(V, U) for dl T;, T, € GFB(V, U)
and0#a €F.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019
ISSN (Online): 2521 — 3504

ISSN (Print): 2074 — 0204

Proof :
Let T, and T, be general fuzzy bounded linear
operator then thereis0<r; <1 and 0 <r, <1 such
that Gy (T, (V) t) = (1—r; ) and Gy (T (V) ,t) = (1-13)
for any veD(T;)ND(T,) and any s , t > 0 .
Now
Gy(Ty + T2)(V) t+9) =Gy(Ty(v) + T2 (v)) ,t+s)
= Gy(Ty(v), ) OGy(T:(v), s)
2(1-r)O 1 -r)
Chooser, 0 <r < 1 such that
(1-m)OA-nr)=(1-r1
Hence Gy[(T, + T,)(v) t+s] >(1-7)
Thus T, + T, is general fuzzy bounded operator.
Also
Gy(aT,ts ) = Lg(a, )® Gy (T, s))let Lg(a, t)=(1—-p)
and Gy (T,9) =
(1 —p). Now choose 0 < 6§ <1 with that (1-8) ®
(1-p) = (1-9).
Hence Gy(aT,ts) = (1-8).Thus aTis genera
fuzzy bounded
Theorem 3.4:

Suppose that (V, Gy, ©,®) and (U, Gy, ©, ®) are
two general fuzzy normed spaces. Put G(T, t) =
inf,cpr)Gy(Tv,t) for al Te GFB(V, U), t> 0.
Then [GFB(V,U),G,®,®] is general fuzzy normed
space.

Proof :
(G1)Since 0< Gy(Tv,t) < lwith dl ve D(T) and
t>0s00< G(T,t)<1foralt>0
(G2) For al t>0,
infyep(m Gy (Tv, )=1 & Gy(Tv, t)=1
< T(v)=0fordlveD(T) T =0
(G3) For al 0 # a € F we have
G(aT,ts) = infyep(r) Gy (aT, ts)
= infyep(r)Lr (o, )®Gy(T, s)
=Lg (, ) ®infyep (1) Gy (T, s)
=Ly (a, ) QG (T, s)
(G4 G(T,+T,,t+5s)=
inf Gy, eperppery (T + T W), t+5)
= infGUvED(Tl)nD((TZ)(T1 V) + T,(v),t+5s)

> inf Gy veD(Ty) (Tyv, )@ inf Gy veD(Ty) (T,v,s)

=G(T, O G(T,,s)

(G5) Let (t,) be a sequence in [0, o) with t, =t €
[0, o) then

Gy(Tv,t,) = Gy(Tv,t) s0 G(T,t,) = G(T,t) that
is (T, ®) isacontinuous.

(G6) lim, e G(T,t) =lim,, inf Gy (Tv,t) =
inflim, o, Gy (Tv,t) =1

G(T)=1&
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Hence (GFB(V,U), G, ©®, ®) isgenera fuzzy normed
space.
Note3.5:
We can rewrite 3.1 by :
Gy(Sv,) 2GS, )i 3.2)
Example 3.6:
Let V be that vector space of al polynomials on
C[0,1] with
[lv|l = max|v(x)|, x € [0,1]. Let
1 if|vll<t
Gy(v,0) = {0 if ||||v|||| >t
Then by example 2.10 (V,Gy, ®,®) is a genera
fuzzy normed space.
Let T:V — V bedefined by
Tlv(x)] =¥(x) then T is linear. Let v,(x) = x"
indeed ||v,|| =1 s0

1 <t
et d={; 1.

Hence there is no ¢,0<c<1 sdtisfies the

inquality

Gy(T(v),t) = (1 —c). Therefore T is not genera

fuzzy bounded.

Theorem 3.7 :

Suppose that (V,Gy,©,Q®) and (U,Gy, ©,®) are

general fuzzy normed spaces with U is a genera

complete. Assume that T:D(T) -»U be a linear

operator and a general fuzzy bounded. Then T has an

extension S:D(T) — U with S is linear and general

fuzzy bounded such that G(T,t) = G(S,t) for all

t>0.

Proof:

Suppose that v € D(T)G then by Lemma 2.22 there

is (v,) in D(T) such that

v, —V. But T islinear and general fuzzy bounded we

have Gy(T(v),t) = (1 —r)

foral v e D(T) andt > 0 wherer, 0 < r < 1. Now

Gyl T vy —Tvy,t] = Gy[T(vyp — Vi), t]
>(1-7)

Thus (T(v,)) is general Cauchy sequence in U but

by our assumption U is general complete so that

(T(v,)) fuzzy approaches to u € U. Define S(v)=u.

Let v, »v and w, -v then y_,, -»v where (y,) =

vy, W1, V5, Wy, w.).  Hence  (Ty,) fuzzy

approaches and (Tv,) and (Tw,) the two

subsequences of (Ty,,) will has equal limit. Hence S

is well defined for any v € D(T)C. S linear is clear

aso S(d)=T(d) for every d € D(T) thus S is an

extension of T.
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Now we have Gy[T v, ,t] = G (T,t) letn - oo then
Tv, » S(v) =u thus we obtan Gy[Sv,t]=
G(T,t).Hence S is genera fuzzy bounded and
G[S,t] = G[T, t] but G[S,t] < G[T,t] by the
definition of general fuzzy. Together we have
G[S,t] =G[T,t]
Theorem 3.8:
If (V,Gy,®,®)and (U,Gy, ©,®) are general fuzzy
normed spaces and let T:D(T) -U be a linear
operator where D(T) €V. Then T is general fuzzy
continuous if and only if T is general fuzzy bounded.
Proof :
Let T be genera fuzzy bounded and let £,0 < € <
1 be given and t > 0 then for every z € D(T) we
have Gy[Tz,t] = (1 —¢). Now let y € D(T) then
for any choice of 0 <r<1 with Gy[x—y,s] =
(1 — r) whichimpliesthat
Gyl[Tx — Ty, t] = Gy[T(x—y),t] = (1 —¢). Thus
T is general fuzzy continuous at x. Hence T is
general fuzzy continuous.
For the Converse let T be a genera fuzzy continuous
at any point x € D(T). Thengiven €,0<e <1 and
t> 0 thereisr,0 <r <1 ands > 0 with Gy[Tx —
Ty, t] > (1 —¢) for al y € D(T) satisfying
Gyly—xs] > —r). Takeany z + 0 € V and set
y=x+2z,henceforalt>0
Gy(Tz,t) = Gy[T(y —x),t]

=Gy[Ty — Tx, t] > (1 —¢).
Thus T isgenera fuzzy bounded .
Corollary 3.9:
Suppose that (V, Gy, ©, ®)and (U, Gy, ©, ®) are two
genera fuzzy normed spaces with T: D(T) »U is a
linear operator where D(T) V. If T is a genera
fuzzy continuous at an arbitrary vector v € D(T) then
T isgeneral fuzzy continuous.
Proof :-
Assume that T is fuzzy continuous a v € D(T) then
by Theorem 3.8, T is general fuzzy bounded which
impliesthat T isageneral fuzzy continuous.
Theorem 3.10:
Suppose that (V, Gy, ®©, ®) and (U, Gy, ©, ®) aretwo
general fuzzy normed spaces and assume that
T:V-U isagenera fuzzy bounded operator. Then
1)v, - v [wherev,,v € D(T)] implies
Tv, = Tv
2) Thekernel of T N(T) isgeneral closed .
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Proof :

Since T is general fuzzy bounded then there is
r,0 < r < 1 such that

Gy[T(v),t] = (1 —r) for each v € D(T) and t > 0.
Now

Gyl[Tv, — Tv,t] = Gy[T(v, —v),t] = (1 —r).
Therefore Tv,, - Tv.

2) Let v € N(T)C then we can find (v,)in N(T)
withv, - v.

Hence Tv, —» Tv by part (1) . Also T(v)=0 since
T(v,) = 0 so that v € N(T). Since v € N(T)G was
arbitrary so N(T) is general closed.

Definition 3.11 :

Suppose that (V, Gy, ©, ®) isageneral fuzzy normed
space and (R, Lp, ©O,Q) is fuzzy absolute value
space (R, Lg, ©,Q). Then a linear function :V— R
is called general fuzzy bounded if there exists o €
(0, 1) with Lg[f(v),t] = (1 — o) for any v € D(f),
t > 0. Furthermore, the fuzzy norm of f is

L(f,t) = inf Lg (f(v), t)

and L (f(v),t) = L(f, t).

The proof of the next results follows directly from
Theorem 3.8

Corollary 3.12 :

Suppose that (V, Gy, ©, ®) isagenera fuzzy normed
space and (R, Lp, ©O,Q) is fuzzy absolute value
space. Then a linear function f:V—= R with D(f) <
V is general fuzzy bounded if and only f is general
fuzzy continuous.

Definition 3.13:

Suppose that (V, Gy, ©, ®) isagenera fuzzy normed
space. Then GFB(V, R) = { V> R : f is general
fuzzy bounded linear } forms a general fuzzy normed
space with general fuzzy norm defined by L(f, t) =
inf Ly (f(v),t) which is said to be the genera fuzzy
dual space of V.

Definition 3.14:

Suppose that (V, Gy, ®, ®) is general fuzzy normed
space. A sequence (v,) in V is general fuzzy
weakly approaches if we can find v € V with every
h € GFB(V,R) rlli_r)ro1oh(vn) = h(v). This is written

v, =% vtheeement v issaid to be the weak limit to
(vp) and (v,) is sad to be genera fuzzy
approaches weakly to v.
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Theorem 3.15:

Suppose that (V, Gy, ©, ®) isageneral fuzzy normed
space and (Vn) is in V.
1. If Vp 2V then vy =YV

2. v, »Yvimplies v, -»v when dimension of V is
finite.

Proof:

1.Sincev, - vsofor givent > 0, ¢ € (0, 1) thereis
N € with

Gy[vy, —v,t] > (1 —0) for al n> N. Now for
every f € GFB(V,R)

Lp[f(vy) — f(v),t] = Lg[f(vp- v),t] = LIft]. Put
Lft]= (1 —¢)

Hence Lg[f(v,) — f(v),t] > (1 — €). This shows that
v, oV V.
2.Suppose

{e,, ey, ...

aMe, + -

dmv=m let
(n)

=0(1 e1+

thatv, »¥ v and

..ey} be abasis for V so v,
...... + ocfr'll)em and

V= a, e+ aze; + ..+ a, e, Bu f(vy) -
f(v) for every f € GFB(V,R) put f;,f,, ...,y
by: f;(e;) = 1and fj(ex) = 0 whenk =+ j.

Then f;(v,) = (xj(n)
f;(v) implies aj(“) - a.
Now for n =N

and f;(v) = o hence fj(v,) -

m
Gy[vy, — Vv, ts] = Gy [Z ( aj(n)
j=1

> Lg[oy™ — a3, 5] ® Gy [el,i] o)
LR[az(n) — (xz,s] ® Gy [ez,é
LR[an(“) — oy, s] ® Gy [en,i].
Put LR[OL]-(“) — oc]-,s] =(1- r]-) and Gy [e]-,é] =
(1 —q;).Choose r,0<r <1 with
(1-r)®1 -390 (1-r;)®(1-7q;)0
o1 - rn) (1 - qn) >1-r)
Hence Gy[v, —v,t]_> (1 —r)for
Therefore v, »v
Definition 3.16:
Supposethat (V, Gy, ©, ®) and (U, Gy, ©, ®) aretwo
general fuzzy normed spaces. A sequence (T,) of
operators T, € GFB(V, U) issaid to be:
1.Uniformly operator general fuzzy approaches if
thereisTe GFB(V, U)
Q[T,, —T,t] »1lasn— oo.
2.Strong operator general fuzzy approaches

if (T,v) general fuzzy approachesin U for every v €
V.

— a]-) ej,st]

al n>N.
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3.Weakly operator general fuzzy approaches if
(T,v) genera fuzzy approaches weaklyin U for
every v e V.

Definition 3.17:

Suppose that (V, Gy, ©, ®) isagenera fuzzy normed
space. A sequence (h,) with h, € GFB(V,R) is
caled

1)Strong general fuzzy approaches in the general
fuzzy norm on GFB(V, R) that is h € GFB(V, R)
with G[h, — h,t] - 1 for all

t> 0 thiswrittenh, —» h

2)Weak general fuzzy approaches in the fuzzy
absolute value on R that is h € GFB(V,R)
with h,(v) -» h(v) for every v € V written by
limp,_,. h, (V) = h(v).

Theorem 3.18:

Suppose that (V,Gy, ®,®)and (U, Gy, O, ®) are
two genera fuzzy normed spaces. Then GFB(V, U)
isgeneral complete when U is general complete.
Proof :

Let (T,) be a genera Cauchy sequence in GFB(V,
U) . Hence for every £, 0 < e <1, t > 0 thereisa
number N with Gy[T, — Ty, t]

> (1 —¢)foral mn =>N.

Now for v € V and m, n >N we have by Remark 3.5
GU [TnV - TmV' t] 2 GU [(Tn - Tm)(V): t] > (1 -

Now for any fixed v and given ¢, 0< ¢, < 1 and we
have from (3.3)
Gy[T,v—Tyv,t] > (1 —¢,) so tha (T,v)is a
general Cauchy sequence in U but U is genera
complete hence (T, v) fuzzy approachesto u € U that
is T,v > u. The vector u depends on v € V this
defines an operator T: V — U defined by T(v)=u. The
operator T islinear since
Tlax + Bz] = lim,_,4 Ty[ox + BZ]

=alimy,_ e Tpx + Blim,_ e Tpz

= aTx) +BT(z)
We will prove that T is genera fuzzy bounded
and T, —» T since (3.3) is satisfied for al m =N
and T,,v — Tv we may let m — oo we have from
(3.3) forevery n = N and t > 0 where for al v
€ V we obtain
Gy[(Ty = T)(v), t]
= Gy[T,v = limy L0 TV, t]

= limpye Gy[(Ty — T) (V), t]

>(1—-e)....... 3.4
Thus (T, —T) with n >N is general fuzzy
bounded linear but T, is general fuzzy bounded
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so T=T,— (T, —T) is general fuzzy bounded
that is T € GFB(V, U) aso from (2.4) we obtain

by taking theinfimum for al v

G(T,—-T,t) =1 —¢). fordl n=Nand t>0
thatisT, - T.

The proof of the next result follows immediately
from Theorem 3.18

Corollary 3.19:

Suppose that (V, Gy, ©, ®) isageneral fuzzy normed
space and (R, Ly, O,Q) is fuzzy absolute value
space. Then GFB(V, R) is general complete if (R,
Lr, ©,®) isgeneral complete.
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1-Introduction: Let 4; denote the class of
functions f of the form

f@=zP+3¥7,a, z%(a, 20,n=p,p EN),
1.y

which are analytic and p-valent in the punctured unit
disk U={ze C:0 < |z| < 1}. Jum-Kim Srivastara
[2] defined an integral operator I f(z) for f € Ay,
asfollows
Iy f(2) =
(1.2

If f(2) isof theform (1.1), then

1
Ig f(Z) =zP+ Z(m)o a, Z"(n > p,p
n=p

(1.3)

—vir Jy (0g D 1P f(2)dt , (n € N).

zp"'ll"(a)

€ N).
In particular, when p=1 we have:
Igf(2) =271 4 T50a (o5)7 anz"(n = p,p € N).
Let f and g be anayticin unit disk U, then g issaid
to be subordinate of f , writtenas g < f or g(2)<
f (2) , if there exists a schwartz function w which is
analytic in U withw (0)=0 and |w(2)| < 1(z € U)
such that g(2)= f (w(2)).
In particular, if the function f is univalent in U, we
have the following equivalence ([3],[4]).
9(2) < f(2)(z € U) & g(0) = f(0)and g(U)
c f ).
Definition(1.1): A function f € 4;, is said to be
in the classA4; (o, b,x,y) of functions of the form
(1. 1) which satisfies the condition

22(I8 £(2))"
Py {” 2 f@y }
1+ xz

~P7 +yz’

where

-1<y<x<1,peN,oc<

0, b non zero complex number.
We can re-write the condition (1.4) as

(1.4)

z(Ig @) +@+p) (g f(@)'
yz(lg f(2)"" +[y(1+p(1-b))+xbp](p f(2))’

<1 .(15)

2.Coefficient inequality:

In the following theorem, we give a sufficient and
necessary condition to be the function in the class
Ay (0,b,x,y).
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Theorem (2.1): Let f € 4; be given by (1.1).
Then f € Ay (o, b,x,y) if andonly if

> e+ ma -y

n=p
—_ 0’
mplel (2 )16y ) s
< p?bl(x — y). (2.1)
The results is sharp for the function f given by
f(Z) =zP +( p2|b|(x—}’) )(n + p +
[n(n+p)(1-y)—np|b|(x-y)]

1)z", (n=p,n€N). (2.2
Proof: Assuming that the inequality (2.1) holds
true and |z| = 1. Then ,we have
2235 f(2)" + (1 + p)z(Ig f(2))|
- lyz2Ug f@)" + Iy
+p(1 - b)) + xbplz(I ()|
=z ntn + ) ) ™ | - [p2Ib G = ) +
Ziplmtrn +p) + niblpCe ~ M) an" |
< XE,nm+p)(——)7a, |zI" = p?|bl(x -
y) —
Y, lyn(n +p) + n|b|p(x - I(

== pn(n+p)( P+l

Yn=plyn(n + p) + nlblp(x — ¥)I(
by hypothesis.

Hence, by the Maximum Modulus Theorem, we
have f(z) € A;(0,b,x,y).

Conversely, suppose that f(z) € 4;(0,b,x,y).
Then from (1.5) ,we have

n+p+1

g n
——)7a,lzl

)a, —p Ibl(x -y) -

)a, <0,

n+p+1

22(Ig f(2)" + (1 + p)z(Ig f(2))’
yz2(Ig f(2))" + [y(1 + p(1 — b)) + xbp]
z(Ig f(2))'

o 1 o
Znpn(n +P) G 2
bn(n +p) +nlblp(x — y)]
2lb|(x —y) + X2 1
p21b|( )+ 25 p (n+p+1)ganzn

<1
Since Re(z) < |z| for all z(z€ U) ,we have
Re(

= pn(n+p)(n+p+1)“an2”
P2bl(x=-M)+Iazplyn(n+p)+nlblp -Gy

1.

anpz™
n+p+1) n
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We choose the value of z onthereal andz —» 17,
we get

-+ p)(A =) = nplbl ()1
n=p

<p*bl(x -y,
which give (2.1).Sharpness of the result follows by

Setting
p2|bl(x-y)

— > D
fl@)=z7"+ ([n(n+p)(1—y)—np|b|(x—y)]
1)°z", (n = p,n € N).

1
g
n+p+1) tn

Y +p+

Corollary (2.1) :Let f(z) € A,(o,b,x,y) .Then
a, < p2Ibl(x-y)
[n(n+p)(1-y)-np|b|(x—¥)](

T ,(n=pne

n+p+1

o
N).

3. Growth and the Distortion Bounds:
In the following theorems, we obtain the growth and
the distortion theorems for the function in the class
Ay(0,b,x,y).
Theorem (3.1): If the function f(z)defined by
(L) isintheclass A, (o,b,x,y), thenfor 0 < |z| =
r < 1, we have:
. ( |b|(x —y)(2p + 1)°

2(1-y) = |bl(x—y)

_ o
vy ( |bI(x =) (2p + 1) )rp |
2(1=y) = |bl(x =)
where equality holds true for the function
f(2)
|bl(x —y)(2p + 1)° )
=z P+ zP. (3.2
Qu—w—m@—w (32)
Proof: Since f(2) € 4;(0,b,x,y) .Then from
(2.1)
2p*(1 —y) — p?|b](x — y)(
Yn=pln(n+p)(1 —y) —
1

pIbIx = MG an < P71 Gx — 7).
we conclude that

)r” < |f (2l

3.1

1
2p+1

)7 Xn=p lag| <

o bl (x-y)(2p+1)°
Zii=p 1l <5655 i) (:3)
Thusfor 0<|z|=r<1,
@I 127+ ) aglal”
n=p
<rP4rP Z a,, (3.4)
n=p
or
@l < _( DG — y)(2p + 1)° )r
B 20-y) = blx=y)

(3.5
and
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F@IZ 1™ =l 217 =17 ) ay,
n=p n=p
or
_ |bl(x —y)(2p + 1)°
AL ”—(2(1_y) - |b|<x—y>]>rp

Onusing (3.4) and (3.5) inequality (3.1) follows.

Theorem (3.2): If f € 4;, (5,b.x,y) then
) _ ( plbl(x —y)@2p + 1)° )rp_l
2(1-y) —p?Ibl(x —y)

<If@)l
< -BHD 4 ( plbl(x —y)(2p + 1)7 )rp_l_
B 21 -y) —p*Ibl(x — )
The result is sharp for the function f is given by
(1.3)
Proof: The proof is similar to that of Theorem
(3.1).
4. Extreme Points
In the next theorems, we obtain extreme points for
theclass A3 (o, b, x, y).
Theorem (4.1): Let f,_,(z) = z Pand f,(2) =
- p2Ibl(x—y)(n+p+1)° n
20 ([n(n+p)<1—y)—np|b|<x—y)1) ’ (4.1
forn = p. Then f(z) € A, (o, b,x,y) if and only if
it can be expressed in the form

[@= ) nfal2) where py

n=p-1
> 0and Up =1 (4.2)
Proof: Let
f@= ) mf@ =27+

n=p-1
Z( p?Ibl(x = y)(n +p + D)7p, )z"
[n(n+p)(A —y) —nplbl(x—y)])

n=p

Then
[n(n +p)(1 = y) — np|b|(x - y)]
o L o
D Gap+?
= p?Ibl(x —y)
p*bl(x — ¥)

[n(r + p)(1 = ) = mplblGx = ]G5

= :E:#n = 1__Mp—1 <1
n=p
Using Theorem (2.1)we easly get f(z) €
Ay(o,b,x,y) .
Conversely, let (z) € A, (o,b,x,y) .



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019
ISSN (Print): 2074 - 0204  ISSN (Online): 2521 — 3504

From the Theorem (2.1), we have
p’lbl(x —y)(n+p +1)°

"= Tt A=) — bl =] "

= p.
Setting
P _nn+p)A—-y) —nplbl(x —y)
" p?Ibl(x —y) '
= 3o g >
(n+p+1) orn=p.
and pp,_, =1 - Z Un-
n=p
Then

f(z) = z7P+ Z?zo:p anzn =
_ . 21p|(x=y)(n+p+1) up, n

270+ Znsp ([nzznw)(lfyg—nz;lbI)(xliy)]) -

Mp—lz_p + Z;.f:p 2 fn(z) = Z?f:p—l HUn fn(Z)

This completes the proof.

5. Radius of convexity

In the following theorem, we obtain the radius of

convexity for the function in the class

Ay(0,b,x,y).

Theorem (5.1): Let f the function f (z) defined

by (L1) is in the class A,(o,b,x,y). Thenf is

meromorphically p-valent convex of order A(0 <

A<p) in the disk |z|<r, whee nr =

r(p,0,b,x,y) =

(P=D[(n+p)(1-y)-plbl(x— y)](nﬂ,+1 L

(n+2p-)p|b|(x-y) Je (5.1)

The result is sharp for the function f given by (3.4).

Proof:A function f meromorphic p-valent convex

of order A (0 < A < p) if

'@
f'(@)

inf,5,

—Ref{l1 +
We must show that
zf''(2)
T +A+p)|<p-2, for  lz<m,.
(5.2)
We have

1> .

zf''(z)
'@

"' @+(+p)f' )
+(1 +p)| = zszz =

Tp n(n+p)anz™P| _ SR, n(n+p)aglz™tP
IRy nanz™ T | T oS, nanlzlt P

Thus ,(5.2) will be satisfied if

nn+2p-21)

a,|z|"tP < 1.
p(P-2) nl2l

e
(5.3)
Since f € A;(0,b,x,y), we have

[+ p)(1 =) = lbl G = ) G5 D°

a
p?|bl(x — y) "

NgE

N
_
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Hence,(5.3) will be true if
n(n+2p—1) n(n+p)(1-y)-np|b|(x=y) o)

n+p < n+p+1

o [ PZIbIG—y) I
or equivaently

||

P-DMn+p)A-y)—nplbl(x —y)
1 P

oy GFps? o
B (n+2p — Dp?|bl(x —y) '
2p

which follows the result.

6. Convex linear combination:

Theorem (6.1): Theclass 4;,(o, b, x,) is closed
under convex linear combinations.

Proof: Let f; and f, be the chance elements of
Ay(o,b,x,y). Then for each t (0 <t <1) plus
(an,b, =0) . we show that (1—-1t)f; +tf, €
Ay(a,b,x,y). Thus we have
A-Ofi+th=27+ Se,[1-ta, +
th,]z".

Hence

Yn=pln(n + p)(l -y)—
np|b|(x — y)]( )7[(1 = t) ap + thy].

n+p+1

- 1—t)2[n(n+p)(l—y)

—nplb (- )1(n+p+1)“an
i n(n+p)(1—y)
A e
< (1-0p?[bl(x — y) + tp* Ibl(x—y)

= p?|b|(x — ).
This completes the proof.

7. The anthmetic mean:

Theorem (7.1): Let the functions f; sharp by
fi(z) =2z7P + Z??:pan,k (anx 20,neENk=
1,2,..0),

be in the class A,(o,b,x,y) for each k =
(1,2,3,... 1), then the function h sharp by

h(z) =z7?P + Z e,z",(e,=0,n €N)
n=p

aso belong to the class A;(o,b,x,y), where
1 [oe]
en=72n=pan_k, (n=p,p €N).
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proof: Asf, €A4;(s,b,x,y) , it follows the
Theorem (2.1) that
Yn=p[n(n +p)(1 —y) —np|b|(x —
1
NG e < PP 1bI(x =),
for eachk=1,2,3,.... l Hence

> e+ ma -y

n=p
—np|b|(x — Y)](m)aen
= e+ P =)
— plblCe

l
1 1
- Y)](m) (71{2 an,k>

=1

[n(n+p)A —y)

]l(ﬁ) i)
7 P 1ol G- y)

k=1
p?bl (x = ¥).
Thenh € Ay (0,b,x,).
8. Partial sums
Theorem(8.1):Let f € A; (o, b, x,y) be assumed
by(1.1)and g € A} (0,b,x,y) be assumed by

gz)=z"7+ Z b,z™".
n=p
We define the partial sums S;(z)and S, (z) as
follows:

IA

S1(z) =z tand S,(2) =
z7P +

kLa,z", (k € N|{1}).
Also suppose that

(8.1)

YnepCnln <1,c, =
[n(n+p)(1-y)—np b](x=1)] ()

n+p+1
p2Ib| (x-y) '
Then, we havRe {f(z)} >1-= (z€U,k€
sk(2) Ck
N), (8.3)
sk(2) Ck
andRe {—f(z)} > (z€ U,k €N).(84)

Each of the bounds in (8.3) and (8.4) is the best
possiblefor k € N.

(8.2)
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Proof: We can see from (8.2) that c,,; >c, >
l,n=pp+1p+2,p+3,..
Therefore, we have:

k=1 =} oo
Z a, +c Z a, < Z cpa, < 1. (8.5)
n=p n=k n=p

By setting
_ /@ 1
91(2) = ¢, [m - (1 - a)]

Ch Yopege A 2"
1+ Xkt a,zntt’
and applying (8.5) we find that
gl(Z)—ll <
g1(@+1l —

=1+ (8.6)

o0
Ci Yn=k n
2-2%% L an—c X2y an’

which readily yields the assertion (8.3) if ,we take
k

zZ
f(z)=z"P— - (8.8)
k
Then
f2) _

k
=1-%2 51-2(z>17),which shows
Sk(2) Ck Ck

that the bound in (8.3) isthe best possible for k € N.
Similarly, if we put

— Sk(@ _ _ck 1
g2(2) = (1+¢) [F2 - 2| =1
(1+cp) Tomege anz™tt
and make use of (8.9), we have

g,(2) -1
g,(2) +1
1+0))>, a
< k_(l ) Sk Gn - ,(8.10)
2-2 Zn:p an + (1 - Ck) ank an

which leads us to the assertion (8.4). The bound
(8.5) issharp for each k € N with the function given
by (6.7). The proof of the theorem is complete.
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1. Introduction
Let A, denote the class of functions f of the

form:
f(@) =27 + X5 1ap+nZ , peN=
{12,..}; zU), (1.2

which are analytic in the open unit disk U = {z €
C:|z| < 1}
For two functions f and g are analytic in U, we say
that the function f is subordinate to g in U, written
f < g, if there exists Schwarz function w, anaytic
in U with
w(0) = 0 and |w(2)| < 1in U such that f(z) =
g(w(2)),z € U If g is univalent and g(0) = £(0),
then f(u) c g(u) .

If f€A,isgivenby (1.1) and g € A, given by

MOREEDW

n=1
Then Hadamard product (or convolution) is defined
by

)@=+ Z e

The linear operator ]u,’f(a ¢©):A, - A, defined by
uﬂf(a! C)f(Z) - y,v(a’ o Z) f(Z)' (f €

A,z € U),

(1.2)

where

2,
@M,ﬁ(a,c z) =
w (@n(P+Dn(@+1-p+v),
14 p+n
DY s o
and

dn

(1.3)

_ { 1 n=20
T ldd+1D@+2)..d+n-1) neN .
Fora € R,c ER\ z,,where z; =
{0,-1,-2,..},0<A<1,u,vERand u—v—
p <1land f € A, .Thenlinear operator
M“(a ©):A, — A, (see[9]) isdefined by

/UNI _ )Lpa

(a,0)f (2) = (a,¢;2) * f(2), (1.4)
Where z/)“’ “(a,c; z) is the function defined in terms
of the Hadamard product by the following
condition'

HCEB R CEDE

—p)-

(a>
(1.5)

z
(1-2)+P
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We can easily find from (1.3) - (1.5) that
“’a(a Of(z) =zP +

Zoo Onp+1-A4+V)n(a+p)n(@+1-p)n
=t (@n@+Dn(@+1-p+v)pn!

ApnzP*™ (1.6)

Itiseasily verified from (1.6) that
(1P (a,0)f (2)) = (a + P2 (a, O f (2) -
al,?(a,o)f (2). @7

Note that the linear operator (a,c) unifies

many other operators consdered earlier. In
particular

1) 02”‘(a ) = Ji(a,c) (see Cho al.[5]).
2) Optx(a a) = pa+p-1
(see Goel and Sohi[6]).
3 IP'p+1-21) =af"
(see Srivastava and Aouf[16]).
4) 137 Ya,c) = Jp“(see Hohlov[8]).
5) 13,} “%(a,c) = Lp(a,c)
(see Saition[13]).
6) Opl(p+a1) ]aPaeza> -p
(see Liu an Noor[10]).

Apa

The main object of this idea is to find sufficient
conditions for certain normalized analytic functions
f to satisfy:

lpa+1 Ap.a
tl (ac)f(z)+t21 (a,0)f(2)
q:1(2z) < < ) < q(2),

(t1+t2)zP
and

112%a,0)f (2)

0:(2) < < - ) <qy(2) ,

where g, (z) and q,(z) are given univalent functions

2- Preliminaries
In order to prove our subordinations and
superordinations results, we need the following

definition and lemmas .
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Definition 2.1. [11]: Denote by Q the set of all
functions g that are analytic and injective on
U\ E(q), where

U=Uu{ze€odU}, and

E(q) = {( € 0U:lim,_; q(z) = 00} (2.2)
and ae such that q'(Q)#0 for (e€dU/
E(q) .

Further ,let the subclass of Q for which q(O) =a be
denoted by Q(a), Q(0) = Q, and Q(1) =
Lemma 2.1.[1]: Let q(z) be convex univalent
function in U, let ¢ € C.8 € C\ {0} and suppose
that
Re(1+ 22 > max{0,~Re(2)) .
If p(z) isanalyticin U and
ap(z) + Bzp'(2) < aq(z) + fzq’'(2),
then p(z) < q(z) and q isthe best dominant.
Lemma 2.2. [3]: Let g be univalent in Uand let @
and Obe analytic in the domain Dcontaining q(U)
with @(w) = 0, whenw € q(U).
Set Q(2) = zq4'(2)8(q(2)) and h(z) = 0(q(2)) +
Q(z), suppose that

1- Qisstarlikeunivalentin U,

2 Re(29)>0, zeU.

If p isandyticin U with p(0) = q(0),p(U) <

D and

B(p(2)) + zp' (2)0(p(2)) < 8(q(2)) +

2q'(2)8(q(2)),

thenp < q , and q isthe best dominant .
Lemma 2.3.[12]: Let q(z) be convex univaent
in the unit disk U and let § and @ be analytic in a
domain D containing q(U). Suppose that

_ p_9'a@)
1 Re{w(q(z))} >0forzeU,

2 —2q'(2)?(q(2)) is starlike univalent in z € U.

If peH[q0),1]1nQ, with pU)<D, and
8(p(2)) + zp' (2)0(p(2)) isunivalentin U , and
0(q(2)) +2q'(2)8(q(2)) < 6(p(2)) +
zp'(2)8(p(2)),

then g < p , and q isthe best subordinant.
Lemma 2.4.[12]:Let q(z) be convex univaent
in U and q(0) = 1. Let B € C, that Re(B) > 0. If
p(z) € H[q(0),1]nQ and p(z) +Bzp'(2) is
univalentin U , then

q(z) + fzq'(2z) < p(z) + Bzp'(2),

which implies that q(z) < p(z) and q(z) is the best
subordinant.

2.2)
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3-Subordination Results

Theorem 3.1.Let q(z) be convex univalent in U
with q(0) = 1,n,6 € C\ {0}. Suppose that

zq''(2) )

Re (1 + @ ) > max {O, —Re (;)} (3.1
If f € W issdtisfies the subordination

G(2) < q() +32q'(2), (32)
where

Apa+1 Ap.a
[ty (@) f @+t (a0)f(2)

G(2) = ( (t1+t)zP ) X

Pt—t2@) 15 (a,0)f (2)(@) +(t—tya+trp—pty)
1+7

¢ 1;}5 a0 f @+ (a0 f (2)

ﬁ,]};,a+1(a Of @)+ (tra— tlp)l}‘p atz c)f(z))) , (3.3)

tllap a+1(a C)f(Z)"'tZIu,g a(a,C)f(Z)

I

then

Apa+1

WD @0 f @)+l (@) f (2)

(t1+t2)zP
and g (z) isthe best dominant.
Proof: Defineafunction k(z) by
k(Z) _ <t11/1pa+1(a C)f(z)+t21/1p *(a, c)f(Z)) ' (3-5)

(t1+t2)zP

2

) <q(2), (34)

then the function k(z) isanalyticin Uand q(0) = 1,
therefore,differentiating (3.5) logarithmically with
respect to z and using the identity (1.7) in the
resulting equation,

G) = <tﬂﬁﬁ'““(a.e)f(z)nzﬂ”“(a C)f(Z)) y

(t1+t2)zP
< 147 <<prz—rzo;);ﬁﬁi‘<a.c>f<z)<z)+§tz—r1a+tzp—pt1)
talyy T @O f @ +taly, ) (a0 f (2)
12 0,0 f () +(ta—t D)0 (a, C)f(Z))>
bl a+1(a.C)f(Z)+tzI,/},E “@0f@

Thus the subordination (3.2 ) is equivalent to

k(z) +32k'(2) < q(2) + 724 (2).
An application of Lemma (2.1) with B =g
a =1, weobtan (3.4).
Taking q(z) = 1:;‘ (-1<B<A<1), in
Theorem (3.1), we obtain the following Corollary.

Corollary 3.1. Let n,6€eC\{0land (-1 <
B < A < 1).Suppose that

Re (+-22) > max {0, Re (n)}

If feW is saisfy the following subordination
condition:
1+4z n (A-B)z
G(2) < 1+Bz 6 (1+Bz2)?’
where G (z) given by (3.3) , then

s
<t TP @O F @)+ 61 (a, c)f(z))

and

1+Az
1+Bz

(t1+t2)zP

and =42 ~ isthe best dominant .

Taklng A =1 and B = —1 in Corollary (3.1), we
get following result.
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Corollary 3.2. Let 1,6 € C\ {0} and suppose
that

Re (g) > max{0, —Re (S)} .
If f € W issatisfy the following subordination

1+z n 2z
G(z) < - ,
@ <1 tsa=ne

where
G(z)given by (3.3), then

B
I @, f (D) + a0 (a,0) f (2)
(t1+t2)zP

1+z

d — |sthe best dominant.

Theorem 3.2. Let g(z)be convex univalent in
unit disk U with q(0) =1,
letn, 6 € C{0},y,t,,T€C, f €eW,and suppose
that f and q satisfy the followi ng conditions:

{ (z)+ 2oy q%(z) + 1 + 21 ((Z)) Z%}>
0, (3.6)
and
Apa
v @afr@ 3.7)

zP
If r(z) <t+yYq(z) +vq?(2) + szj(g)

where

Apa Apa
(a,0)f(2) (a,0)f(2)
T'(Z) = (T) ('(/) +ty (T) +
(a,0)f(2) 1))

P00 (@)
) < q(2),and q(z) isbest dominant .

1 (3.8)

lp a+1

t+55(a+p)<

(3.9)
then

1% (a,0)f (2)
zP

Proof : Define analytic function k(z) by

2P a0rm )
k(z) = (—“' e
Then the function

g(0) =1,
differentiating (3.10) logarithmically with respect to
z , we get

2k (2) 12 4,00 f(2)
o =8+t )( P ore -1). (311

By setting 8(w) =t +yw + yw? and ¢p(w) =

% ,it can be easily observed that 6(w) isanayticin

C, ¢p(w) isanalyticin C\ {0} and that ¢(w) #

0,w e C\{0} .

Also, if welet

$(2) = 2q' @D(a() = 712,

and

h(z) = 6(q(2)) + Q(2) = t + Pq(z) + 1v¢*(2) +
zq'(2)
q(2)

(3.10)
k(z) is andytic in U and
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wefind Q(z) isstarlike univalentin U , we have
W () =g (@) + 207q(@)q' (@) + s T2 +

q(2)
9"@ _ q'(2)
5z q(z) SZ(q(Z)) ’
and
zh!(2)
Q(2)
hence that

zh! (2) _ f 2Ty o
Re(Q(z))— ( q(z)+ q°(z2)+1+

9" @) q'(2)
X )0
By using (3.11), we obtain

K (z) 15 a0 f(2)
Pk(z) + tyk?(z) + szk(zj = ( — ) <1|J +

)
MR Of
vy <7‘”’ (;,C) D) ) et
02 (a,0f(2)
(58(0("'13) ( )\pa(ac)f(z) -1 .

By using (3.8), we have
zk'(z)
(3.8

k(z)

zq'(2)

<Yq2) +1vq%(2) +s
Yq 144 @

and by using Lemma (2.2), we deduce that
subordination (3.8) impliesthat k(z) < q(z) and the
function q(z) isthe best dominant .
Taking the function q(z) = =22 “(-1<B<A<
1), in Theorem (3.2) , the condltlon (3.6) becomes.

q'(@
q2)’

= %q(z) +2” 7%(2) +1 +zq,((z))

Yk(z) + tvk?(z) +s

Y144z | 21y (1+Az)? (A-B)z
<s 1+Bz + s (1+Bz) +1+ (1+Bz)(1+Az)
i) >0, (3.12)
1+Bz

hence, we have the following Corollary.
Corollary 3.3. Let (-1<B<A<1),508€
€\ {0},y,t,7,9 € C. Assumethat (3.12) holds.

If feWand

LAz 1+42\2 (4-B)z
T(Z) <t+ l/) 1+Bz T (1+Bz) ts (1+Bz)(1+A4z) ’
wherer(z) is defmed in (3.9), then
Apu
< (a, C)f(Z)> 1+A4z an 1+Az is best
zP 1+Bz 1+Bz
dominant .
Taking the function g(z) = (ﬂ)" b<p<),

in Theorem (3.2), the condition (3 6) becomes

2
Re{ (if)p +ZTW(£) g Z_ZZZZ}O,(S EC\
{o}), (3.13)

hence ,we have the following Corollary .
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Corollary3.4. Le 0<p<1,58€eC\
{0}y, t,7, € C. Assume that (3.13) holds. If
feW and

2
r(z) <t+y (1+Z)p + 1y (1—:) g +s

1

where r(z) isdefined in (3.9), then

S5
Ap.a
Iy (@0)f(2) 1+z\P 1+z\P .
(717 & )<(_1_Z) cand (1) s the

best dominant.

2pz
1-z2’

4-Superordination Results

Theorem 4.1. Let gq(z) be convex
univalent Uwith q(0) = 1,6 € C\ {0}, Re{n} > 0,
if f € W ,such that

t IAP a+1(a C)f(z)+t21Apa(a C)f(z)
#0
(t1+t3)zP
and
t Ilpu+1(u C)f(z)+tzllpa(u L‘)f(z)
( (t1+tp)zP [‘I(O), 1] n
e (4.1)

If the function G(z) defined by (3.3) is univalent
and the following superordination condition:

q(2) +32q'(2) < G(2), (4.2)
holds, then
s
lp a+1 Ap.a
tilyy (a0 f(2)+ta0y, (a.0)f(2)
q(2) < ( TRYRY ) 4.3

and q(z) isthe best subordinant.
Proof: Define afunction k(z) by

/1p a+1 Apa
tilyy " (a0 f(2)+Ea0,y, " (a.0)f(2)
k(z) = ( TRTRYE ) . (449
Differentiating  (4.4) with respect to z

logarithmically, we get.

zk(z) _
k(z)

c1<z( D aor@) )+t2( (hr“@or@) )

t1< Apa+1(a c)f(z)>+t2< l/}{;a(a c)f(Z))

é

Pt P (@) f (@) 40210 (0,0 f(2) ) 45)

(b M @or@) (1 @ar@
A simple computation and using (1.7) from (4.5),
we get

)
a1 @O f @+t (@ o)f (2) o
(t1+t)zP

1+ (pto— atz)I“’ “(a,0)f (2)+(t—at,+pta—pt1)
n P (@,0)f (@) +21 0 (0,0 (2)

Iﬁ'g'aﬂ(a Of @+(at,+pty)Iy,

WD (a,00f (2)
P @O f (@) + Iy D a(a'C)f(z)
=k(z) + %zk’(Z),

now , by using Lemma(2.4), we get the desired
result .
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Takingq(z) =
1raz (-1 < B < A<1),inTheorem (4.1),we get

1+Bz .
the following Corollary.

Corollary 4.2. Let Re{n}> 0,6 € C\ {0} and
—-1<B<A<1,

such that

1D (@0 f (D)4 (.0 f(2) d 270(0).11
T € H[q(0),1]

Q.

If the function G (z) given by (3.3) isunivaent in U
and f € W sdtisfies the following superordination
condition:

144z n (A-B)Z

—= < G(2),
182 s+ @
then
s
144z (6D M @O f @+ @,0f (2)
1+Bz (t1+t5)zP !

and the function 1:—1’; isthe best subordinant .

Theorem 4.2. Let q(z) be convex univalent in unit
disk U, Let 6,seC\{0}y t,,t€Cq(z)+
0,and f € W. Suppose that

Re {12 (21yq(2) + )} q'(2) > 0,

and satisfies the next conditions

124,01 (2)
<Z—p> € H[q(0),1] nQ,

and

Apa
(a,0)f(2) 40,
zP

If the function r(z) is given by (3.9) is univalent in
U7

t+¥q(z) +179%(2) + s—=
implies

(4.6)

zq'(2)

) <r(z)

4.7

Ap.a o 5
q(z) < (W#) ,and q(z) is the best
subordinant.
Proof: Let the function k(z) defined on U by
(3.14).

Then a computation show that

/1p a+1
zk'(2) (a,0)f(2)
— = = 1 4.
k(z) 6( + ) < 25 Y(a,0)f(2) )’ ( 8)

by setting O(w) =t + Yo + tyw? and d(w) =
~jit can be easily observed thatf(w)is analytic
inC,p(w)is analytic in C\ {0} and that d(w) #
0 (Wec\{o}.

Also , we get Q(2) = 2q'(D8(q(@) = s 12 it
observed that Q(z) isstarlike univalentin U .

Since q(z) isconvex , it follows that
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Re (190 = Re(™® (2079()) + ¥}4(2) > 0.

By making use of (4.8) the hypothesis (4.7) can be
equivalently written as

6(4(2) +24'Dp(a(2))

2 DP(k())
thus , by applying Lemma (2.3), the proof is
compl eted.

—0 (k(z) +

5.Sandwich Results
Combining Theorem (3.1) with Theorem (4.1),
we obtain the following sandwich Theorem.

Theorem 5.1. Let g, and g, be convex univalent
in U with ¢,(0) = q,(0) = 1 and g, satisfies (3.1).
Suppose that Re{n} > 0,n,6 € C\ {0}.

If f € W,such that

(tlzﬁ:i"““(a AF @ +aIAR ", C)f(2)>

(t1+t2)zP

H[q(0),1]nQ,
and the function G (z) defined by (3.3) is univalent
and satisfies

0:(2) + 2241 (2) < G(2) < 42(2) +1245(2),

(5.1)
then
Apoc+ Apa
tlyy (a0 f(@)+ta0y," (a,0)f(2)
q:1(2) < ( trt)z? )
qZ (Z)!

where g; and g, are respectively , the subordinant
and the best dominant of (5.1).

Combining Theorem (3.2) with Theorem (4.2), we
obtain the following sandwich Theorem.

Theorem 5.2. Let g; be two convex univalent
functions in U , such that q;(0) =1, ¢;(0) #0
(i=1,2).Suppose that g, and g,satisfies (3.8) and
(4.8), respectively.

If feW and suppose that f satisfies the next
conditions:

lp a
(a,0)f(2)
(T) € H[Q(0),1] nQ,
and
1% (a,00f (2)
zP

0 ’

and r(z) isunivaentin U , then

E+Pas(2) + Tygh(n) + 5 B2
zq1(z)
u@’

<t+vyq(2)+

tvqi(2) +s— =
implies

Waggas .G//Salwa .K

/1p0c
0.(2) < (M> <3@,

VAL

and g,and g,are the best subordinant and the best
dominant respectively and r(z) isgiven by (3.9).
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Abstract

Cuneiform character recognition represents a complex problem in pattern
recognition as result of problems that related to style of this type of writing and the
diversity of its features according to distortion and shadows problems. This research
proves that polygon approximation method is an optimal feature extra action
method , which has been adopted for recognition task compeer with eliptic Fourier
descriptor, according to the achieved high accuracy recognition results after
applying multiple classes of support vector machine classifier along with depending
on its discriminate functions .This work is applied by using two Data set , the first
one contains 320 images of cuneiform symbols patterns for evaluate the optimal
feature extraction method. The second contains 240 images of cuneiform characters
to evauate the recognition system, agents training dataset consists of 2D four
triangular patterns.
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1. Introduction

Cuneiform writing is one of the oldest language
systems which emerged in the third millennium
BC, where the first character of writing was
invented in Urk city in south of Irag. Writing
system is subjected to many stages of
development to facilitate its characteristics about
the shape of symbols and numbers that represent
a development state of old Sumerian scrip
language to Babylonian and Assyrian cuneiform
language . At the beginning of the 19th century
thousands of cuneiform tablets were discovered In
Iraq and Iran, Which represent various Assyrian
Babylonian and Persian civilizations. Today these
tablets reside in many museums and the process of
interpretation requires experience and
time .However, the need for information
technology was required to solve this problem
about recognition task, therefore this research 2
presents a recognizing way for the cuneiform
symbols by applying OCR principle, through
applying its chine sequential principals steps
(preprocessing , segmentation , feature extraction
and classification). The aim of research is to
review a comparison state on features extraction
methods, particularly between elliptic Fourier
descriptor and polygon approximation methods to
evaluate which one of them is adopted to design a
recognition system. Where the adopted classifier is
a support vector machine (SVM) according its
discriminant functions. Finally, it must be noted in
this research that the cuneiform character will be
treated via collecting of cuneiform symbols, each
of them will be classified according to two factors:
the first one is to determine the cuneiform patterns
and the second is related to its direction.

2-Literature Review

In 2017 Rahma.A. proposed a new method for
recognized cuneiform symbols by adopting a
polygon approximation as features extraction
method. Where K-nearest neighbor classifier is
adopted and the recognition raita that was achieved
iIs91% [1] .In 2014 Mostofi f. proposed intelligent
recognition system for Ancient Persian Cuneiform
Characters that is based onsupervised back
propagation neural network model, (classification
model). The training data set is created by
subjecting the origina training set to Gaussian
Filter with different values of stander devotion.
The otsu's binirized model was adopted for
computing global threshold value. The recognition
achieved rate
was 89-100 %,[2].In 2013 Naktal M. proposed a
method for recognizing the cuneiform symbols
depending on statistical and structure features
derived by projection histogram, center of gravity

and connected component features. However to
separate each distinguish feature according to each
class of symbols, the k-mean clustering was used.
Multilayer Neural Network (MLP) was applied for
classifying a task where the recognition rate of
accuracy level was different according to each
class from 83.3% to 95.1%[3].In 2001 Al-Aany
proposed recognition approach for cuneiform
symbols depending on extract recognition features
that generated from binary cuneiform image
symbol by depending on  suggested seven
transform forms applied on each pixel’s with their
neighbors. However, each cuneiform symbol will
have distinguish features related to directions used
for recognition task .The classification process is
implemented by indexing process that was
distributed on tree structure [4].

3-Cuneiform writing

The Assyrian cuneiform language represents one
of the stages of the development of cuneiform
writing in Mesopotamia, which continued from the
beginning of the first millennium to 600 BC. It
relies on drilling cuneiform symbols on clay
tablets or tablets of stone from left to right to form
cuneiform groups which reflect the basic language
meanings. Thislanguage consists of a set of |etters.
Each one consists of one or set of cuneiform
symbols, these symbols or wedges are organized in
different directions either horizontal, vertical,
Oblique or diagonal, therefore, these letters with
their symbols vary from one character to another
according to the (number of symbols, their
direction and their location)[5] figure (1)

Figure (1) cuneiforms
museum

character images from Iraqi

The problems related with recognition tasks have
more than one face. The First problem relates to
the nature of the writing medium, whether it is
stone or clay(2.c), with a three-dimensiona
writing form. The second relates to the nature of
geometry of the cuneiform symbol, which takes
the three-dimensiona form (three surfaces)
figure(2.a), The third problem is the cuneiform
writing style, it does not depend on writing on
one face but may take writing on all the surfaces
of the tablet [5], figure(2.b) .
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The last problem that interfaces the cuneiform
recognition relates with undesirable results like
spots after being subjected to  segmentation
process, figure (2.d), where their features differ
from one image to another which affect
negatively on the recognition task [1].

(b)

Figure(2) cuneiform writing style . & the 3-D
geometry shape of cuneiform symbol , b) the style of
cuneiform  writing take more than one surface. ,c)
cuneiform image character ,d) spots problem

4. mage enhancement:

Image enhancement is one of the most important
image processing techniques, which leads to
reconstruct the image's features to suit the nature
of application's requirements The primary
objective is to treat al the associated problems
related with blurring ,contrast and noise. The
process of enhancement task takes two directions:
the first one submits to human vision as criterion
for the evaluation, and the second is moving
towards supporting and improving image qualities
used to support the identity process by machine
vision. Enhancement techniques can be classified
into two categories6]:

1- Freguency Domain.

2- Spatial Domain.
In this research the frequency domain is adopted

for applying the enhancement process as the ideal
low passfilter.
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5.Image segmentation .

It is an image processing technique that leads to
segment the image's pixel to segments of regions
where each of them has distinguished labels.
This simplification process is used to simplify
images features to easier or meaningful feature
form to be used to support the advanced
analysiss or recognition stages. Image
segmentation techniques are categorized into two
branches: its block and layer based segmentation
as seen in following figure (3) [7].

Figure(3):image segmentation techniques

Thresholding is a popular image segmentation
technique that is adopted by large number of binriztion
methods. It leads to separate the image into two sets
group of regions based on selected threshold value (T).
If pixel intensity color value is larger than the
threshold, it will represent foreground region in the
opposite case. It is considered as background, as
mathematical formula below.

(Lif fx,y)>T
G(X’y)"{o,zf Flooy) <T
Thereforeto

apply image  segmentation by
thresholding, two formals are adopted to apply this
task, these are Niblack and Sauvola’s method and
choosing one of them depends on statistical Skewness
metric [1].

(D

6-Image labeling by Extraction of Connected
Components

To reach to labeled image, (Multi-scan strategy) will
be applied (which is represented by Extraction of
Connected Components) on binary image, A as it
contains foreground pixels with labeled value equals
(1) and background, their pixel labeled valueis (0).
This process is implemented iteratively with
restricted condition depending on dilation concepts.
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Initial step starts by locating the first foreground
pixel (p ) which it represents seed point for
reconstructed matrix Xy with the structure element
B, scan the image A for computing the following
form[8],[9] .

MmN, B~ A, E=LEA ..

o)

let Xo=p where K=0,1,2...n

This iterative process would be terminated after the
terminated condition was satisfied as  Xg=Xk.1 For
applying image labeling concept, each regenerated
connected component will be assigned by
distinguished label for each connected component
element

7. Elliptical Fourier Descriptor:

Elliptical Fourier Descriptor (EFD)  represents
boundary shape descriptor where the classification
feature is generated from Fourier coefficients
[ ai,bi,cidi] about each N harmonic to recognize
closed contour of k elements , Where harmonic
coefficients are defined as follows[10]:

Theclosed coordinate points on N harmonic can be
calculated as follows :

_ T Kk ax; 2nmt; 2nmt
an—mzi 1d—t’[cos—‘ cos—”] ..(3)
_ k dx Znﬂ:t . 2nmti_q
by=;— ,,2 e s T
k dyl Znn'tl 2nmti_q
= nz e Bkt g [0S -COSTTE LL(5)
k dy 2nmt; . 2nmt
Oh=>— 1'[2 —— i Idt‘ [sin—=— -sin—*2] ...(6)
2 . 2nmt
Xi=X:2N_; a, cos o ’+bn sin——= nn‘ ...(7)

. Znntl

Yi=YoXN_; a, cos—+bn sin ...(8)

XcandYcis centr0|d s coordlnate Defined by
below equations.

Ko g Zia o (2 = ) +BitE = t21)  -(9)

Yo g Zir gt (6 = t£.0) + (e = t2.4) ...(10)
T= Thelength of chain code.
dti=1+(@) (1-(-1)") (12)
=", dt; ..(12)

8. Polygon approximation with Dominant point
approaches
In 2007 Asif Masood [11] proposed a new approach

for polygon approximation, it is defined as revers
polygonization principles which provide a good
representation about boundary of 2D shapes with high
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accuracy for data reduction , shape matching and
pattern recognition [11]. Basicaly, this method
implementation depends on dominant points (DP)
concept , assigned for endpoints of approximated line
segments ,where the initial set of (DP) starting with
detected break points(BP) is extracted from shape
boundary. However, (BP) is derived after applying
freeman’s chain code on shape boundary points.
Therefore, any boundary point is defined as break
point (BP) that its chain code (Ci) vaueis not equal
the chain code of prior point [12][11], However to
apply polygon approximation technique, there are two
optimization approaches being used to solve this
approximation problem|[14][13] .
1-Min-e problems: let polygon P vertices to be
approximated by another polygon Q with
predefined number of segments M aong with
minimizing approximation error.

2-Min-# problems: let polygon P vertices to be
approximated by another polygon Q with
minimum numbers of segments M, where the
error dose not skip the predefined tolerance value

9.Support Vector Machine (SVYM)

In 1995, Vapnik proposed a binary classification model
for the supervised learning, it is a linear classifier in a
feature space. Generdly, it is a classification task with
two classes once the training parameter is determined,
however this model is based on custom functions for
classification .It is defined as kernel functions.
Therefore the SVM agorithm with initid form islike
a decision boundary that separates between two classes,
but this model can be improved to increase the
separation process in new space ,Which results in
creating non liner decision boundary (Kernel function) .
The Kernel functions(K) in table(1) was used by SVM
to map input data feature space to high feature space

when the training data are not linearly
separable[15],[16].
table 1: kernel functions models
Core Formula
Linear K(xy) = x.y
Sigmoid K(x,y) = tanh(ax.y +b)
Radial Basis K(x,y) = exp(-||x-y||2/c2)
Function (RBF)
Polynomial K(x,y) = (ax.y +b)?
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10.Proposed recognition system

This section presents the main diagram figure(4) for
cuneiform recognition system starting with preprocessing
stage (1)to image segmentation , preprocessing stage
(2),features extra action and classification , in addition to

review the proposed a gorithms according each stage.

Preprocessing (1)

|}

Segmentation (thresholding)

]

Preprocessing (2) erosion spots

J

Features extraction

J

Classification

Figure(4):proposed recognition system

10.1Preprocessing stage (1)
Image enhancement.In this research the
frequency domain is adopted for applying the
enhancement process. The ideal low pass filter is
dependent ,where as ideal low pass filters can be
defined as follows:-

1 if D(wv) < DO

H(u,v) ={0 if Dwv)> DO (13)
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Where DO is non negative value which represents the
radios of cutoff frequency and D(u,v) is distance
value starting from point to center of frequency figure

(©).

Figure(5): ideal low pass filter.

10.2. Image segmentation ( Thresholding)

Therefore for applying image segmentation by
thresholding, two formals that are adopted to apply this
task are Niblack and Sauvola methods, these are
defined respectively in following forms, choosing
one of them depends on statistical Skewness metric [1].

T=M+tko...(14)

T=m(1-k(1- %) )...(15)
Where k is constant, (m, o) represents the mean and
standard deviation respectively.

10.3 Preprocessing stage (2)Spot removing

For eliminate the unwanted elements segments like
(spots) figure(6.b) that resulted from subjecting the
gray cuneiform image ,figure (6.@) to thrsholding
process. However the target of this process is to create
uniform features about cuneiform image symbols to be
clear from their elements figure (6.c). Therefore to
satisfy this principle, this research adopts the Image
connected-component labeling (CCL ) concepts to erase
the spots according to bellow algorithm .This process
get satisfied after applying bellow Algorithm severa
times to extra each connected elements and assign
distinguish  label for each one and apply the erosion
process for each segments which has small ratio to all
image's pixels.
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Algorithm (1) : Connected Components
Extraction.

Input :Binary image.

Output : Connected Componentsimage

Stepl: read input binary image 1B
Step2: locate thefirst foreground pixel p and it's
location p(X,y).
Step3:initlize the stricture element B .
Where B={1...9}=1;

Step4:k=0;
Step4:intilize the connection component matrix
Xk(0,0).
Step5 1set Xk (X,y) =p(X.y).
Step6: repeat

Y=Xk

Applied the dilation processon X, and
interest the result with original
Image 1B asfollowing formula

Xs1= dilation(B,Xx )N 1B .
K=K+1.

Untiled ( Y==Xg+1)
Step7: set CC_MATRIX=Y.
Step8:return ( CC_MATRIX).

(2) (®) (©)

Figure (6) spots erosion a) cuneiform image ,b)
binary image with spots ,c) spots off image

10.3.Feature extraction
This section presents two features extraction
methods depending on boundary pixelsto apply the
comparison state between them
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10.3.1Feature extraction by Elliptical Fourier
Descriptor (EFD).

The features vector generated by EFD is based on
quadruple Fourier coefficient (ai,bi.ci,di) values that
are defined by equations (3-6) ,where the predefined
number of harmonic N, determines the size of features
vector. That means that each one of these four parts
corresponds to the quadruple coefficient sequentialy
and its length agrees with degree of harmonic.
However, for extracting the boundary coefficient to
generate quadruple Fourier coefficient, each cuneiform
image’s symbol is subjected to extract its boundary by
(canny operators ) as closed contour to generate
freeman chain code that leads to determine the length
of chain (T)asseenin figure (7). The Elliptical Fourier
agorithm works follows:

Algorithm 2: quadruple Fourier oefficient

Input: cuneiform binary image symbol

Output:. Fourier coefficient (ai,bi.ci,di)

Stepl: read binary image symbol |

step2: extract boundary pixels of cuneiform symbol
by edge detection method and save the results
which represent a boundary image Ig.

Strp3: apply the thinning operation on boundary
pixel .

Step4: compute edge encoding process to generate
freeman direction code U;. where

Ui=(01,2,34567.

Step5: compute the length of previous direction
code df;

Where dt = 1+(2) « (1-(-1)").

Step6:  compute the harmonic  coefficient
(ai,bi.ci,di.)
f N
(c)
(b) (d)

Figure (7) Elliptical Fourier Descriptors ,a) binary
cuneiform  symbols, b) boundary image
¢ )approximated boundary figure ,d) matching class .
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10.3.2 Feature extraction by polygon approximation
with dominate point

The proposed algorithm to generate features vectors
about each cuneiform symbols depends on combining
the approximation principals (Min-e problems, Min-#
problems) in approximation approaches as illustrated
in (7). That means briefly with first approximation
principles (Min-€) the number of segments determined
previously is compatible with same number of
cuneiform classis segments as seen in figure(11) and
the tolerance value will be pre-defined where it
decreases gradually in each iteration until the
termination  condition gets satisfied,[1]. The
termination condition is satisfied if the number of
segments equals the number of one the cuneiform
patterns segments (3,5,7,9). the proposed algorithmis
asfollows:-

Algorithm 3:Polygon approximation
Input: binary cuneiform image.

Output: approximated points

Stepl: read binary image symbol 1

Step2: apply edge detection method with suitable
filter,

Step3: apply thinning technique ;

Step4: compute Freeman’s chain code for
boundary .

Step5: find break points DP,,.

Repeat

Step6: compute AVE for al DP

Step7: repeat

Step8: determine DP that minimum value DPy,
Step9: remove DP,,, from dominat table

Stepl0: recalculate AVE for DPyiy’s adjacent
neighbor.

Stepll: compute max eror

step12: until (MaX eror<thy

step13.z- Remaining points about DP’s is
approximate polygon points

stepl4: deleted all DP’S which construct with its
neighbors a straight angle

stepl5: th=th-eps; < epsepsilon value ex=0.009 >
stepl6  : until ((z==3)or(z==5)or(z==7)or(z==9))
step 17: end <where z= number of head >
step 18:return approximate points vector .

the recognition process depends on generating a
features vector for the training set and testing
symbol, asillustrated in figure (8), where each feature
vector consists of Cartesian coordinate  (approximate
points ) for eachclass.
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Figure (8): approximated points.
10.4 Classification

The classification task is applied with each cuneiform
symbols by SVM classifier as a generated feature
vector is adopted for each features extraction
method, to apply the comparison state. However, the
classification stage concerns with two steps. The First
one is a training state to generate features base with
assigning a distinguished labile for each class (triangle
class) .The other step applies the classification task
with test feature vector. Below is the classification
diagram figure (9) .

Foeadd traiming Read twesting image

Read tralning mege |

L

Pepresing ‘

PrEpIocessing

Fegture base

Constructer ‘

Segmartatan ‘

—t__.

Learsing state

FRatures wactor
= |

| Classufier S\ Conmration

| Recognire fabel | Festing state
|

Figure(9): classification diagram steps.
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However, after applying the multiple classification
task for each symbol the constructed recognition
code consists of three parts , which represent
number of cuneiform symbol distributed to
numbers of vertical, horizontal and diagonal. For
example as seen in figure (10) below the cuneiform
character, the recognition code (6#2#1#3) which
means thetotal cuneiform symbolsequals6,
which are distributed to 2 vertical ,1 horizontal and
3 diagonal.

Figure(10):cuneiform character .

11.Proposed training dataset

The design of the dataset is one of the most
important aspects that play an important role in the
classification process. Therefore this proposed
training dataset is a virtual dataset consists of 2D
four triangular patterns with forms compatible with
three-dimensional geometric shape form of the
cuneiform symbols, figure (11) . Covering al the
possibilities and situations is taken by the
cuneiform character's symbols with different
directions (horizontal, vertica or diagonal), and
compatible with patterns of cuneiform symbols to
solve the problem of shadows. These patterns are
distributed in 16 classes compatible with cuneiform
directions.

miminie

Figure(11) :cuneiform patterns

11.Results and discussion:
This section presents the evaluation state according to
features extraction metrics (EFD and polygon
approximation) .The first testing state consists of 320
symbols related to probabilities of conform symbols to
determine the recognition accuracy. Therefore, each
binary cuneiform symbol is subjected to extra
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boundary pixels and thinning process to generate
features vectors according to each method of
comparison state. Therefore, the second experiment
state which deals with cuneiform character dataset
consists of 240 of cuneiform image characters, after
evaluating the comparison state. However after
applying the first testing process the recognition
accuracy with average processing time is illustrated in
the following tables (table 2) according to each feature
extraction method.

Table 2: Comparison of recognition results about each
features extraction method with processing time.

awn

sayoeo Jdde
uolreolysse|D
(a43)
Yumsinsal
A%eInooy
Bussasoid
(uorew ixoidde
uoBAjod) yrm
S1nsaJ AJeindoy
awn
Bussatold

| upuowadxy

SVM
with
RBF
kernel
2 SVM
with
polyn-
omial
kernel
3 SVM
with
linear
kernel

S
[*)
S
O
w

0.332

o
©
=
o

0.452

0.6845 | 0.322 | 0.925 | 0.421

0.6594 | 0.320 | 0.613 | 0.441

As seen in previous table, the higher recognition
result is achieved when polygon approximation
method is adopted to construct features vector
especialy with  RBF discriminate  function
(Experiment 1). Therefore, to evaluate the
reliability about the proposed features extraction
method the previous testing set is subjected to
resizing process according to the different sizes.
Bellow the accuracy results about each size is
illustrated in table (3)

Table 3: Comparison of recognition results according
to different image sizes, where the SVM classifier is
adopted with RBF function.

Image size Accuracy
256x256 0.940
128x128 0.865

64x64 0.853

Along with applying Gaussian filter on testing set
many times according each standard deviation
values & as seenin figure (12) to evaluate the
recognition reliability.
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Binary 5 =1 5= o=7 Cuneiform character Recognition text
cuneiform image image
symbols

¥

5

N\

Figure (12): sample of conform symbol
deformation. applied Gaussian filter on each
cuneiform symbols (in first dataset) with different
values of each standard deviation .

Therefore, the first dataset is subjected to deformation
process by Gaussian filter several times according to
each experiment depending on different standard
deviation value, the accuracy results are illustrated in
table (4) .

Tabled Comparison of recognition accuracy
results according to different standard deviation
values .

standard Accuracy
deviation value "'E w

1 0.860 =

3 0.867

4 0.870 _

recognition process.

7 0.860 Figure(13): cuneiform character image sample
recognized by proposed system.
When adopting spatial low pass filter domain for
enhancement process (according to the second

dataset) the output of accuracy character
recognition results are illustrated in following table
(Table 4):-

However, now after adopting the polygon
approximation with SVM classifier, according to its
discriminant function (RBF) the recognition result

about the second dataset is satisfied against each Table 4:Comparison of results of recognition

cuneiform character image which can be seen in the
following figure(13),where the recognition state for
each character resultsfrom a cumulative

accuracy ratio after applying different LPF with
different sizes
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Filter size 3X3 5X5 X7
Medina 0.496 0.512 0.496
Gaussian 0.536 0.440 0.512
Average 0.472 0.544 0.504

Table 5;: Comparison of recognition accuracy
results

According to cut of frequency values

Experi Cutoff accuracy

ment/no frequenc
y values

1 0.2 0.51

2 0.4 0.61

3 0.6 0.94

4 0.8 0.62

5 0.9 0.67

As seen in the previous table (5), the higher
accuracy character recognition is archived in
experiment (3) ,where the value of cut off
frequency equals (0.4).

Now the evaluated recognition state is applied
among the discriminant functions about SVM with
(second dataset), where the value of cutoff
frequency equals (0.4) .bellow are accuracy
character recognition values and processing timein
table (6).

Exp =) Accu Average
. g =
erm & g racy Processi
ent/n g =
5 B ng
Y =
=1 Time(s)
1 RBF 0.92 4.028
2 liner 0.77 4.136
3 polyn 0.75 4418
omial

Asit can be seen in the previous table, the highest
accuracy character recognition with low processing
time when adopting the RBF is compared with
other discriminant functions LPF..

10
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Conclusion

This research presents a comparison state between two
feature extracting methods ,the elliptic Fourier descriptor
(EFD) and polygon approximation methods, where the
support vector machine is adopted as a classifier model
with its discriminant kernel functions .Consequently, the
evaluated recognition results indicate that the polygon
approximation by dominate points is more accurate to be
adopted in classification model as the achieved accuracy
result is 94% with RBF kernel function compared with
(EFD) method . To achieve more reliable decision about
the polygon approximation method, the testing set is
subjected to deformation state by Gaussian filter with
different values of stander divisions, accordingly, the
accuracy result is maintained to high quality .The testing
state is applied by two testing data set. The frequency
domain with low pass enhancement filter is more
accurate than the spatial domain according to the
accuracy of the achieved results that were compared
between them..
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Abstract :

The objective of this study is to present a method that aids in the diagnosis of
diseases in brain due to tumors from MRI brain image whereby segmenting the brain
tumor is done by using a novel algorithm that depends on the colour of the 2D image.
Therefore, this work consists of three main stages, the first one is loading image into
memory, and then the segmentation algorithm is applied. Finally, in order to obliterate the
noise object, the 2D median algorithm is conducted. After applying the method the results
which are obtained show better output to determine the tumor, simultaneously the
diameter of the tumor can be calcul ated.

Keywords: Noise removal, Segmentation algorithm, 2D median algorithm, Tumor.

1.Introduction

Brain tumors are classified into two
types, the first is malignant type and the other is
called benign. Malignant neoplasm is also called
brain cancer, where malignant melorem hastily
and often occupies or attracts the brain vigorous
zones. By contrast, the benign brain tumors,
which usually grow slowly, have no cancer cells
at al [2].

One of the main causes of the increasing
rate of mortality among children and adults is
brain tumor, where a tumor is defined as any
mass that is produced by abnormal growth may
affect anyone irrespective of their age. It
consequently might be aike for everyone
Tumors can destroy brain cells directly. The
healthy cells can aso be damaged indirectly by
moving some brain parts, which results in
“inflammation, brain swelling, and intracranial
pressure” [1].
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The result of using computer technology
is widespread and comprehensive in many life
applications or areas such as medical decision
support covering a wide range of medica fields,
such as cancer research, heart disease,
gastrointestinal tract, and brain disease. In the last
century, computer-aided diagnosis (CAD) has
gradually become an essential area of intelligent
systems [3]. CAD becomes very important in
many applications such as detection or
classification of diseases.

In general, unusual deviations happening

in organs and tissues can be detected early by
means of a number of diagnostic and imaging
techniques such as CT scans, MRI, X-rays, and
ultrasound [4]. “Magnetic resonance imaging
(MRI)” is considered to be one of the basic
remedial methods frequently used to portray the
construction and function of the human body in
which it provides rich information on excellent
soft tissue variation and is particularly useful in
neuroscience[5].
The fragmentation of medical images is a magjor
step and an introductory stage in the use of
computer assistance. The success of medical
image analysis depends largely on micro-image
fragmentation algorithms. It has become clear
that the exact division of the medical image is
essentia in the planning of radiotherapy, clinical
diagnosis and treatment planning [6].

Image Segmentation is very important
stage in images and interpretation, processing,
image segmentation consists of extracting one or
several objects of interest from agivenimage [7].

Broadly, the techniques of image
segmentation can be categorized into Region
Based method, Threshold method, Clustering
method Region and Edge based method [8],[9].

The threshold method is one of the
important and vastly used methods which
recognizes foreground objects from the
background for medical image segmentation.
This can be achieved by the similarity of gray
levels. To select an appropriate threshold value T
in between two peaks Thresholded image g(x,y)
From the histogram of an image, can be defined
as
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g2 y)=1iff(x. ¥} =T (1)
0 else

where f{x. v) is the input image

So, the values associated with gray level
are to be categorized as “black (0)” if they are
lessthan T, whereas the values exceeding T areto
be the “white (1)”. Threshold method is thereby is
a means to obtain a binary image from gray level
one being processed and altered [10].

The gold standard for performing
segmentation is to manually delineate the object
boundary [11]. Segmentation - as a means of
medical capturing - plays a very paramount role
in diagnosing apart from treating alot of diseases.
Still, [12] it is deemed a challenging job because
of the slender dissimilarity along with “speckle
noise” reflected in the photos.

To achieve this goal, several methods
have been proposed for the use of image
segmentation in the field of therapy, aiming to
split the image into distinct areas so that
determining the tumors will get possible [13]
[14]. Some of authors depend on K-means
clustering algorithm to extract the tumor such as
[15]. The other uses the Threshold techniques
[16], [17] or Histogram threshold technique that
is achieved by the presumption that all pixels
possess intensity rate below the predefined
threshold’s which belongs to a specific region.

This paper is structured as follows. section 1 to
cover the introduction; section 2 to tackle the
materials and methods; section 3 to discuss the
results and finally, section 4 which is devoted to
the conclusion.

2. MATERIALS & METHODS

This section is devoted to presenting the
proposed method that isin Figurel; it is divided
into a set of steps and each is responsible for a
specific job:
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Secondly: Spilt the prime colour matrix to 3

e matrices [R], [G] and [B].

Image Acquisition Thirdly: Calculate the mean and the standard

deviation for each row.

- - Fourthly: Match a normal distribution object to

Input the Ir?’.IIII'_IE,'EfIIE |_rr to memnq_-' PG the data.

e wwork are 588 2 500 pomale o Fifthly: Calculate the threshold (95% confidence
interval for the distribution parameters for each

matrix Red, Green, and Blue).

Sixthly: Extract the (Red, Green, Blue) colours

from the image by comparing each pixel for

every matrix with threshold, if it is less than

i threshold, the pixel value is equal to zero, or else

Segmentation it isequal to one.

Al EO rithm Seventhly: Apply noise removal algorithm.

2.3 Noise Removal Algorithm

Apply Segmentation Algorithm Applying the “segmentation algorithm’
is associated with the appearance of some objects
which, besides being noisy, do vary in sizes and
shapes. Subsequently, ‘“2D median filtering
algorithm” [18] is necessary to strip away those
intrusive objects which must be tested by means
Noise Removal of windows prior to the elimination process, as
long as they are located within the window
boundary. The agorithm is as mentioned in the
study [19].

Algorithm

Applythe 20 medianfilkering

algorithm 2D Median Filtering (Huang & Yang, 1979)
Algorithm:
Figure 1: Main diagram of proposed method allocate output Pixel Value[image width][image height];

allocate window{window width * window height];
edgex={window width/ ) rounded down;
2.1 Image Acquisition edgey=(windowheight/ 2) rounded down;
for % from edge of image width - edge x

At this procedure, the image file is for  from edgey to image height - edgey

uploaded to memory in JPG format. A digita i=0-

image is composed of a finite number of far ﬁ from 0 to window width

elements, each of which has a particular location for f from 0 to window height

and values. The elements of a digital image are windowli]: =inputFixeValus fe+ fi - edgex] [y+ fy-edoey],
called pixels .The dimensions of each image in i=i+l-

this work are 388 x 400 pixels. sc-»rt efifries in window(];

output pixel value [x][y]=window[window width * window height/2];

2.2 Segmentation Algorithm

Subsequently, the said agorithm will
apply to have the tumor extracted from the brain.
This study, in effect, depends on the tumor colour
whose crucial role is represented by identifying
the objects. The segmentation approach hence is
elucidated by the algorithm below:
Firstly: Read the coloured photo.

Eighthly: Return the coloured pixelsto the whole
matrix (Red, Green, Blue).
Ninthly: Compare the three matrices with 8unit.

14



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.l Year 2019
ISSN (Print): 2074 —0204  ISSN (Online): 2521 — 3504

Awfa .H

3.Result and discussion

This part focuses on segmenting the tumor from
the MRI brain image by using a novel algorithm
that should run to extract the tumor .The proposed
method implemented by using MATLAB
application. In MATLAB application, in order to
have the loaded MRI brain files of images read
and stored in the memory, the user’s border
window should be opened immediately, as
manifested in Figure 2:

Figure 2: Represent The Original Image

This study depends on the colour of the tumor
because it is a significant element to recognize
the objects. Thus, after the images have been
uploaded, the “segmentation algorithm” starts
to extract the (Red, Green and Blue) colours
from the image by comparing each pixel for
every matrix with Threshold: if it is less than
Threshold, the pixel value then is equal to zero
or else it is equal to one. As shown in Figure
3, that clarifies the result of the segmentation
procedure:

® i e e (e D AR =

Figure 3: Apply segmentation algorithm.

In the subsequent process, the ‘2D median
filtering algorithm” is used to eradicate the noisy
objects due to applying the segmentation
algorithm .This is achieved through using
windows to test the objects causing noise in the
image. Hence, figure 4 shows the result:

Sr B rw Ewd Tee Do e S

Figure 4: Noise removal.

In the end, a comparison should be made among
the image pixels; al the pixels having (1) will
maintain the origina value of (Red, Green, and
Blue) otherwise, they must have (0). Figure 5
displays that.

AN Ve M el Deaaie  Niow

o b L& L0 - |

Figure 5: Tumor segmentation.

We were able to determine the tumor size, by
calculating the diameter of the tumor .Therefore,
a another results we can shown in Figure 6 :
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b: Apply segmentation
algorithm

The Original Image

The Original Image | b: Apply segmentation

o: Tumor segmentat

Figure 6: (a, b ,c ,d):Represent the result of the
other images

As shown in Figure 6, the proposed method is
applied in individual images to test it by using
variant MRI brain images each one has got
variant position and size of tumor in the brain, so
in each case of MRI brain image, it is possible to
determine and calculate the diameter of the
tumor.

4. Conclusion

The proposed method is developed for
segmenting the tumor which inflicts the brain
from the brain MRI images. Therefore, the
method that we have proposed is performed
through multiple stages. The first stage is image
acquisition, and with the second stage
segmentation agorithm is to be applied; finaly,
we use the “2D median filtering algorithm” to get
rid of the objects accompanied with noise. The
proposed method applies on variant MRI brain
images and each of these images contains a
variant position and a specific size of the tumor.
It is concluded that the proposed methods is
effective and it can achieve promising results for
determining the tumor and caculating its
diameter.
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Abstract

Software risk management refers to systematic process for analyzing and identifying
the project risks. The present paper provides a hybrid method for IT software risks
identification. Software projects possess different features which increase the project
failure possibilities. Therefore, the present work integrate the Artificial Neural network
with the Anaytic Hierarchy Process (AHP-ANN) in order to solve the problem of
software project estimation in early stage. The questionnaire developed to find out the risk
functional model and provide the proposed method with proper data. The results observe a
major common risk in software projects is the insufficient knowledge based on different
software project life cycle stages. Also, there are some other important factors in software
projects such as lack of good estimation in project scheduling, poor definition of project
requirements which cause human errors.

Keywords: ANN, AHP, risk identification .
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1. Introduction

Risk management can be defined as a
method to identify the software project
threats in order to enhance the software
firms organization. The risks sources can
be the erroneous strategic in project
management or the external challenges.
Therefore, there is a need for operation
enhancement of software project in order
to develop the software efficiency and
flexibility [1]. Most of studies
investigated the risk factors and provided
some useful techniques to specify the
effectiveness of them. The ranking based
on risks importance is made in light of
analysis, planning, maintenance, design
and implementation [2]. Classifying risk
factors can be considered risk attributes
as the main issue in developing risk
project. Development of risk
management software can be classified
into scheduling risks and quality risks.
Also, it can be grouped into performance
risks, cost risks support risks and
schedule risks [2][3]. These
classifications were very hepful in
monitoring and controlling risks in
software projects. More importantly, the
top ten software risk factors in
developing software were chosen and
utilized for analysis [4].

Some authors apply Artificial
Neural Networks to identify the risks and
to develop an application for risks
management during software
development [5]. Many other techniques
have been used in this field such as

regresson analysis, expert systems,
stochastic  models, Monte Carlo

Simulation, Decision Tree and Analytic
Hierarchy Process AHP [6].
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finally, theresearchers develop some
techniques to tag the same goal such as
Singular Value Decomposition SVD
technique [7]. In this work, Artificial
Neural Networks have been integrated
with Analytic Hierarchy Process (AHP)
method for risk control as a tool for risk
management.

2. Software Risk identification

Software risk identification is considered
the activity of the potential risks which
can effect on the project development
and determination. The risk check list
can be creadt based on the identified risk
concepts [5]. It occurs when the
organization faces uncertainties from
limited capacity and costs in its pursuit
for opportunities. In this regard, an
effective risk management initiative
coupled with suitable risk management
strategies can help mitigate the cost and
stress brought on by risk issues [8]. Risk
identification is acritical process, the risk
management  mostly  depends on
identifying all possible risks that may
face the project during development [1].
The result of software risk identification
istherisk factor list. The identification of
risk factors will be followed by risk
anaysis. The quantitative risk analysis
simulates each critical risk effect.
Elzamly in 2014 brought forward new
methods using quantitative and mining
methods to conduct comparisons among
risk management methods in the lifecycle
of software development [4].
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Artificial Neural Networks (ANNS) were
developed by Gandhi et a. in 2014 for
the prediction of the level of risks in
software projects, where risks were
detected prior to the project
implementation and the steps taken to
mitigate them ensures higher rate for
successful projects [5]. Hojjati  and
Noudehi in 2015 applied Monte Carlo
simulation for risks assessment. The
study evaluated project risks in the IT
domain and utilized the Primavera Risk
Anaysis software to quantitatively
analyze management [9]. Paraschivescu
in 2016 brought forward integrated
quality and risk management concepts
resulting in an integrated management
system risk that sheds light on new
dimensions and perspectives. Also,
Elzamly et a. in 2016 identify software
risks and software development controls
[10]. The study ranked the risk factorsin
software based on their importance and
how often they occurred in a data source.
The ANNSs applicability was examined in
Andreas’s study in an attempt to analyze
survey data concerning risk management
practices effectiveness in the context of
product development (PD) projects and
forecasting of project outcomes [7]. They
explained the relationships between risk
management factors that influence
successful PD project (e.g., cost). Salman
in 2018 apply the maintenance risk
factors in Singular Vaue Decomposition
(SVD) correlated with the traditional risk
factor calculations to estimate the
software maintenance projects[7]. Based
on the present review, the researchers
specifies the main risk factors that can be
used in thiswork asin the next section.
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3. Selection of Risk Factors

Risk management is a process to develop
strategies for identifying and estimating
their impact. The steps taken for risk
management process in the present work
are asfollows;

1. Risk identification, it represents the
activity of detecting the effected potential
risk in the project that affected the
project development. In the present work,
the researcher developed a questionnaire
using the taxonomy based risk
identification presented by Marvin J.
Carr [11].

2. Risk analysis, it represents the process
of understanding of where, when and
why the risk appear. This process take
place based on direct queries about the
impact and probability of the risk
elements. Traditional risk anaysis
focuses on the potentia impacts to a
human population due to the presence of
an introduced substance or event, for
example the presence of pesticides in a
body of water wused for human
consumption, or an oil spill. A broad
variety of techniques are used to evaluate
risk in these situations. Risk anaysis
typically involves four steps. hazard
identification, risk assessment,
determining the significance of the risks,
and risk communication. The traditional
risk management in the present paper
focuses on pure risk and refers to
individual risks as if they don’t interact
(Simona-lulia, 2014). Based on the
present two bases in the software project
risk management, the researchers listed
the risk factors.
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The ‘Top 10 software risk factors’ lists
differ to some extent from author to
author, but some essential software risk
factors that appear almost on any list can
be distinguished. These factors need to
be addressed and thereafter need to be
controlled. Consequently, the list consists
of the 10 most serious risks of a software
project ranked from one to ten, each
risk's status, and the plan for addressing
each risk [10] [4]. However, the software
risk factors listed in Table 1 below are
considered in this study. In addition,
these factors are the most common
factors used by researchers and experts
when studying the software risk factors
in software development lifecycle.

Hoodat and Rashid classify the
software risks and specify the relations
between these risks. They used the risk
tree structure correlated with the
probabilistic calculation. The analysis
helps qualitative and quantitative
assessment of risk of falure. Also, its
help software risk management process
[2]. Therefore, this classification used in
this research as a base of study which is
correlated with the Software
Development Life Cycle. Figure 1 shows
the project scheme.
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Table 1. lllustrate Top Software Risk
Factorsin Software Project Lifecycle

Al | Poor definition of requirements
g A2 | Inadequate of requirements
E A3 | Invalid requirements
% A4 | Lack of good estimation
5
g .
@ Lack of accurate system domain
s A5 -
2 definition
)
. B1 | Unreadlistic finance schedule
g
04
J3
O B2 | Lack of good cost estimation
(O]
?33 B3 | Lack of monitoring
"8 B4 | Complexity of architecture
B5 | Human errors
C1 | Inadequate knowledge about
Techniques
" C2 | Lack of accurate system domain
g definition
g C3 | Lack of employment of manager
=)
E experience
§ C4 | Lack of good estimation in project
g implementation
8 C5 | Lack of s«ill
D1 | Lack of skill
% D2 | Lack of good estimation in
14 projects
2
= D3 | Human errors
o}
8‘ D4 | Lack of employment of manager
g experience
"3 D5 | Lack of project standard
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Figure 1. The project scheme
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This scheme will be used in ANN based
on AHP technique. The risk parameters
selected form Hoodat (2009) based on
the top ten risks presented by Elzamly
(2016) and Salman (2018) [2][7][10].

4. Risk Factors Evaluation

The study developed a questionnaire that
comprised of questions relating to chosen
34 risks maintenance risk factors adopted
from Lopez and Salmeron (2012). The
questions were chosen with the hope of
the works of Marvin (1993) and Webster
(2006) and the risk factor values
caculated two types of questions,
positive and negative [11][13][6]. The
former type represents the questions that
had yes answers, while the latter type
represented those that had no answers.
The sum of the questionnaire list of
questions for every type of risk can be
represented by the following

formula[5] 7]

N
rE =>@Qwp) D
i—1

22

Where RF = Risk Factor Value, Q =value
of each question, W = weight

Thus, the boundary condition is

represented as:
i . if yes =1
poswwe questlons if no =0

= i vesco (D)
negative questions i; yes™?

Collection of data was conducted
using questionnaire to determine the
commonly occurring risks in majority of
software projects in the software
companies. The respondents were then
presented with the 20 software risk
factors. The study sample comprising of
150 persons worked in specific IT
organizations in lrag. These peoples
represent the Software Life Cycle user
areas. The collected data reflect the
selected software risk factors which
developed to be used in ANN.

5. Methodology of Risk Factor
Specification

In order to specify the risk factors in
software project life cycle, the researcher
integrate the AHP technique with ANN

asinthefollowing:

a) Artificial Neural Networks (ANNSs)

The neural network can be defined as a
paralel distributed processor. The main
processing unit is inspired by the way of
biological nervous system, such as the
process information of human brain. The
potential system of ANN involves
several layers developed by computing
elements and called nodes. The system
operation of neural network depends on
the signal transmission.
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When the nods receives the input signal
from input representation of the system,
it will transfer the signal to the next step
node. This process will mining the
transferred the data in order to find out
the specific correlation in input data. The
first layer represents the input layer and
the last layer considered the output layer.
The input layer is received the data of the
case study which represent the statistical
data. The last layer produce the solution
of the problem which represent the
predicted or identified data. In between,
there are hidden layers which operate the
complex data to identify proper pattern
using system of specific formulas. The
reason for using the neural network ire as
in follows:

1. It must have the ability to learn the
neural system how to do tasks. The tasks
done based on the given tanning data.

2. It must have the ability to generaize
the internal system operation. It must
produces reasonable outputs without
paying attention how dea with the
internal processes.

b) AHP

Anaytical Hierarchy Process (AHP)
methodology has been applied to the
evaluation of risk related to software
project. Five risks are evauated and
defined in each project stage as presented
in table 1. The criteria weights can be
more precisely defined by the AHP
methodology using “Saaty scale” than
using the digital logic method. However,
subjectivity is playing a great role in both
of methods. Subjectivity is included to
the comparison of alternatives by the
origina AHP methodol ogy, also.
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Contrary, by using other method there is
no subjectivity concerned of alternatives
comparisons because of deaing with
transformed values of criteria The
ranking of al alternatives can be
performed, by obtaining the priorities.
The weights present the relative
importance of each criterion compared to
the goal. Finally, alternatives present the
group of feasible solutions of the
decision problem.

6. Experimental results

The methodology of the present paper is
to integrate the ANN with the AHP
techniqgue. The AHP will present a
pattern to the ANN. Based on the results,
the software project risks were important
in the perspective of the project
managers, whereas all controls are used
most of the time, and often. The risks
were ranked on importance in light of
anaysis, planning, design  and
implementation. In particular, top of
software risk factors in software
development Lifecycle were very
important, aggregating the responses
resulted in the following ranking of the
importance of the listed risks. The AHP
model in this study is formed to prioritize
the various risks within the software
project. The result observe the factor
priority, for instance the software
requirement results can be seen in table 2
and 3.
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Table 2. Analytical Heirarchy Process The yellow bars represent the ANN
M atrix results, while the blue bars represent the

AL v 3 m 5 integrated method. The bar graph shows

Al 1 06 | 0355 | 05 03 that the risk identification due to the
A2 1666667 1 0.625 |0.833333| 0.5 present method. These vaid results
A3 |2666667| 16 1 |1333333 08 highlight the largest problem on IT

Ad 2 12 0.75 1 0.6
A5 13333333| 2 125 |1.666667| 1

software risk factors which represents
inadequate knowledge/skills, insufficient

COL.
TOTAL |1066667) 64 | 4 |5333333) 32 expertise and Insufficient/inappropriate
staffing. The results observe a big effect
Table 3. Normalized Score Table by the insufficient expertise in the
applied software management as shown
AL | 009 | 009 | 009 | 009 | 009 | 047 | 938 in figure
A2 | 016 | 016 | 016 | 016 | 016 | 078 | 1583
A3 | 05 | 05 [ 05 | 05 | 05 | 15 | B0 10
M1 019 | 019 [ 019 [ 019 | 019 | 094 | 1875 9
A5 [ 031 [ 03t [ 03 [ 031 | 031 | 15 8
coL w
TOAL| 1 | 1 | 1 | 1 1 | 5 g E
In the present method, the ANN trained g 4
based on the conjugate gradient 3
backpropagation algorithm.It represents a 2
proper  choice for problem of (1)
classifications. It is used less memory Al A3 A5 B2 B4 C1 C3 C5 D2 D4
requirements and provide faster response RISK FACTORS
than gradient decent algorithms.
e S Figure 3: Identifying the Software
Heual Hework Improvements Needs

the Risk Management. It can provide
important information regarding that risk
improvement and risk management
practices. The higher risk in software

o J,._ ' This factor are critical in development
Eﬁ% 4._% & _J _ _

Figure 2. ANN with one hidden layer and project phases based on the four phases

ten hidden nodes project life cycle came from identifying

software improvements needs (phase 1)

The plotted results shown in which observe 41%, while the other three

Figure 3 indicate that results observe the risk groups observe 21% and 22% and
same responses of therisk factor effects. 16% as shown in Figure 4.
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Figure 4: Identifying Risks in risk Phases

8. Conclusion

In this work we apply AHP technique
with ANN to support Risk Management.
The results show that that AHP technique
is simple and efficient for total variance
in common questionnaire of each of the
software risk factors to model if they are
effective in mitigating the occurrence of
each risk factor. The result of AHP is
presented as a pattern to ANN. As a
conclusion, this method can be used
effectively to identify the risk effect in all
project phases. The used method specify
the Risks in three reasons. It specifies the
root of risk problem and the effective
phase of project.
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Abstract.

As a significant number of applications in mobile transactions and wireless sensor
networks are characterized by short duration sessions, security issues turn into a focal
concern.

RC4 dgorithm is a standout amongst the most broadly utilized stream ciphers which
locates its application in numerous security conventions, for example, Wired Equivalence
Privacy (WEP) and Wi-Fi Protocol Access (WPA).

In this paper, we suggest a lightweight variation of the well-known RC4 algorithm that is
exceptionally appropriate for resources of computational compelled gadgets and energy in
remote systems, when contrasted with RC4 and its variations like, HC128, Grain-128, and
so on.,. We propose hew PRGA which is replaced the PRGA keystream generation
algorithm of RCA4.

The proposed LRC4 execution is surveyed in terms of randomness test and time under an
arrangement of analyses. The trial comes about demonstrate that the resulting stream are
random, and the suggested algorithm quicker compared to standard RC4, the results
indicate the average of speed improvement is about 54% in both encryption/decryption
sides.

Keywords: Random Number Generator, Stream Cipher, Key Scheduling Algorithm, RCA4,
Lightweight cryptography .
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1. Introduction

The computing devices utilized as a part of an
extensive class of remote correspondence
systems, for example, cell phones, Internet of
Things (IoT), body area networks (BANS),
remote sensor systems (WSNs), mobile ad hoc
networks (MANETS), vehicular ad hoc networks
(VANETSs), and so on., are little and asset
compelled. To guarantee the security of
information correspondence sessions in such
systems, Stream ciphers agorithms have been
used. In particular, hardware stream ciphers and
software stream ciphers are the two sorts of
stream ciphers each of them contingent upon the
stage most suited to their execution[1].

One of the stream ciphers algorithms, Ron Rivest
outlined the RC4 agorithm in 1987 but the
agorithm kept mystery until the point that it was
as often as possible to the cypherpunks mailing
list in 1994. RC4 is the most satisfactory stream
cipher; it is utilized as a part of numerous web
conventions, for example, Wireless Protected
Access (WPA), Wired Equivaent Privacy
(WEP), and Secure Socket Layer/ Transport
Layer Security (SSL/ TLS) [1]. It is likewise
utilized as a part of use, for example, Skype. RC4
proves its efficiency in both hardware and

software  and  speed. It is extremely
straightforward and quick equivalent to other
encryption algorithms. RC4  algorithm

predominantly comprises of two phases: the KSA
(Key Scheduling Algorithm) to produce, from the
key, an initial permutation of the S array and the
PRGA (Pseudo Random Generation Algorithm)
to create the key stream[2].

RC4 is as yet the most famous stream cipher
agorithm because of its straightforwardness,
speed, and simplicity of usage athough more
secure and efficient stream ciphers have been
found after it [1].

2. Related Work

Numerous researchers have endeavored to
upgrade the security of RC4 and make variation
algorithms. However, this improvement impeded
the execution speed. On the other hand, many
researchers have attempted to improve
algorithmic speed, but this caused a decrease in
the randomness [3].
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Jian et al, 2010 [3] introduced an enhanced RC4
in [3] . They improved the speed of RC4, and
security. However, regardless of whether the
enhanced RC4 in [3] has different escape clauses
staysto be tried.

Weerasinghe, 2013 [4] proposed algorithm it is
cost-effective than the first RC4 and different
changes of RC4 utilized as a pat of the
examination. Since there are numerical qualities
to portray the security level of the ciphers, anyone
can get a major picture of the secrecy of the
pertinent ciphers. Higher estimations of mystery
areappeared by the new stream cipher, which
implies the randomness of the cipher is higher
than that of others, which is highlight of a decent
cipher. The explanation for having a higher
secrecy can be the expanded number of more
activities and modificationsin the PRGA.

Nishith et a, 2014 [5] The algorithm proposed in
[5] enhanced the security of Improved RC4
agorithm by forcing substitution, along these
lines changing over it into an item cipher. Time
taken for encryption and decryption utilizing the
proposed agorithm is hardly more than the
Improved RC4 Algorithm.

Maytham et al, 2015[6] to solve the powerless
keys issue of the RC4 utilizing a random
introduction of inward state S. An arbitrary
starting state (RRC4) was used to produce RC4
algorithm. Additionally, two state tables (RC4-
2S) were used to propose RC4 algorithm. At long
last, [6] they proposed RC4 agorithm with two
state tables to create four keys (RC4-2S+) in each
cycle which additionally upgrades randomness
over RC4-2S and RRCA4.

Sarab et a, 2016 [2] to overcome the weakness of
the key scheduling agorithm of the original RC4,
they presented a new modified key scheduling
algorithm. The modified algorithm enhances the
secrecy of the ciphertext especially when the key
size is small and proves to be more random than
the origina RC4. Furthermore, the time of
encryption of both algorithmsis comparable.

Soumyadev et al, 2017 [1] They proposed a
lightweight stream cipher agorithm. The
suggested algorithm secure as Grain-128, orginal
RC4 and other stream ciphers with regards of
wireless applications that utilization short
sessions.
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3. Description of RC4

RCA4 picks a cluster (S;,,) and a secret key (K),
the cluster known as Shox which includes N
(N=2") (N=256, where n=8). KSA and PRGA are
two algorithms contained in RC4 algorithm [4].

A variable key length is used in RC4, which runs
between (0-255) bytes for instating 256-byte
array in the underlying state by components from
Spox [0] t0 Spox [255] [3]. The KSA uses the
symmetric key to permute an array S containing
256 entries. S array is initialized with identity
permutation ranging from 0 to 255,( As suggested
in [2][1] RC4 must utilize a key longer than 128
bytes). Then, a 256-iteration loop is utilized to
produce a random permutation of the exhibit S,
where the entries of the S array are continually
swapped using the key value[2].

Algorithm of KSA:
set N «— 256
set ki to 0
while (true)
begin
Sbox [kl] —ki
kieki+1
end while
set kj«—0
set ki—0
while (true)
begin
kj«— (kj+Sp0x [Ki]+K[Ki]) Mod N;
SNap(sbox[ki]erox[kj])
kieki+1
end while

Figure 1: KSA of RC4

The objective of PRGA isto create a sequence of
key stream. In the PRGA, two indices ki, kj are
initialized to zero. In each iteration, ki is
recomputed as (ki+1) and kj is recomputed as
( Kj+Spox [Ki] )mod 256 , and then a swap
operation is conducted between S[ki],kj]. The
key stream that is XORed with clear-text is
genera[ed as (Sbox [(Sbox [ki]+5box [k]]) mod
256) [1][2][6].PRGA steps show in figure2 :
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Algorithm of PRGA:
set N«—256
set ki<—0
setkj— 0
while (gener ate key-stream)
begin
ki<—ki+ mod N;
Kj«—Kkj+Sp0, [Kilmod N
Swap(sbox [kl], Sbox [kj])
OUtpUt‘_Sbox [(Shox [k|]+ Sbox [k]]) mod N]
end while

Figure 2: PRGA of RC4

4. Proposed Algorithm

In this paper, we produce an efficient stream
cipher agorithm which is a lightweight compare
to origina RC4. The propose agorithm bring
down cost of computational overhead when
compared with the ordinary stream cipher like
RC4. The suggest lightweight algorithm is
sufficiently secure for use in many low term
wireless communication application situations.

For creation of the random initial permutation S,
utilize the KSA agorithm (first Algorithm) from
RC4, but supplant the PRGA of RC4 new
PRGA (lightweight PRGA). Lightweight PRGA is
utilized for keystream creation from the (S,,,)
the input permutation ( result from KSA). The
new PRGA algorithm showsin figure3:

Proposed PRGA Algorithm:
set ki<—0
set kj«255
set t«—0
for ki<—0 to N-1do
begin
te— (Spox [Ki]+ Spox [Ki]+kj ) mod 256
kj«—ki
kiS5 [Ki]
Spox [Kj] <t
Output Z«S;,, [Ki] XOR Sy, [Ki]
end for

Figure 3: Proposed PRGA Algorithm

The yield of the PRGA algorithm is a key
arrangement that will be XORed with
cleartext/ciphertext) to get the
ciphertext/cleartext.
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5. Simple Example
Key= “password”
Plaintext= “mymessag”

Tablel: Simple LRC4 example

S 9] Key- Plaintext Cipher-
stream text
249 91 162 207 109
167 84 243 138 121
26 71 93 48 109
252 90 166 195 101
112 253 141 254 115
99 135 228 151 115
25 230 255 158 97
45 111 66 37 103
Key stream
162 243 93 166 141 228 255 66
LRC ®
\ Plaintext
207 138 48 195 254 151 158 37
Cipher-text
109 121 109 101 115 115 97 103
Key stream
4 162 243 93 166 141 228 255 66
LRC
4 53]
Cipher-text
109 121 109 101 115 115 97 103
Plaintext
207 138 48 195 254 151 158 37

Figure 4:Simple example

6. Performance Evaluation

Different criteria can be used to measure the
security level and performance of a given
encryption algorithm. In this paper, two
measurements. the randomness test of NIST (the
National Institute of Standards and Technology)
statistical test suite and time are utilized to assess
the suggested algorithm.
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6.1 Randomness Test

The datistical test suite (NIST) is the most
broadly utilized one in the field of cryptography,
which we have utilized for contrasting the
standard RC4 and proposed LRC4 Algorithm. In
this paper, three tests namely Approximate
entropy, Run test and Linear complexity in the
statistical test Suit are used to measure the
randomness of the cipher-text created from RC4
and proposed lightweight RCA4.In the wake of
applying the NIST test suite, we use 10 random
keysto test algorithms as showing in table2.

In this paper, the significance level, (p-value) is
set to 0.01. The statistical tests suit (NIST)
results indicates success of output (ciphertext) of
al tested agorithms. In other words, al the test
type of statistical test Suit are adequate and have
good randomness for the two tested algorithms.

Table2: NIST Tests Applied to Standard and Modified RC4
Algorithms.

Standard RC4 Proposed LRC4

KEY IApproximate Run test Linee( IApproximate Run test Linee(

entropy compl exity entropy lcompl exity
AEDW 0.021265 0.475773 0.955719 0.0553588 0.690328 0.6766
FmADDwerdf 0.075948 0.723729 0.808846 0.222083 0.166203 0.8088
Oeey6tw453f15d2154f16a6883c 0.27209 0.7045 0.42319 0.09743 0.36818 0.8395
[32881e0435a3137f6309807a88da234 0.099388 0.88353 0.398762 0.481929 0.678082 0.8088
P232d95de24al1b6hb79fad3b37a427ea0 0.077827 0.523502 0.398762 0.062620 0.3722 0.1394
B040fa18f1908598656982223fa2dd8d 0.028795 0.523378 0.902774 0.418634 0.109129 0.3798
dgekh77f1128598656982223ra2yt6d 0.018869 0.924253 0.320847 0.06648 0.497926 0.7306
[34ui aff 70eey67cpl 602154 16a6441w 0.050375 0.533358 0.186466 0.609536 0.664365 0.1173
'3ui dd670eey655rt6d215wetr4adkms2 0.2424 0.93857 0.46154 0.5826516 0.546237 0.7804
Pb28ah097eaef 7cf15d2154f16a6883¢ 0.408949 0.543813 0.962877 0.905865 0.925194 0.8929
Average 0.129591 0.67744 0.581978 0.350259 0.50178 0.6174

6.2 Encryption Time
We used different size of text files to test the

speed of the proposed agorithms, and we
compared the calculated time of both the standard
RC4 with lightweight RC4.

Table3:Encryption time in second

File Size Standard RC4 Modified LRC4
1.00 kb 0.00347 0.00148

2.01 kb 0.00433 0.00262

20.0kb 0.04263 0.024217
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In this evaluation step we have tested several files
in order to prove that how fast the modified
LRC4 agorithm than the standard RCA4.

According to this test, we can indicate that the
modified LRC4 (Lightweight RC4) agorithm is
faster than standard RC4 algorithm and the results
indicate the average of speed improvement is
about 54% in encryption/decryption sides.

7. Conclusion

We have introduced a lightweight stream
cipher algorithm and secure as original RC4. This
paper presents a new modified PRGA algorithm
to produce lightweight RC4 algorithm compared
to the original RC4. Proposed algorithm is
efficient; in other words, it is cost-effective than
the standard RC4 and it is faster, The generated
output sequences of proposed algorithm has
passed the NIST suite of dtatistical tests. This
makes the proposed LRC4 to a great degree
appropriate for actualizing secure correspondence
in awide range of wireless applications like: Wi-
Fi Protocol Access (WPA), where devices are
compelled by either cost, energy or processing
ability.
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Abstract:

The Fuzzy C-Mean algorithm is one of the most famous fuzzy clustering techniques.
The process of fuzzy clustering is a useful method in analyzing many patterns and
images. The Fuzzy C-Mean algorithm is widely used and based on the objective function
reduction through adding membership values and the fuzzy coefficient. The Mean
Absolute Error (MAE) was also measured in this research for each execution.

The research found that when the number of clusters increases, the mean absolute
error value is reduced. When the number of clusters increased. The more details in the
resulting image were not present in the original image. This helps in the analysis of the
images.

In this research, medical images were treated and analyzed. The analysis helps
physicians explain the patient's health status and also according to suggested algorithm
helps them to diagnose the possibility of a particular disease or tumor. A Matlab program
was created to perform the analysis.

Keywords:

Fuzzy clustering, Fuzzy C-Mean Algorithm, Matlab Language, Image analysis, Mean
Absolute Error.
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Introduction:

Image analysis involves processing
image data to determine the information needed
to solve problems. The process of image analysis
is the process of converting objects in the image
data to quantitative information which derive and
describe the object from its image and is usually
flexible. The end result is high level information
[1].

Medical images play a key role in
helping to detect and diagnose many diseases.
Medical imaging now provides advanced imaging
techniques that enable the physician to see human
bodies directly and monitor micro anatomical
changes [2].

Methods:
In this research, Fuzzy C-Mean Algorithm (FCM)
was used to analyze three medical images.

Fuzzy Clustering:

Fuzzy clustering is an extension of the
analysis of the traditional techniques group, [3]
and is usually used when there is no apparent
grouping in the data set. The essence of the
algorithm is the use of iterative processes because
the number of steps to obtain the output is not
predefined [4]. The objective of the fuzzy
clustering method is to define each cluster by
looking for its own membership function [5][6].

The performance of the clustering
algorithm is affected by the initial values chosen
at execution, so the algorithm is repeated a
number of times to obtain the appropriate
results[7]. The results obtained by the researchers
showed that the results were of much higher
quality than the use of traditional methods [8].

Fuzzy C-Mean Algorithm (FCM):

FCM is also called Fuzzy ISODATA.
This method was developed by Dunn (1973) and
improved by Bezdek (1981) [9]. FCM algorithm
is one of the most effective algorithms of fuzzy
clustering. It is based on the principle of fuzzy
logic. It allows each data point to belong to the
cluster at a membership degree, so that each data
point can belong to several clusters at the same
time and with different membership degrees
between 0 and 1[10] [11].

The aim of FCM is to find cluster
centers in the feature space that minimize an
objective function. The objective function is
associated with the optimization problem, which
minimizes within class variation and maximizes
variation between two classes [12].

This algorithm is widely used in image
processing applications such as medical imaging
and remote sensing. It is a local search
optimization algorithm [13].
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The FCM  algorithm assign a
membership for each data point. By calculating
the distance between the cluster center and the
data point. More the data is near to the cluster
center more is its membership towards the
particular cluster center. After each iteration
membership and cluster centers are updated [14].

The stepsof Fuzzy C-Means
Algorithmicis:

1. Input original image

Let X = {Xy, Xo, X3 ..., X} be the set of pixels
image and V = {vy, V, V3 ..., V¢} be the set of
centers.

2. Randomly select ‘¢’ cluster centers.

3. Cdlculate the fuzzy membership 'y’ using
equation (1):

H; :l/;(dij /dik)(Z/m_l) — (1)

4. Compute the fuzzy centers 'vj' using equation

2):

n n

vV, = (Z (:uij )X, )/(Z (:uij )") --(2)
i=1 i=1
Where:
'n" isthe number of data points.
'Vj' represents the | cluster center
'm' is the fuzziness index m € [1, oo].
'C’ represents the number of cluster
center.

5. Repeat step 3) and 4) until the minimum 'J'
value is achieved or |[U%Y - UW)|| <.
Where:

'K is the iteration

'8’ is the termination criterion between [0, 1].
'U = (Wij)n=c is the fuzzy membership matrix.
'J' is the objective function.

6. end [15][16][17].

step.

Evaluation Performance Factors:

e Mean Absolute Error (MAE): It is used in
statistic to measure the difference between
two continuous variables. MAE is defined
in equation (3) as followed:

_ L e
() MAE = — 3w — i

Where: yj:OriginalI ifnage, §;=Output image.
Minimum value of MAE indicate that best result,
because it include the minimum difference
between the original image and output image
[18].
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Suggested Algorithmic:

The following algorithm was proposed to execute
Fuzzy C-Mean Algorithm and compute the Mean
Absolute Error (MAE) values for medical images.
This algorithm is:

1.Input medical image

2. Input number of clusters (in this research,
number of clustersare equal 3 or 5 or 9)

3. Display original image

4, Randomly select ‘c’ cluster centers.

5.Calculate the fuzzy membership 'L’

6. Compute the fuzzy centers 'v;'

7. Repeat step 5) and 6) until the minimum 'J'
value is achieved or [JU* D - U®|| < B,

8. Display output image

9. Compute Mean Absolute Error value (MAE)
between original image and result image.

10. end

Shahla .H

Results and Discussion:

After applying the suggested algorithm to the
three medical images, The details of result image
were better than the original image. These details
are increased by increasing the number of clusters
entered. These details help the doctors to
diagnose and analyze the disease. The results of
executing the suggested algorithm were shown in
(Figure 1-3) and (Table 1). The graph of MAE
values for Image 1, Image 2 and Image 3 were
show in (Figure 4-6). In each execution. The
mean absolute error value was measured. It was
observed that; the greater number of clusters, the
lower of the mean absolute error value.

9

Figure 1. Many cases of imagel after execution FCM algorithm
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Number of ter=3 Number of Cluster=5 Number of Cluster=9
Figure 2: Many cases of image2 after execution FCM algorithm

Number of Cluster=3 er=9
Figure 3: Many cases of image3 after execution FCM algorithm
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Table 1: Represent the results of execution the suggested algorithm and compare of MAE values

in Imagel, | mage2 and | mage3

Image Size of Number Center Number of Objective M ean Absolute Error
Name I mage of Cluster Iteration function values (MAE) Values
105.2387
3 187.0227 44 13180088.894 107
8.9424

69.6341
246.6715
5 167.5079 83 2863516.246 103
115.6076
6.3039
100, 100 249.0573
67.6441
93.2786
36.8996
9 181.8289 100 842195.516 93
141.7170
163.9570
116.2323
5.1436
160.8961
3 41.9683 32 11468903.771 137
252.3240
187.1260
108.0396
5 149.1992 100 2762756.947
28.6357
253.7071
100, 150 116.6543
24.0148
204.9843
73.3078
9 141.8892 100 1021515.375
242.4896
158.7911
184.0614
254.5403
112.8440
3 177.8164 40 11317475.414 121
244.5405
95.1411

131.3992
5 162.8970 100 3546875.560 107
192.6521
246.0111
150, 120 140.0731
192.1150
211.6600
117.5321
9 96.7130 100 1048110.728 98
158.6914
176.3608
246.6349
53.2349

Imagel

96

I mage?

86

Image3
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Figure4: Mean Absolute Error (MAE) of Image 1
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Figure5: Mean Absolute Error (MAE) of Image 2
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Figure 6: Mean Absolute Error (MAE) of Image 3
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Conclusion:

Medical image analysis is currently an important
subject in modern medicine. In view of the
increasing number of patients as it helps the
doctor or the person concerned to give a
preliminary idea of the patient's condition without
any operation or surgical intervention.

FCM algorithm is the most popular fuzzy
clustering algorithm and extensively used in
medical image. In this research, used FCM
algorithm to analysis medical images. This
algorithm provide few iterations steps already
provide good approximation to the final solution.
After execution of the proposed algorithm, it was
concluded that by increasing the number of
clusters in the Fuzzy C-Mean algorithm, the
Mean Absolute Error (MAE) values was reduced.
The suggested algorithm gave good results in
image analysis to help doctors to diagnose and
identify the disease.

Reference:

[1]Perumal, K. and V. G. Karthikram, A Fusion
of SOM and Fuzzy C-Means for Image
Processing, Internationa  Journal  of
Computer Technology & Applications, Vol. 4
(2013), 647-652.

[2]Shihab, Ahmed Ismail, Fuzzy Clustering
Algorithms and  Their Application to
Medical Image Analysis, (2000), 1-169.

[3]Kaur, Amritpal and Amandeep Kaur,
Evaluation of Parameters of Image
Segmentation Algorithms-JSEG and ANN,
International Journal of Advanced Researchin
Electronics and Communication Engineering,
Vol. 3, Issue 8 (2014), 854-865.

[4]Panapakidis, loannis and Georgios C.,
Optimal Selection of Clustering Algorithm
via Multi - Criteria Decison Analysis
(MCDA) for Load Profiling Applications,
Journal Applied Sciences, Vol. 8 (2018), 1-
42,

[5]Ye, An-Xin and Yong-Xian, A Fuzzy C-
Means Clustering Algorithm Based on
Improved Quantum Genetic Algorithm,
International Journal of Database Theory and
Application, Vol. 9, No. 1 (2016), 227-236.

[6]Kathiresan, V. and P. Sumathi, A New Fuzzy
C Mean Clustering Algorithm Based on
Constrained Dynamic Time Warping
Distance Measure, Journal of Theoretical
and Applied Information Technology, Vol.
67, No. 1 (2014), 212-219.

[7]1Sohi, Neelofar , Performance | mprovement
of Fuzzy C-mean Algorithm for Tumor
Extraction in MR Brain Images,
International Journal of Computer
Applications, Vol. 59, No.5(2012), 40-45.

39

Shahla .H

[8]Al-shamasneh, Alaa and Unaizah Hanum,
Artificial Intelligence Techniques for
Cancer Detection and Classification:
Review Study, European Scientific Journal,
Vol. 13, No. 3 (2017), 342-370.

[9] Thi, Phan and Ngo Quang, A Proposal to
Improve Sep routing Protocol Using
Insensitive Fuzzy C-Means in Wireless
Sensor Network, International Journal of
Computer Networks & Communications
(IJCNC), Val. 9, No. 6 (2017), 47-56.

[10]Sangari, A. and D. Saraswady, Performance
Evaluation of Optimal Parameters for Pest
I mage Segmentation using FCM and ACO,
Indian Journal of Science and Technology,
Vol. 9, No. 39 (2016), 1-6.

[11]Abed-Maksoud, Eman and Mohammed
Elmogy, Brain Tumor Segmentation Based
on a Hybrid Clustering Technique,
Egyptian Informatics Journal, (2015), 1-11.

[12]Gupta, Supriya and Mujeeb Rahman,
Performance Analysis if Image
Segmentation Using Parallel Processing,
International Journal of Innovative Research
in  Computer Science &  Technology
(IJIRCST), Val. 3, Issue 1 (2015), 57-63.

[13]Shah, Brijesh, Novel Improved Fuzzy C-
Mean Algorithm for M R-Image
Segmentation, International Journal of Soft
Computing and Engineering (1JSCE) , Vol. 2
(2012), 355-357.

[14]Kumari, Neelam and Bhawna Sharma,
Implementation of Possibilistic Fuzzy C-
Means Clustering Algorithm in Matlab,
International Journal of Scientific &
Engineering Research, Vol. 3 (2012), 1-9.

[15]Fagbola, T. Mathew and Babatunde R. ,
Image Clustering using a Hybrid GA-FCM
Algorithm,  International  Journal  of
Engineering and Technology Volume 3, No. 2
(2013), 99-107.

[16]Y ear, Raciel and Luis Martinez, Fuzzy Tools
in Recommender System: A Survey,
International  Journal of Computational
Intelligence Systems, Vol. 10 (2017), 776-
803.

[17]Hua, Jian, A Fuzzy C-Mean Clustering
Algorithm for Image Segmentation Using
Nonlinear Weighted Local Information,
Journal  of Information Hiding and
Multimedia Signa Processing, VVol. 8, No. 3,
(2017), 578-588.

[18]Al-Obaidi, Fatin E. and Ali Jassim, Which

Bits Is Better in Least Significant Bit,

Journal of Information Security, Vol. 6
(2015),161-165.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.l Year 2019
ISSN (Print): 2074 —0204  ISSN (Online): 2521 — 3504

Shahla .H
dguiaal) Bakial) aladindy  gaall Julas
Ay A daal ol gl
1oalidienll

223 Ascaal) 3a8iall UL el (he and g;'d\j (Fuzzy C-Mean) daa ))& aladinl Caadll Naa &
(Fuzzy C- daa))sa s «small s Blai¥l) (e yaall Jilat 8 52 g 50 455k el Ghaially 3l dlee
Jelaay Ay gumnll o ddlaly elldy Luldll A Qs Gl o dgiae (5855wl JSG 20353 Mean)
2 Al J9 Gl Uadl) Jane (ol o3 LS il

2ae il 4l LaS ol gl llaall Uadl) A a3 Aaaad) adliadl aae 33l 5 aie of ) Gl Jea s
swall Jat el 13 5 LLaY) 5 ) seall 8593 50 S5 o] Al 5 geall B ST Jaealdi i adlial)

&b sLbY) Jilaill e 2ol As i) dia ) A0 Gy Lebdaty ) (8 dpdall ) saall g Jaladl) o
e wi LS a5l e e AlaY) AdLaialS el o L saelud s (i jall Lmall DA o
el dglee Aaul (Matlab) M 4ol gl

40



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.l Year 2019
ISSN (Print): 2074 —0204  ISSN (Online): 2521 — 3504

Comp Page 41 - 52 Samera.Sh/Lubab.A/ Sukaina .Sh

Predicate the Ability of Extracor poreal Shock Wave Lithotripsy
(ESWL) to treat the Kidney Stones by used Combined Classifier

Samera ShamsHussein  Lubab Ahmed Tawfeeq  Sukaina Sh Altyar

Department of Computer Science, College of Education for Pure

Science, Baghdad University
samer amazn@yahoo.com lubabahmed @yahoo.com Sukaina_altyar @yahoo.com

Recived : 27\11\2018 Revised : 2112\2018 Accepted : 20112\2018

Available online: 25/1/2019

DOI: 10.29304/jgcm.2019.11.1.466

Abstract:
Extracorporeal Shock Wave Lithotripsy (ESWL) is the most commonplace remedy

for kidney stone. Shock waves from outside the body frame are centered at a kidney stone
inflicting the stone to fragment. The success of the (ESWL) treatment is based on some
variables such as age, sex, stone quantity stone period and so on. Thus, the prediction the
success of remedy by this method is so important for professionals to make a decision to
continue using (ESWL) or to using another remedy technique. In this study, a prediction
system for (ESWL) treatment by used three techniques of mixing classifiers, which is
Product Rule (PR), Neural Network (NN) and the proposed classifier called Nested
Combined Classifier (NCC). The samples had been taken from 2850 actual sufferers cases
that had been treated at Urology and Nephrology center of Irag. The results from three
cases have been compared to actual treatment results of (ESWL) for trained and non-
trained cases and compared the results of three models. The results show that (NCC)
approach is the most accurate method in prediction the efficient of uses (ESWL) remedy
in treatment the kidney stone.

Keywords: Extracorporea Shock Wave Lithotripsy, Product Rule, Neural Network,
ANN, PR.
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Introduction:

Extracorporeal shock wave lithotripsy (ESWL) is
a nonsurgical technique that makes use of high-
energy surprise waves to interrupt a kidney stone
into "stone dirt" or fragments that could more
easily travel via the urinary tract and skip from
the frame. ESWL was added into scientific
practice within the 1980s, and due to the fact that
then has become one of the principal treatment
alternatives in patients with renal and/or ureteral
calculi. but, the development of endourology and
minimally invasive surgical procedures with their
excessive achievement fees has reduced its
applicability. From then on, it has emerged as
necessary to search for the foremost technical
parameters and careful selection of candidates for
ESWL on the way to optimize its consequences
and justify itsindication. [1].

ESWL goes better with some stones than the
others. Very big stones are unabl e to be treated by
this technique. The shape and size of stone,
wherein it is lodged inside urinary tract, patient
health and his kidneys health will probably be
aspect of the decision to use it. Stones which are
lower than 2cm in diameter are the ideal size for
SWL. The treatment with SWL probably won't be
successful in very big ones. SWL is more suitable
for some people rather than others. Considering
that shock waves and X-rays are required in
SWL, pregnant women that have stones will not
be treated by this way. People with severe
skeletal abnormalities, infections, bleeding
disorders, or who are morbidly obese also not
commonly good candidates for SWL. In case
patient kidneys have any other abnormalities, the
doctor may possibly decide that the patient need
to use another treatment. If patient come with a
cardiac pacemaker, the heart specialist will decide
if patient can be treated by ESWL [2].

A perfect estimation of the probability to
eliminate the stone from individual’s kidney are
required for appropriate treatment choice to
figure out who will have optimum benefit from
ESWL. Thus, to identity the prognostication
factors that effect on clearing away stone from
kidney by utilizing ESWL will be uses for
predication result of treatment via utilized
artificia intelligence techniques[3].
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A range of computer models was developed in
the field of machine learning and statistics which
could be used for predicting medical results, such
as decision trees, logistic regresson (LR),
Bayesian networks and artificial neural networks
(ANNS). Perhaps the best commonly used
methods are depending upon the statistical
technique of regression. For researches with a
binary endpoint (for example, yes/no, aive/
dead), the LR is used usually. For the testing of
time to event data, the Cox proportiona hazards
regression is the standard. These methods are
becoming standard because of their relative
simplicity, the widely used availability of pc
software to meet these models, the inference that
permit by evaluate the fitted model coefficients,
and the achieved statistical theory which
supplements and supports their use [4]. During
the last decade, a unique class of techniques
caled artificia neural networks (ANNSs) have
been proposed to be the alternative or supplement
to standard statistical techniques. Artificial neural
network is an important part of artificial
intelligence which offer an "intelligent” method
of predicting practical outcomes with higher
efficiency and accuracy. ANN algorithm is
dependent on the idealized design of a biological
neuron (unit) and presents very good promise in
conquering the complexities in actions of bio-
systems/ materials that are otherwise hard to
comprehend. Therefore, ANNs could be played
asamodel of human brain function, in which sets
of datain the sort of input and output patterns are
organized to train the ANN. The ANN classifiers
can also be enhancing via combining their back
class estimates with conventional language model
likelihood ratios, by using a logistic regression
combiner [5].

The aim of this study is to utilize a Nested
Combined Classifiers (NCC), a method of
combination in the classification area, hoping to
increase the accuracy of classification in area of
predication treatment the kidney stone by ESWL.
NCC combined the results of combination using
neural networks and the results of combination
using product rule.
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This study applied the following techniques in
classification:

e  Combination using Neural Networks.
e Combination using Product Rule.
¢ Nested Combination by Combination 1, 2.

Previous Works

ANN and LR have been utilized in a variety of
domains in medical diagnosis. Currently, ANN
have been applied for estimating risk in a wide
range of application such as breast cancers. In
other hand, LR has been utilized for estimation
the disease risk in prostate cancer, breast cancer,
coronary heart disease, postoperative
complications), and stroke.

Hamid et a (2003) [6], had examine the ability of
ANN to predict perfect rena stone fragmentation
in people getting treatment by ESWL. The
research used 82 patient’s cases that have renal
stones which they had been treated by ESWL. For
training process, they used 60 patient’s cases that
got most effective fragmentation of stones by
utilized ESWL. These data generally involved the
settings of ESWL that been used, the 24h urinary
variables, and the stone disease radiological
features. The predication accuracy was tested on
22 non-trained patients, by providing the input
parameters of the 22 patients towards the trained
ANN and acquiring the predicted values. The
tested results prove that the trained ANN forecast
the optimum fragmentation in <13 000
shocks/stone in 17 patients and optimum
fragmentation in>13 000 shocks/stone in the
other 5 patients. The total correlation among the
observed and predicted values was 75.5% in these
17 patients.

Goyal et a (2010) [7], compared the accuracy of
multivariate regression analysis and ANN
analysis for fragmentation of rena stone by
ESWL. 276 total patients with renal calculus had
been treated by ESWL at the time of (December
2001) to month of December in year of 2006.
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Of those, the 196 patient’s cases have been used
to build data that had been used for training the
ANN. The predication accuracy of trained ANN
was tested on 80 non-trained patients. The input
data involve patient age, stone burden and size,
urinary pH and number of sittings. For non-
trained 80 patients, the input was examined and
result had aso determined by MVRA. The
predicted value from both the methods had been
compared and the results had been sketched. The
observed and predicted number of shocks and
values of shock power had been compared using
1:1 slope line. The results had been computed as
coefficient of correlation. In summary, ANN
gives better coefficient of correlation than
MVRA, therefore is seen as a better tool to
evaluate the perfect renal stone fragmentation by
way of ESWL.

Seckiner et a (2010) [8], developed an artificial
neural network model by making use of data from
patients that have renal stone, to be able to predict
stone-free situation and to make it possible for
identifying treatment with ESWL for renal stones.
The data had been collected from the 203 patients
involves age, gender, stone size and density,
stone size after ESWL, location of the stone, skin
to stone distance, stone nature (single or
multiple), and some other parameters. ANN
method and regression analysis had been applied
to estimate treatment success utilizing the same
series of data. The consequently, patients had
been divided into three groups by ANN software,
to be able to implement the ANN which are:
n=139 training group, n=32 validation group, and
n=32 test group. The results show that the
accuracy of the free stone rate was 99.25% in the
training group, and it achieved 85.48% in the
validation group, and it got 88.70% in the test

group.
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Theoretical Background
Logistic Regression (LR)

This method is inspects the relationship in
between the binary outcome variable (dependent)
like absence or presence of disease and predictor
(independent  or explanatory) variables like
imaging findings or demographics of patient. For
example, the absence or presence of breast cancer
within a certain time period would possibly be
predicted from information of the patient’s breast
density, age, genealogy and family history of
breast cancer, and any previous breast
procedures. The outcomes variables could be
both categoric and continuous. If X1, X2, X3 to
Xn denote n predictor variables (for example,
calcification types, patient age, breast density,
etc,), p denotes the possibility of disease
existence, the equation defines the relationship
between p and the predictor variables is given by

[9]:

Log (1%) = Po + f1X1 +
ﬁZXZ + et ﬁan (1)

Where: 3, is a constant and S;, B, ..., Bn
represent the regression coefficients for the
predictor variables X4, ..., X,,.

The regression coefficients f can be calculated
from available data. Every regression coefficient
represents the contribution size of the related
predictor variable for the outcome.

The effects of the predictor variables on the
output variable is generally determined by
utilizing the odd ratio of the predictor variable
that represents the factor wherein the odds of an
outcome adjust for a one-unit modify in the
predictor variable. The odds ratio can be
estimated through taking the exponential of the
coefficient (for example, exp (B;). As an
example, if B, is the coefficient of XFH variable
(which represents the family history of breast
cancer), and p presents the breast cancer
probability, then the exp(B,) is the odds ratio
related to the family history of breast cancer.
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In such a case, the odds ratio presents the factor
where the odds of featuring breast cancer raise if
the family of patient has a history of breast cancer
and almost all remaining predictor variables keep
unchanged. This means that, if the odds ratio
related to the family history of patient with breast
cancer is 2, hence the breast cancer may happen
twice in women that have a family history of
breast cancer than the women with no such
family history. LR models usualy involve only
the variables which can be considered
“important” in predicting the outcome. Through
use of P vaues, the variables importance is
described in relation to of the statistical value of
the variables coefficients. The significance
criterion P<0.05 is generally used whenever
testing for the statistical significance of variables;
nevertheless, these types of criteria can vary
based on the quantity of available data. As an
example, if the observations number is very big,
predictors with little effects on the outcome could
aso become significant. THE various techniques
can yield a variety of regression models, that they
generally work similarly. Often, medicaly
important variables could be found to be
statistically insignificant through the selection
methods due to the fact their influence might be
attenuated by the existence of other strong
predictors. In these cases, these medically
important variables can however be involved in
the model regardless of their dtatistical
significance level [9].

Neural Network

ANN is a computer models stimulated the
system of biologic neural networks that is a part
of the machine learning techniques in order to
solve the complicated nonlinear systems in the
redistic life. ANN have been widely used in
numerous research areas ranging from marketing
to medicine. Generally, in most cases the neural
network is an adaptive system which modifies its
structure throughout a learning phase. ANN can
learn and identify correlated pattern between
inputs and related outputs [10]. Fig. 1 illustrates a
basic example of an ANN.
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ANN are becoming highly popular with data
|'ﬁ mining practitioners, especially in marketing,

'|—h- finance and medical research. It is because they
provide the major advantage of not being
dependent on “a priori” assumptions and of
enabling detection of links amongst factors that
o conventional statistical methods like LR might

I‘_"'[IUFlFEfIE not be able to detect [10]. Comparing artificial
neural network models with linear models of
standard statistical generalized like LR is a
significant step in the development method [11].
In case the results reveal that the gain of using a
I\J_' nonlinear model, like the ANN, is limited, then it

Hidden ke

il laxey —.P

— should often choose the less complicated model.
Figure 1: Typical structure of three-layer Receiver Operating Characteristic (ROC)
ANN which have four neuronsin the input Curves
layer, two neuronsin the hidden layer and ) )
three neurons in the output layer, without ROC curves is the method used to determine
having direct connection from input layer to the predictive utility via displaying the trade-off
output layer [10] between the fase-positive rate and the true-

positive rate that inherent in finding specific
thresholds where predictions may be based. The

As shown in figure 1, the interconnections area below this curve presents the likelihood
don't loop back or skip any other neurons, that provided a negative and positive case, the
this type of network is called feedforward [9]. output of classifier is going to be higher for the
In these networks, there are two functions positive case and it isnt depending on the
concerning the behavior of a unit in a specific choosing of decison threshold. Using this
layer and influence the generalization of the method is less dependent on the malignancy
model. One of those is input function and the frequency in the population and permits
second one is output function that is often considering the and specificity of the model and
known as the activation function. The the sensitivity at several probability levels. An
equation of input function is given by [10]: effective one-class classifier should have both a

mini fraction false negative as a mini fraction
false positive. However, the ROC curve
provides a very good summary of the efficiency

y=xwy+ . 4+x,w,+b (2

Where n is the patterns number in the data set,

x is the data points, which are called input of aone-class classifier, it is actually difficult to
variables or features with identified class compare two ROC curves. The best way to
memberships.Many non-linear functions have summarize a ROC-curve with a single number
been used, and the most popular one is sigmoid often is the Area below the ROC Curve. This
function, because it is able to show both linear integrates the fraction false positive around

and non-linear property. The sigmoid function

is given by Eq. (3) [10], ranging thresholds (or equivalently, ranging

fraction false negative). Lesser values mean a
better separation between out layer objects and
the target. The graph in Figure 3 shows 3 ROC
curves which represent excellent, and useless
tests plotted on asingle graph [11].

1

f) = — 3
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1 | Comparisan of ROC curves
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Figure 2: Comparing ROC Curves. Test 1
(Green) Worthless, Test 2(Orange) Good, and
Test 3 (green) Excellent

The accuracy of the test is depending on how the
approach separates the group that tested into
those can and cannot treated by SWL. The
Accuracy is measured via the area under the ROC
curve.

The Proposed Approaches

Three approaches of hybrid classification rules
have been proposed. The first approach is
“Product Rule” termed (PR) which is based on
combined neural network (NN) then logistic
regresson (LR) and the second approach is
termed (NN1) which is adding outputs of the
statistical techniques for training set. The third
approach is Nested Combining Classifiers (NCC
that based on adding the outputs combination
using product rule (PR1) to the inputs
combination using neural network (NN1), which
presented an additional information that the
improvement of network performance. In
(NN+LR) approach the NN is the first
combination classifier, whilein (LR+NN) logistic
regression is the first combination classifier and it
doesn’t need a specified condition in the medical
data.

46

Samera.Sh/Lubab.A/ Sukaina .Sh

1- Acquiring the Data

The applied area of this study was Extracorporeal
Shock Wave Lithotripsy (ESWL) for Renal
Stones, where the renal stones represent the most
important disorders which affect the Urinary
tract. When we discover the present of a stone, it
istreated by three ways:

- ESWL.

- Surgery.

- Ureteroscopy or Percutaneous Nephrolithotomy
(PNL).

We use ESWL when the length of stone is less
than 30 mm and the outcome of treatment is one
of two:

- The patient becomes free from any fragments of
stone.

- The patient becomes not free.

Wherey is the dependent variable for the outputs
of ESWL, Thus:

1 if thepatientis free

Y= {0 if the patient is not free
The model contains the following twelve
independent variables, they are:
1- Age (x;). 2-  Stones
Number (x;).
3- Sex (x3). 4-  Stones
Length (xg).
5- Morphology (x3). 6- Stones
Site (xg).
7- Anatomy (x,). 8- Stones
Nature (x,).
9- Use of JJ Stent (xs). 10- Side
(11)-
11- Solitary (x¢). 12- Stones
Opacity (x12).

The data has been taken from real cases at “Al
Karama Teaching Hospital” and “Al Yarmuk
General Teaching Hospital”, where the patents
data has been put in database. Figure 4 shows the
samples of ESWL image and data includes
patient information.
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Figure 3: ESR Devise. Left, the kidney image
and stone detected. On the right, the patient

information

2.2 Combining Using Product Rule (PR1)

The product rule method is used to combine the
Logistic Regression results which present the
probability of belonging to class with Neural
Networks results which represent the probability
of belonging to class. The application of this
method is used the testing sample and training
sample.
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2.3 Combining Using Neural Network (NN1)

In this method we are adding outputs of the
statistical techniques for training set which present
belonging the probabilities for classes and these
probabilities are one of the inputs Neural Network.
So, we will keep twelve Hidden Neurons to ensure
that the improvement of improvement of Network
performance due to the additiona information which
is presented in the outputs of statistical technique.

2.4 Nested Combining Classifiers (NCC):

In this study, we provide a new technique of
combination in classification area, hoping to
increase the accuracy of classification, which named
Nested Combining Classifier in which we combine
the results of combination using Neural Network and
the results of combination using Product Rule, i.e.
we combine between two results of combination.
Methods of combining classifiers of the three types
are shown in Figure 2.

PR}

Figure 4: Methods of combining classifiers of the
three types

Where: NN: is Neural Network, LR: is Logistic
Regression, PR1: is combining using
Product Rule, NN1: is combining using
Neural Network, and NCC: is Nested
Combined Classifier.

In the Nested Combined Classifier (NNC) method
we combine between PR1 and NN1. To explain
this method, we add the results of the product Rule
to the inputs of the neural network (NN1), i.e.
combined between two results of combination. In
this section, we will explore the method that used
to evaluate classification models.
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4- Results

In this section we test the three approaches for
predicate the success of SWL in treatment the
patient, where the samples had been taken from
3225 actual cases that had been treated at
Urology and Nephrology center of Iraq (“Al
Karama Teaching Hospital” and “Al Yarmuk
General Teaching Hospital”). We selected 2800
cases for training and 425 select to be a non-
trained cases. For trained data, there are 538 not
free cases (failed to fee stone) and 2262 free cases
(Successes in free stone). For no- trained, there
are 47 not free cases (failed to fee stone) and 378
free cases (Successes in free stone). The results

PRI CLASSEILETON FESULT: Fict CLASSRCATION TES
TRAINED [WTR 2800 CEs| {MET TRAIGED AT 425 CAGES)

from three cases have been compared to actual PERCENTAGE CORRECT
treatment results of SWL for trained and non-

trained cases and compered the results of three Not Trained Cases = Trained Cases
models.

4-1 Results of Combination Using Product All Cases

Rule (PR1): 95.16%
The results of predicate SWL by PR1 are shown -
in Table 1, which shows the results for Free Cases
classification by using PR for each sample
(testing & training).

95.80%

Not Free Cases 94.23%

Table 1: Theresultsfor classification by using

. (b)
Predicted
recie Figure 5. PR1 Classification results. (a)

Classification Results for trained and not trained
cases, (b) Percentage correct of classification

Observation

Per cent As shown from table 1 and figure 5 the system
age successes in detect of 453 non-free cases from
Not | - | Correc | Not | Fr Corrae%(: 538 non-free cases that used in train which got
free t free | ee (84.2%) accuracy, and for not trained data the
y Not free 453 85 | 84.2% 34 | 13 | 72.34% system successes in detect of 34 non-free cases
y Free 319 | 1943 | 859% | 110 | %® | 70.9% from 47 non-free cases that used in train which
8 got (72.34%) accuracy. For free stone cases, the
Overall 459 | 2305 | 85319 | 136 | 28 68% system successes in detect of 1843 free cases
Percentage 9 from 2262 free cases that used in train which got
PR1 for testing and training sample (81.47%) accuracy, and for not trained data the
system successes in detect of 268 free cases from
[ROC (Training Set) = 0.85, ROC 378 free cases that used in train which got

(Testing Set) == 0.72] (70.9%) accuracy

4-2 Results Combination Using Neural
Network (NN1):

The result of predicate SWL by NN1 are shown
in Table 2, which shows the results for
classification by using NN for each sample
(testing & training).
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Table 2: Theresultsfor classification by using

NN1 for testing and training sample

Predicted

Observation
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As shown from table 2 and figure 6 the system
successes in detect of 507 non-free cases from
538 non-free cases that used in train which got
(94.23%) accuracy, and for not trained data the
system successes in detect of 38 non-free cases
from 47 non-free cases that used in train which

- got (80.85%) accuracy. For free stone cases, the
er cent Per cent .
NOU | oo age Not T Fre age | System successes in detect of. 216_7 freg cases
free Correct | g0 | ¢ | COrrect | from 2262 free cases that used in train which got
y Not free 507 31 | 9423% | 38 9 | 80.85% | (95.16%) accuracy, and for not trained data the
y Free 9 | 2167 | 958% | 56 | 322 | 8518% | qygtem successesin detect of 322 free cases from
%fg{age 512 | 2288 | 95.16% | 39 | 386 | 8297% | 387 free cases that used in train which got

(85.18%) accuracy.

[ROC (Training Set) = 0.96, ROC

(Testing Set) = 0.81]

AL CLASACATON RESITs KL CLASTRCADON RESULTS
(TRLINED D43 - 606 [HSES $MACT TRAJED D0 405 (ASEY

PERCENTAGE
CORRECT

Not Trained Cases Trained Cases

-
95.16%

All Cases

00|

95.80%

2300

94.23%

Free Cases

Not Free Cases

(b)
Figure 6: NN1 Classification results. (a)
Classification Results for trained and not trained
cases, (b) Percentage correct of classification

4-3 Results of the Nested Combined Classifier
(NCC):

The Nested Combined Classifier method is
carried out by adding the outputs combination
using Product Rule (PR1) to the inputs
combination using Neural Network (NN1), which
present additiona  information that the
improvement of network performance.

Table 3: Theresultsfor classification by using

Predicted

Observation

Percenta Percenta
ge ge
Not Not Fre
free Free Correct free e Correct
y Not free 522 16 97.02% 41 9 87.23%
y Free 24 2167 98.93% 37 341 90.21%
Overall Percentage 527 2273 97.95% 43 382 91.5%
[ROC (Training Set) = 0.977, ROC

(Testing Set) = 0.875]

REL CLAMIRCAON FEELITS
| TRAJSED QAT - JE0RD LASIS:

REC CLASSEVCATRHN BEEUIrs
|07 TRANED CAIS, A5 CASES]
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PERCENTAGE CORRECT

Not Trained Cases Trained Cases

(b)
Figure 7: PR1 Classification results. (a)
Classification Results for trained and not trained
cases, (b) Percentage correct of classification

As shown from table 3 and figure 7 the system
successes in detect of 522 non-free cases from
538 non-free cases that used in train which got
(97.02%) accuracy, and for not trained data the
system successes in detect of 41 non-free cases
from 47 non-free cases that used in train which
got (87.23%) accuracy. For free stone cases, the
system successes in detect of 2167 free cases
from 2262 free cases that used in train which got
(98.93%) accuracy, and for not trained data the
system successes in detect of 341 free cases from
378 free cases that used in train which got
(90.21%) accuracy

4-4 Comparison between the Results;
The percentage results of the three classification
techniques are displayed istable 4 asin follows:

Training Sample Testing Sample

95.16%

Toson| |

95.80%

|

94.23%

The Area TheArea
Overall Overall
under ROC under ROC
Peroentage Curve Per centage Curve
PR1 85.31% 0.85 68.00% 0.72
NN1 95.16% 0.96 82.97% 0.81
NCC | 97.05% 0.97 91.50% 0.87

Table4: Summary of theresultsfor C

techni

ques
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The Area under ROC Curve

ONCC NN1 PR1

| ——— Y
0.81
0.72

Testing Samples

Training Samples

95.16%

0.00%

NCC = NN1 mPR1

Figure 8: NN Classification results. (a)
Classification Results for trained and not trained
cases, (b) Percentage correct of classification

Table 4 and figure 8 shows summary of the
results the overall percentage and the area under
ROC curve for classification techniques of each
testing sample and training sample. We compare
between three techniques which are PR1, NN1,
and NCC. As shown from table 4 the best
technique for classification is the Nested
Combined Classifier (NCC), where the overal
percentage of the classification for training
sample with NCC is (97.95%) which is higher
than (85.31%) of PR1 and (95.16%) of NN1.
Also, its shows that the overall percentage for
testing sample of NCC is (91.5%) which is higher
than the PR1 (68%) and NN1 (82.97%). The area
under ROC curve of the NCC for training sample
is (0.97) which is higher than (0.85) of PR1 and
(0.96) of NN1, and the area under ROC curve of
NCC for testing sample is (0.87) which is also
higher than PR1 and NN1 which are (0.72 and
0.81) respectively.

20.00% 40.00% 60.00% 80.00% 100.00%120.00%
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By compared with previous works of [6] and [8],
the results achieved higher accuracy than [6] in
both NN and NCC where the accuracy of training
result got about 22% accuracy improvement in
training data detection and about 10% accuracy
improvement in tested data. By compared with
[8] the both got close accuracy result in detection
of trained data where NCC got ~98% while their
method achieved relatively higher accuracy of
99.25%, but for non-trained (tested) samples the
proposed method (NCC) has achieved more
accuracy reach to 91.5% which 3% higher
accuracy than their method that achieved 88.7%.

Conclusions

Machine learning Techniques, such as the ANN,
has been used widely in the medica field, as
computer generated algorithms, that assist
healthcare officials in clinical making decisions.
One of medical application is to predicate the
probability of success in desired treatment. For
that purpose, three models to predicate the ability
of ESWR to remove stone from kidney has been
presented and tested, which based on used three
techniques of mixing classifiers, PR, NN and
NCC. We have been designed and develop a
theoretical framework for combined classifiers
and study the challenge of combining classifiers
that uses different representations of the patterns
for being classified. The testing shows that
numerous existing schemes is often considered as
unique cases of compound classification in which
every pattern representations being used jointly to
make a decision. The results show that the best
technigue for classification is the Nested
Combined Classifier (NCC) when compared with
other combination classifiers (NN and PR). Also,
it should be emphasized that the analysis of result
is dependent on a single experimentation for a
single dataset. Thus, the conclusions can be
summarized asin follows:

e Combining classifiers trained on a
variety of feature sets is beneficial.
Mostly in cases where these feature set
probabilities are estimated via the
classifier. On the other hand, combining
the different classifiers trained with the
same classifier might improve but is
usually much less useful.
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e The separated feature sets work well
when used independently. Difficult
datasets will not be thrown away; they
include significant information! Using
randomly selected feature sets seems to
provide excellent resultsin our study.

e A reseding of all features sets to unit
variance maybe enhance the accuracy of
number of classifiers.
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Abstract:

Kekre Median Codebook Generation (KMCG) is a vector quantization agorithm.
It is used for several purposes like image compression and segmentation. It has been
applied by severa application and shows its efficiency. This paper presents a comparison
study of applying KMCG with three color models. RGB, YChCr, and HSV for image
segmentation. The experiments applied on five images, three of them are benchmarks.
Two numerical metrics are utilized: E measure and Peak Signal to Noise Ratio (PSNR), in
addition to the visual results. The final results show that KMCG conducts better segments
when it is applied with the RGB color model. It returns more homogenies segments than
using KMCG with Y CbCr or HSV.
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Introduction

Image segmentation is one of the most
important steps in the analysis of processed image
data. The main goal of segmentation is obtaining
parts that have a strong correlation with objects
areas of the real world in the image.

Segmentation accuracy is an important factor
in determining the success or failure of
computerized analysis procedures. For this
reason, considerable care should be taken to
improve the probability of accurate segmentation
[1] [2]. Many methods of image segmentation
have been proposed could be categorized
generaly as.

e Edgebased image segmentation like
Active Contour

e Region base as Seed filling agorithm
and clustering algorithms.,

e Thresholding based

segmentation such as Otsu method.

image

e Clustering based image segmentation
such as KMCG and K-mean

e Combined between the above category
like watershed.

Literature Review

Generally, KMCG is a clustering algorithm
found by Kekre in 2008 for data compression
purpose. However; this algorithm enforces
efficiency in several areas like segmentation and
clustering. It summarized by the following steps

[3I:
Distribute the data in equal size vectors.
Arrange vectors based on the first value.
3. Set the median of the array of vectorsin
the CB.
4. Repeat step 2 & 3 on the other vectors

values until obtaining the desired
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codebook size as shown in Fig. (1).

i L]

Figure1l: KMCG General Steps|[5]

KMCG is applied to an image by dividing
it’s data to equal nonoverlapped windows. Each
window color data is represented in a vector. As
in gray level, the window size is four yields a
vector length of 4 [4].

KMCG algorithm had been augmented, to
decrease the required time in the clustering
process of a gray image. In this method, vector
size is increased to 6 columns, in which the last
four columns are used to store origina gray
levels, which obtained from 2 x 2 blocks of the
image. Further, averages of each of these blocks
are done separately and stored in the second
column in the respective vectors. The sequence
number of the respective vectors has been stored
in the first column [5].

KMCG used by different applications
due to its homogeneity and efficiency of its
segmentation. One of these applications is image
cartooning. As in [6] shows that the consumed
time of the cartoon production is less by using
KMCG in comparison with other vector
quantization methods. Also, it presents a better
quality of segmentation of KMCG than the other
methods.

Another application designed based on
KMCG, which is fingerprint classification. It was
observed that the method effectively improves the
computation speed and provides high accuracy
[7].

KMCG literature shows its importance
and efficiency. Thus, this paper is to study and
find the best color model to be applied with
KMCG.
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Color Models

Color models in image processing
provide valuable tools for objects recognition and
extraction from the scene. It also enables the
extension of the domain space compared with
gray images. Color spaces are used for different
applications such as; computer graphics, image

Fatin .S/Abdul Monem .S

1. Find the maximum and minimum values as
in the following equation:

M = max(R,G,B), m @
= min(R, G, B)

2. Normalized the RGB vaues to be in the

processing, TV broadcasting, and computer range [0, 1].
vision. Several models had been introduced. p=MR MG ndb="E 2(3)
Y CbCr and HSV are two samples of them. All of M-m M-m M-m
the models are extracted from the origina model
of RGB. [8]. 3. FindV value.
V = Max(R, G,B) (4
4. Calculate Svalue.
M-m
S§=—-+— (5

0

Figure 2: HSV color model single hex cone.

YCbCr_Color model used for digital
video. It defined in the ITU-R BT.601 standards
of ITU (International Telecommunication Union)
represents the encoding form of non-RGB signal.
The transformation from RGB to YCbCr color

M

However, if M =0 then S=0and H =
180 .

5. Calculate H value asin equation (2.26)

H=H—-360when H

> 360,H ©)
=H + 360 when H

<0

6. Normalize H to be in the range [0,360[ as in
the following:
H=60(b—g)whenR =M,
H =602 +r—b)when G

model is given in the following equation [8]: =M, @
orH=604+g
Y 0.299 0.587 0.114 |[R —r)when B
Ch|=]-0.169 -0.331 0.500 ||G (@D} -M
cr 0.500 -0.419 -0.081llB

The HSV color model based on the idea of
the human visual system. It belongs to the HSI
family of color models uses cylindrica
coordinates for the representation of RGB points
as shown in Fig.2. Hue (H) and saturation (S)
which are the chrominance components. V is the
maximum value of RGB.

HSV isused mainly for computer vision, and
image analysis of the segmentation process. The
conversion from RGB to HSV is summarized by
the following steps [8].
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7. Return HSV

KMCG Algorithm

The detailed steps of KMCG are
demonstrated by algorithm 1. The window
represents the data that needed to be clustered.
For instance, if the vector is of RGB image data,
and the window size is 4, then the length of the
vector is12. Asshown in Fig. 3.

[me oo fomafoe fos ms fua | a] mafocafos]
Figure3KMCG Vector Example
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L is the length of the vector to be

clustered. If the length is equal to 6, then the no. Algorithm (1): Original KMCG |
of clustering iterations is six, and the Codebook Input A bitmap Im of size M*N, W (window
(CB) size is 64. Each iteration concludes sorting size), L (required

the vector of the whole image data based on one Output  CI (Cartooned Image)

value of the vectors. For example: in the first Begin

iteration of the RGB image the vectors are sorted Stepl  //initialization

Set IstVectors— FillVector s(Im,W)
Set IstClusters
< nitializeClutser s(IstVectors)

based on R1, which its position clarified by Fig.
3. Then after sorting the whole vectors, the data

each cluster is separated into two clustered based Step? /liClustering and Codebook
on the median position of the vectors. Finally, the Construction

median vector is added into CB. This process is for j=1toL do /* L isthe required
continued until the required length of the size of vectors values*/

codebook is satisfied foreach cluster CinIstClustersdo

SortAscending(C,j) /* Sorting
theCluster C based on value

Experiments and Results sequence j*/
The experiment is applied by testing AddM ediantoCB(C)
KMCG with the three-color models: RGB, ﬁjp;tlércslgfterAndAdd(lstTempC
YCbCr, and HSV. Five samples of images that end forea’ch
used. Three of them are standard images: Lena, Set IClusters «IstTempClusters
Baboon, and the image of man is from a standard end for
dataset called VidTIMIT [9]. Step3 /l/Constructing Cartooned | mage
L foreach cluster in IstClustersdo
The specification of the used computer and Set newRGB
programming language is listed as the following: —CalculateAver age(cluster)
e 12GRAM,512SSD SetValuel nl mage(C,newRGB,Cl)
e Intel ® Core™ i7 65000 CPU @ End end foreach
2.50GHz

e  System: Windows 10 64
Results
e  The programming language: C#

Table 1:PSNR of KMCG with RGB, YCDbCr,

The size of the K M CG codebook which ?r?qgglg SV KMCG KMCG KMCG
used by our experiment is 64. RGB Y CbCr HSV
Baboon 36.66 36.07 35.71
Lena 38.67 37.97 37.44
Man 42.85 39.21 40.18
Woman | 42.02 38.33 38.08
Girl 42.76 38.39 38.8

Table 2. E measure of KMCG with RGB,
YCbCr, and HSV

Image KMCG | KMCG KMCG

RGB YCbCr HSV
Baboon 3.61 3.68 3.71
Lena 3.26 3.4 34
Man 2.8 29 2.94
Woman 2.95 3.15 3.14
Girl 2.92 3.2 3.2
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Discussion

The visual results are shown by Figs.
4,5,6. They reflect clearly that using KMCG with
RGB color model conducts a better likeness and
quality. While Applying KMCG with HSV shows
the worst case. This remark is proved by utilizing
the Peak Signal to Noise Ratio (PSNR) to
evaluate and compare the precision of the KMCG
with each color model asin Table 1.

PSNR is a good method to evaluate
discrepancies between images. A high PSNR
indicates an image of good quality. However,
Figure4: Lenaa) Original b) RGB & KMCG c) PSNR is not adequate for evaluating region

YCbCr & KMCG d) HSV & KMCG homogeneity [10]. Thus, E measure is used to
confirm PSNR resullts.

E is better at selecting images that
agree with human evaluators. E balances region
uniformity and the number of regions. A low E
value indicates good interna uniformity of
regions [11], [12]. Table 2 shows a functional
impact of E measurement of the comparison
between the three-color models. E indicates a
good behavior balance of the KMCG with RGB.
As shown by Table2 the E measure is the least in
applying KMCG with RGB color model.

There is a dight difference between the
results of using Y CbCr and HSV. However, they
don’t reach the quality of using RGB with

. ¢ . d KMCG.
Figure5: Woman a) Original b) RGB & KM CG c)

YChCr & KMCG AYHSV & KMCG

Conclusion

The paper studied the best color mode,
which gives better segmentation results when it
used with KMCG. The results show that KMCG
gives a better visual and analytical results when it
is used with RGB. We conclude that whatever the
image is or the metrics used, using RGB with
KMCG returns the best result. We recommend in
the future work to compare KMCG with RGB
segmentation with other clustering segmentation
methods.

= (N

Figure 6: Girl @) Original b) RGB & KMCG ¢)
YCbCr & KMCG d) HSV & KMCG
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Abstract:
Using wireless sensor network technology in structure health monitoring applications results

in generating large amount of data. To sift through this data and extract useful information an
extensive data analysis should be applied. In this paper, a Wireless Sensor Network (WSNSs) is
proposed for the oil pipeline monitoring system with proposed method for event detection and
classification. The method depends on the Principal Component Analysis (PCA). It applied to
features extracted from vibration signals of the monitored pipeline. These vibration signals are
collected while applying damage events (knocking and drilling) to the oil pipeline. PCA is applied
to features extracted from both time domain and frequency domain. The results manifest that this
method is able to detect the existence of damage and aso to distinguish between the different
levels of harmful events applied to the pipeline.

Keywords: WSN, Structural health monitoring, Oil pipeline.
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1. Introduction

With the fast evolution of oil, manufacture oil
transportation has become more important in
economic expansion. In some cases, the most
serious damage to transport networks is artificial
damage such as ramming, drilling, steel pipe
knocking, vehicle movement, etc. to steal oil. At
present, the prevailing methods of judging
damage are the process of observation of the
difference between the pump station and the
other, when the pressure is below the required
level, then the guess is the existence of damagein
oil pipe. Determine the damage area, depending
on the human teams which in turn exploring
aong the pipe path [1]. Monitor the sensitivity of
these methods are minimal and are obtained
exclusively warning after the occurrence of the
damage. The immediate problem to be solved in
the detection and prevention interventions by
pipeline damage or damage potential, but without
causing any damage. This field currently is an
active research area. Fang Wang et al., [2]
suggested the method of detecting the leakage of
the pipeline using statistical features in the time
domain of acoustic sensors. These features are
taken from the normal (not leakage) sample
signals. The vector size of the extracted features
is reduced with the PCA method. The model will
be feeding Support Vector Data Description
(SVDD) trainer features acoustic signal in real
time. If the output function of a positive decision,
it means that the input signal is abnormal
otherwise, the signal is normal. In [3] authors
offer the advantage of extracting the vibration
signal detected by fiber optic along the crude oil
pipeline and the Independent Component
Analysis (ICA) warning system. It can be used
for fiber-optic distributed along the pipeline to get
the vibration signal as well as to determine the
leak site and third-party intervention. ICA is
applied to separate optical fiber vibration signals
from each other, and the relevant signa is
extracted. In [4], the authors offer the advantage
of the extraction and integration of multiple
sensor data in the system of monitoring and pre-
warning to secure the pipeline based on muilti-
seismic sensors. The seismic signas are
processed and extracted the features in respective
modules. Empirical Mode Decomposition (EMD)
was used to analyze signals.
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Test devices are composed of many seismic
sensors and units of data acquisition and
processing. The unit displays three typical target
signals respectively, namely individual walking,
car moving, and manua drilling. In [5],
researchers provide an anaysis of the
effectiveness of statistical time domain featuresin
determining the vibration signal error. The
authors attempted to use the time domain feature
to determine the characteristics of mechanica
failure of the engine induction. Algorithms are
used to determine the features to improve
accuracy and reduce the burden of the arithmetic.

In this paper, we studied and developed a novel
pipeline security monitoring and early warning
system by using WSNs based on PCA. This
system consists of data acquisition units that
propagate along the pipeline. These sensors and
units collect and anaysis vibration signals
resulting from different targets. The vibration
signals are analyzed to obtain useful features.
Usualy, raw signals are not adequate to identify
the existence of a damage; therefore, damage
features are extracted from the time domain,
frequency domain, or time-frequency domain
analysis[7].

2. Architecture of oil pipeline monitoring
system

The proposed oil pipeline monitoring system
based on WSN illustrated in Figure 1. The system
consists of two sensor nodes mounted at the end
of 2m carbon steel oil pipeline, and one base
station connected to the computer [8]. Base
Station node (BS node) or “Monitoring Node™:
consists of MCU unit and ZigBee module
connected via USB seria cable to the PC. End
Points node (EP node) or Vibration Sensing
Nodes: These nodes sense the vibration and send
their readings to the monitoring node. Each one
of these nodes consists of MCU unit, ZigBee
module, vibration sensor (accelerometer) and
Direct Current (DC) power supply. The distance
between sensors is 1.8 m. The pipe mounted on
one stand in each end. In this work, a real time
vibration signals resulting from the damaging
activity on pipe are captured by the accelerometer
of each node, and transmitted wirelessly through
base station to the computer. The position of (X-
Y-Z) axis of the installed accelerometer for each
node on the pipe shown in Figure 2.
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9 Volt Lithium
Battery

ADXL345
Accelerometer

Fig. 1: Proposed system hardware and experimental setup

Arduino DUE board

XBee Radio

XBeewireless Shield

3. Test scenarios
For the purpose of this paper we subjected the

pipe to both knocking and drilling events These
events were applied using a hammer and a
handheld electrical drill. To achieve consisting
reading measurements of the two sensor nodes
were averaged before sending the data to the base
station. Figure 3 shows the real time vibration
data captured by accelerometer without any
damaging event (healthy state of the pipeline). It
was observed that signals amplitude varied from
one axis to another. This is due to the position on
which the accelerometer is installed on the
pipeline as we illustrated in Figure 2. The values
of the amplitude of health status on the X- axisis
0.15 G and in Y-axis is -0.07 G, while in the Z-
axes was shifted 1 G due to earth gravity. These
values are the basic premise that distinguishes the
health status of the pipeline, which we can
compare the remaining damage events with them
to know the nature and type of damage that can
be exposed to the pipeline. Figure 4 illustrate the
vibration data of knocking the pipe four times in
average time equal to approximately (7 seconds).
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For each case event four data set was captured,
for the purpose of creating a basic database for
each case which can be relied upon as input to the
PCA system analysis for diagnosis the damage
events. As shown in Figure 4, one note that the
largest value of amplitude was on X-axis,

y-axis

X-axis

Fig. 2: Accelerometer layout relative to the pipe

where it reached +2G and contains many
components or information more than the rest of
the other axes. In Y-axis, the amplitude values
was approximately between -1.7 and 1.7 in
addition that the information of signals less than
X-axis. Lastly, the values of Z-axis amplitude
reached 2G which are the minimum values from
other axis. It is clear that the effect of knock case
isvery clear on the X-axis than the others.
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Figure 5 shows that the process of drilling the
pipe three times in total average time equal to (35
seconds). The amplitude values at the pipe-
drilling attempt were between +1G for X-axis and
Y-axis, while in Z-axis were equal to 2 G. It is
clear that the amplitude values in al three axes
are convergent.
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This is due to the fact that the vibration from the

drilling process is very high, which results in the
impact of the accelerometer on al axes and
regardless of the axis direction relative to
pipeline. The process of trying to drilling the pipe
was done in different areas along the pipe and
also vertically on the pipeline.
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Fig. 3: The signals of the X, Y and Z in time-domain for normal case
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4. Peak to Peak(pk-pk)

Peak-to-peak refers to the difference between the
highest positive and the lowest negative
amplitude in a waveform.

4.2. Analysisin frequency domain

Frequency domain representation is the
assessment of the strength of various frequency
components (the power spectrum) of a time
domain signal [6]. FFT is considered as more
effective and efficient diagnosis technique to
obtain the Fourier Transform of discretized time
signals. This signal is considered for a finite time
called the ‘‘frame’’ or ‘‘time window’’, which is
then digitized and stored for feature extraction
[6].

To detect the error, FFT can be used effectively, a
known algorithm and a useful technique for
signa analysis. Therefore, most researchers
focused on FFT to detect damage in pipes [12].
Also for structural health monitoring(SHM) and
in frequency domain analysis of acceleration
measurements [14-16]. FFT is an improved
agorithm for the performance of a Discrete
Fourier Transform (DFT), which is an effective
technique for static signa analysis [16]. DFT is
defined by Equation (5). In this paper we propose
to applying FFT agorithm on rea time
measurements data set, for the reasons mentions
above and for optimizing the system. Once the
FFT implementation complete, we calculate
frequency domain features which we abbreviate
them in other section.

X(K)=%ZX(n)W71’: for0<k<™»-—-10<n<N (5)
Where:

X(n) isthe discrete time signal

N isthe sampling period

n and k are the discrete time and frequency
indexes, respectively.

The transformation kernel Wnk N is given by
Equation (6).
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nk 2nkm 2nkm

Wﬁ=cos (T)Hsin (T) (6)

Figures 6, 7 and 8 shows the FFT results for one
set of data, we notice that the power amplitude
values different from one case to others, such as:
the normal case power amplitude approximately
equal to zero. Because of this case indicate the
health state of the pipe ( without applied damage
events).

The effect of drilling case was on the z-axis
greater than the others axis, where the maximum
power amplitude equal to 150 at 50 Hz and in x-
axis equal to 105 at 9 Hz then in y-axis equal to
55 at 159 Hz. The reason of the minimum power
amplitude was in y-axis, as we mentioned the
accelerometer installation in method that the y-
axis in parallel to the pipe, while the z-axis
perpendicular on the pipe. And the other reason
that the electric drill used towards z-axis (in a
vertical direction on pipe). The knocking case
was record its maximum amplitude value in z-
axis where equal to 107 in 2 Hz then in x-axis
equal to 80 at 60 Hz and in y-axis 47 at 29 Hz.

Generdly, the difference of power amplitude
values at three axis for the knock cases and there
effects on these axis, was not similar to effect of
drilling case on the axis ( in other word the effect
of knock case not be maximum on z-axis and then
x-axis and minimum effect on y-axisasin drilling
case ). Because of the knocking cases performed
in different regions on the pipe. Once on vertical
direction, the other once on horizonta direction,
and once in arbitrary location and so on.
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Fig. 7: FFT for y-axis of (a) normal case, (b) drilling case, (c) knocking case
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(3) =-axis - normal case
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Fig. 8: FFT for z-axis of (a) normal case, (b) drilling case, (c) knocking case

5. Feature extraction in frequency domain
Frequency domain feature extraction is the
process of extract useful information from the
frequency domain representation of signals. This
process is done using the methods discussed in
this section. The most frequency-domain features
obtained by FFT which considered by researcher
are: energy [12], entropy in [11], frequency in
[13]. In our proposed system, we propose to use
energy and entropy as a features in frequency
domain in addition to the time domain features.
The energy and entropy are calculated as shown
in equations below:

N
1
Energy == (Imj)~2
j=1
Where:

mj is FFT component
N isthe length of FFT signa

Btropy=- ) (3 logh)
i=1

Where:
Pj is the probability of signad and must be
between 0-1

@
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6. Principal Component Analysis
(PCA)

The first step in the analysis of high dimensional
data is a dimensionality reduction [17]. Because
of two reason; first, it is difficult to interpret
multidimensional data sets, and their composition
cannot be directly imagined. The second reason is
that excessive variables create an empty space
and computational problems. PCA is the most
useful tool to solve these problems.

PCA is a multivariate statistical technique and
powerful tool for analyzing data. It minimizes the
feature space dimension by considering the
difference of the input data without loss much of
information in order to classify patterns in data
[18]. The method determines the best projections
for the representation of the input data structure.
They are selected these projections in a way to
enable them to get as much information as
possible (i.e. the maximum variation) in a smaller
number of dimensions of the region. In order to
get the best variation in the data, the data is
displayed on a partial space being built by
eigenvector of data. In that sense, the eigenvalue
corresponding to an eigenvector represents the
amount of variance that eigenvector handles.
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PCA has been used as a direct method of
identifying, classifying and assigning damage as
well as an essential step for other methods, and
used for face recognition and image compression
[17, 18]. PCA used for Structura Health
Monitoring (SHM) and has received considerable
attention over the past few years [18]. Also, In
SHM, the natural frequencies depend not only on
the damage but also on environmental conditions,
such as temperature and humidity [19]. PCA is
used to put this problem in mind because it
allows the removal of external factors. As shown
in Figure 9 we will explain the steps of
implementing PCA algorithm [18].

Step-1 prepare the given data

In this step, the X matrix of size 12x18 (time
domain and frequency domain features) was
loaded to apply PCA onit.

Step-2 Data standardization

Since physical variables have different amounts
and measurements, each data point is
standardized. It means subtracting  the sample
mean from each observation, then dividing by the
sample standard deviation. This procedure
removes the differences between the scope of
variables and giving it the same importance in the
data analysis. In addition to the purpose of
ensuring that the separation of values and
achieving maximum variance between them.
When performing this step, anew data matrix was
generated (matrix B) in the same dimensions of
the original data matrix.

Step-3 The calculation of the covariance matrix
(coefficient) & eigenvalues of the covariance
matrix (Latent) In this step, the function of PCA
in MATLAB was implemented to the matrix B.
This function return the coefficient and latent
matrix. The result the 18x18  coefficient
(loading) matrix and 18x18 eigenvalues (latent).
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Start

Prepare time and frequency
domain features matrix

!

Data Standardization

v

Cdlculate the covariance matrix
(Coefficient) & eigenvalues of
the covariance matrix (Latent)

v

Calculate eigenvectors of the
covariance matrix (Scores)

v

Choose component & Form a
feature vector

v

| Plot the results |

End

Fig 9: PCA algorithm steps

Step-4 The calculation of eigenvectors of the
covariance matrix (Scores) This step, is the
calculation of the eigenvectors of the covariance
matrix (scores). by multiply the standardized data
matrix B by the coefficient (loading) matrix. The
result of this step is the eigenvectors of the
covariance matrix (scores or in other word called
a principal component matrix) with the new
higher than the
dimension of data 12x18 matrix.

Step-5 Selection of components and
formation of vector features

variance dimension original

the

Here comes the concept of compressing data and
reducing the dimensions. If we look at the
eigenvectors and eigenvalues values of the
previous steps, we will note that the values of
eigenvalues are quite different. We notice that the
eigenvectors (scores) matrix is arranged in
ascending way, so its begin from the lowest
significance vector and to the highest
significance. In fact, each vector with the higher
eigenvalue in latent vector is the principle
component of the data set and this gives the
components in order of significance.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.l Year 2019
ISSN (Print): 2074 —0204  ISSN (Online): 2521 — 3504

Waleed .F/Nasheed .F

7. Result and discussion
The result of PCA calculation is 18 principal

components (from PCA1 to PCA18), which are
time domain and frequency domain features for
3-axis measurements. In order to choose the
principal components that separate the damage
events clearly, Figure 10 show PCA1 and PCA2.
The colored bubbles in the figure above indicate
the scenarios of the damage events. Each event
we recorded has four data set of measurements,
so each four bubbles refer to a cluster of one
damage event, where cluster one refers to case,
cluster 2 refers to drilling case and cluster 3 refers
to knocking case event.

The most significant PCA was PCAI18,PCA17
and PCA16 with a percentage approximately
equal to 67%, 28% and 3% respectively from the
original data, this is make up 98 % from original
data. And we can ignore the others PCA which
have small variance and don’t result to lose much
information from original data. And we can
ignore the others PCA which have small variance
and don’t result to lose much information from
original data. Figure 11 show PCA1l6, PCA17
and PCA18.

If we ignore PCA16 which is make up 3% from
the original data, the result will be less significant
than in Figure 10, this is illustrated in Figure 12.
It is clear that the cluster of damaging event are
completely separated. This shows that the process

principal component 17

of classification and discrimination between
scenarios of damaging events can be achieved

prncpal compmnenl |

ernSml componet 2

Fig. 10: PCAl and PCA2

But it is noted that the data are distributed in a
manner that cannot be separated or distinguish
between them, and gives a state that the primary
principal components have very little variance
which does not give us the nature of the damage
applied on the pipeline. We completed the testing
process for others principals components
gradually and we choose PCA9 and PCAI3,
PCA14 and PCAL15, also give the same results.
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PCA is proposed. The detection model was

created with the time domain and frequency
domain feature extracted from the vibration
signals, which are a result of damage activities on
the carbon steel oil pipeline. The vibration signals
was captured by accelerometers of wireless
sensor nodes along the pipeline. These signals are
relayed wirelessly through coordinator node to
the PC. In time domain, these features are mean,
root mean square, standard deviation and peak-to-
peak amplitude. In frequency domain the energy
and entropy of the signal spectrum in frequency
are used as features. PCA has been applied to
these features to analyze the data and reduce the
dimension space, and as a result, diagnosis
damage on the pipeline is done.
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Using PCA with time domain features gives
limited detection results comparing to using both
time and frequency domain features. PCA was
used as a way to identify patterns in data and to
express data in a manner that highlighted the
similarities and differences between them, in
addition to reducing the number of dimensions in
data without much loss of information. The
results showed that the proposed system
aongside with the proposed analysis is able to
monitor the healthy state of the pipeline and
detect several damaging events.
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Abstract
Information security cryptographic protocols are very important in the modern era due

to the development and advanced technology in internet applications and networks
communications. In this paper, we proposed a protocol to save information from passive
attacks when sending between two nodes over an insecure channel. This proposed protocol
relies on magic square of size 3*3, linear equation system and finite field.

Keywords. magic square, linear agebra system, Gaussian eimination, and finite field
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LiIntroduction

information are sent from computer to another
across an unsafe channel. This channel could be
target to attack lead to steal the data or altered. For
this reason, we require the sheltering of data
transmitted through insecure channels. [1]. There are
much methods or algorithms to encryption data by
using magic square for example In 2014, A. Dharini,
R.M. Saranya Devi, and |. Chandrasekar have
introduced a new approach for secure data
transmission through the cloud environment and
sharing networks as well as during the Secure Socket
Layer (SSL) by the RSA combined with magic
square, to provide additional security layer to the
cryptosystem[2].

Magic squares grew with "mathematics-based
games like puzzles, Rubik and Sudoku games.
amagic squareis anxnmatrix (wherenis the
number of cells on each side) filled with
distinct positive integersin the range1,2,..,n? such
that al cells are different from each other and the
sum of the integers in each row, column
and diagonal is equal. The sum is caled the magic
constant or magic sum of the magic square [3].

The Finite ,or Galois field, in mathematics, is
afield that include a limited number of elements. It is
a group on which the application of multiplication,
addition, subtraction, and division are defined with
satisfying the rules of arithmetic known as the field
axioms [4]. The finite fields of prime order in which
for each prime number p, denoted by GF(p). The
integers modulo p is afinite field of order p and it is
having the numbers{0,1,2,...,p — 1} with addition
and multiplication performed modulo p [5].

The Linear Algebra is a set of equations that
give a unique solution. If those involved equations
are linear then that collection is known as a system of
linear equations. L.A.S are divided into two main
classes: direct and indirect[6]. Each category include
several elimination methods used for solving
eguations, one of these methods is the Gaussian
elimination method which is a direct method for
solving a system of linear equationg[7].

2.The Proposed Protocol to Encryption Data

Until now no fixed or exclusive algorithm to build
or construct all kind of magic squares. different
approach for constructing magic squares have been
developed through the ages. In our work, we used the
protocol relies on the magic square. In this section
explain the algorithm of encryption information.
Algorithm 1 explain encryption data by magic
square.
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2.1: Encryption Algorithm

Input: Plaintext( in numerical data) and key.
Output: Ciphertext( summation of the magic
sguare).
1. Divided plaintext(P) into blocks and
length of each block equal six.
2. Define number of rounds(N), key and
3x3encryption mask that is part of the

field GF(p
M1 | M2 | M3
M4 | M5 | M6
M7 | M8 | M9

3. Build magic square of the size 3x3 and
nine locations as follows:

In magic square select some locations of the

key elements{ k1,k2,k3} are (B1, B, and Bs)

and other locations of plaintext are(p3, s,

Bs, B7, B8, and B9), this sort gives a unique

solution as follows:

Magic key and plain text
square positions
Br | B2 | Bz K1 K2 P1

Bs | Bs | Be P2 K3 P3

B7 | Bs | Bo P4 P5 P6

4, Multiplication the magic square with
encryption mask according to finite field
rules.

K1 K2 P1
P2 K3 P3
P4 P5 P6

5. Cdculate magic sum(MS) that result
from previous step. By using the
following eguations:

B1+ B2+ B3 =suml 1)
B7 + B8 + B9i = sum2 (2)
B1+ B4 + B7 = sum3 (3)
B3 + B6 + B9 = sum4 (4)
B1 + B5 + B9 = sum5 ©)
B3 + B5 + B7 = sumb (6)
6. C; = suml,sum?2, ..., sum6 and the last
known values of k1,k2,k3
7. end
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3.Example:

2.2: Decryption Algorithm

Plaintext is: This is just alittile test of my

Input: Ciphertext( summation of the magic square) and

N.
Output: Plaintext( in numerical data).

1. Build Augmented matrix(A) of linear
equation system of magic square dependend
on equations 1,2,....,6 asfollows:

Br [ B2 | B3 | Ba | Bs | Bs | Bz | Bs | Bo
1 /212|100 |0 |0 |0 |0 |SuMm
O[O0 (|0 |0 |0 |0 |21 |21 |1 |sum2
1 /0|01 |0|0 |1 0|0 |Sums
0|02 |0|0 |2 |0 |0 |1 |sSum4
1 /0|00 |1 |0 |0 |0 |1 |SuWM™s
O[O0 (2|02 |01 |0 |0 |sSumve
2. Update the summation of the matrix(A) as
follows:
sum; — k; ifl=1
sum; = {sum; — k, if2 =1
sum; — kj ifs5 =1
3. Reduce matrix(A), where remove columns(p,, B,
and PBs) and resort the matrix as follows:
B3 | B« [B6 | B7 [ B8 | B9
1 0 0 0 0 0 SUM1
0 1 0 1 0 0 SUM3
1 0 1 0 0 1 SUM4
1 0 0 1 0 0 SUM6
0 0 0 1 1 1 SUM2
0 0 0 0 0 1 SUMS5

method Lets as try a couple new line characters
Ciphertext:

ol oA »10W L -i"‘“‘.’*«" i‘ié;

b
[muo\; VI [mum qu.h mub m.‘auv.m&mmo uolv ml wiy

m\l

Time Time
agorithm encryption decryption
(M.S. ms) (M.S. ms)
Original-AES
(Rijndael) 10 1.166557 2.128282
round
The proposal 0.047686 0.059184
algorithm
4- Analysis Study
This section explains the method of

cryptanalysis.

4.1 Brute Force Attack

Brute force attack is a cryptanalytic attack
used to attempt to decrypt for any ciphertext by
trying al possible keys until the correct one is
found. According to a brute force attack, the
possibility of the key is2™. In our work n=3*
no. of block.

4.2 Dictionary Attack
This type of attack depends on the block size

where can apply to any type of block cipher for
any design. If the block sizeis L then dictionary
attack require 2& different plain text to decrypt

The matrix in step 3, solved by Gaussian
elimination and relies on rules of the finite field
, the result of this step as follows:

B3 | Ba [ B6 | BT | B8 | B9
1 /0 |0 |O |O |O |P1
O |1 |0 |0 |0 [0 |P2
0O |0 |1 (O |0 (O |P3
0 |0 (0 |1 0 |0 | P4
0 |0 |O (O |1 [0 |P5
0 |0 |O (O |O |1 |P6
5. Plaintext is ( pl, p2, ..., pN).
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arbitrary message under uthe nknown key. In our
work L=6 * no. of block.

5.Conclusion

In this work, we proposed an efficient
cryptography algorithm to save data from attack.
The algorithm is implemented for encryption and
decryption by using magic square of size 3x3,
linear algebra system and finite field . Also, this
algorithm relies on divided data into blocks and
sort with the key in a specia location of magic
sguare to give a ciphertext represented the
summation of each row, column, and diagonals of
the magic square, and using linear algebra system
to retrieve the plain text.
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6. Suggestion Research

For future work, we can use a magic 4. Austrin, Per. "Efficient Arithmetic in
square with size 4x4 or exchange the binary field Finite Fields of Small, Odd
GF(2") instead of prime field , or used more Characteristic." PhD diss.,, MSc Thesis,
roundsto encryption Royal Ingtitute  of  Technology,

Stockholm, 2004.

Schoof, René. ,"Elliptic curves over finite

fields and the computation of square roots

mod p", Mathematics of computation 44,

1985.

6. Hsu, Chih-Wei, and Chih-Jen Lin. "A
comparison of methods for multiclass
support  vector  machines', |EEE
transactions on Neural Networks 13,
2002.

7. Issa, Raad |., "Solution of the implicitly
discredited fluid flow equations by
operator-splitting”, Journal of
computational physics 62, 1986.
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Abstract :

In this paper, we introduce a new procedure for model selection in Tobit regression, we
suggest the Bayesian adaptive Lasso Tobit regression (BALTR) for variable selection (VS) and
coefficient estimation. We submitted a Bayesian hierarchical model and Gibbs sampler (GS) for
our procedure. Our proposed procedure is clarified by means of simulations and a real data
analysis. Results demonstrate our procedure performs well in comparison to further procedures.

Keywords. Tobit regression; Bayesian adaptive Lasso Tobit regression
(BALTR); Variable selection (VS).
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L.Introduction:

Tobit regression procedure (Tr) is proposed as a
statistical model by Tobin (1958). This model is
also known as left truncated regression. Tr has
become important in many real-world applied
sciences, such as econometric, agriculture,
ecology, the environment and genetics. It is an
excellent procedure to evaluate the relation along
with outcome variable and a group of explanatory
variables.

One of the most mainly important troubles in the
regresson when the number of explanatory
variables is so large. It is then difficult to see
which variables actually important. In addition to
several problems appear when the statistical
researchers are use some explanatory variables
that are not important in regression. This leads to
a regression model that will be unstable and so
weak concerning of prediction. The selection
process provides a perfect agent for estimating
the parameters as well as the identification of
important variables (Griffin and Brown, 2010).
There occur severa varieties of strategies for
investigators to use in handling high dimensional
data (very large of explanatory variables),
including VS procedures, and data reduction
techniques. Prior analysis has found that, in the
existence of high dimensional data, these VS
procedures can produce estimates with inflated
errors for the coefficients (Hastie, Tibshirani, &
Friedman, 2009). Some of the technique models
that have proved beneficial in the condition of
high dimensional data, these models known as
regularization.

In 1996, Tibishrani suggested a procedure for VS
and parameter estimation in linear models known
be as Lasso model (Least Absolute Shrinkage and
Selection Operator model). A lot of work has
been devoted to the development of diverse of
Bayesian organizational procedures for making
VS in linear models. In 2006, Zou proposed the
adaptive Lasso, who upgraded the Lasso way
proposed by Tibshirani, permitting different
penaty parameters to different regression
coefficients. Zou proved that his proposed
procedure had the characteristics of Oracle
mentioned in Fan and Bing (2004) that Lasso
does not have. Specifically, Zou indicates that his
proposed procedure adopts the correct form of
non-zero coefficients with the probability that he
tends to one. Park and Casella suggested in 2008
the Lasso procedure based from a Bayesian point
of sight. Likewise, Mallick and Yi (2014)
suggested a new procedure known to be as new
Bayesian Lasso regression for VS and coefficient
estimation in linear regression.

In general, the last procedure observed results
display that the Mallick procedure applied well
compares with other Bayesian and non-Bayesian
regression procedures.

The above results and good results reported in
Mallick procedure motivate us to suggest a new
Bayesian regression procedure. Subsequently, we
submitted a Bayesian hierarchica for BALTR,
and proposed a new Gibbs sampler (GS) for
BALTR, that is set up on a theoretical derivation
of the Laplace density (LD). Next, we
implemented several simulated examples and
analyzed real data by using BALTR with four
Tobit regression procedures to compare the best
results. These procedures include Tr, Bayesian
Tobit regression (BTr), Tobit median regression,
and BALTR. Both simulation and real analysis
proved that BALTR results are excellent, and this
procedure may be is a best of current procedures
being compared.

2.Methods:

The Tobit regression is applied to estimate the
relevance among an outcome variable (y,) and
explanatory variables (X). Tobit regression
assumes that there is a latent variable (y})
depends linearly on the parameters (B) which
determines relevance between (X) and (y;), the
formula of outcome variableis

y_{yi* if y;>0
o if yi<0
y =XB+e (1)

y* = (yy”"yn)v
1xyp X
X=| : N
1 xp o X
B= (ﬂo!ﬁli'":ﬂk) )
&= (Sll"'l‘gn):
£i~N(0'02)
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2.1 Bayesian adaptive Lasso Tobit regression
(BALTR):

It is well known, that the Lasso procedure gives
biased estimates of considerable coefficients, so it
might be below the required optimal level in
terms of estimation risk. In 2006, Zou evidenced
that the Lasso opts the incorrect model with non-
fade the probability, despite the sample size and
how A is chosen. The event requires that
coefficients not in the model aren't representable
by coefficients in the real model. But this event is
simply suffering because of the collinearity case
between the coefficients. On the opposite hand,
that the Lasso technique does not have Oracle
properties. So, Zou suggested the adaptive Lasso
technique who gives a consistent model for VS.
Therefore, we consider BALTR procedure in this
paper, the adaptive Lasso enjoys the oracle
properties by utilizing the adaptably weighted
Lasso penalty parameter, and leads to a near
minimax optimum estimator. Additionaly, the
adaptive Lasso technique needs to initia
estimates of the regression coefficients, when a
sample size is less than of the covariates number,
which is mostly not available in the high
dimensional data. The estimator of adaptive
Lasso is given by

Balasso = arg;nin(y _Xﬁ)’(y _XB)
k
+ Z vy |,8j| where A; = 0
=1

where varied penalty parameters are utilized for
the regression coefficients. Surely, for the not
important explanatory variables, we must place
larger penalty 4; on their matching coefficients.
We propose a BALTR procedure in this paper for
coefficient estimation and VS. We submit a new
practice of the adaptive Lasso form by using the
scale mixture of a uniform represent of the LD.
Following (Mallick& Yi, 2014), the Laplace
representation can adaptive as

ﬁe_)lf|ﬁl'|

1 47°

J o 2-1,—A;S;

= ——==s5"""e "7 ds; - (2)
£j>|ﬁ;| 2s; 12 7/ /

2
ﬁe_’lf|ﬁi| =J- i e_lfsf ds;, ;>0
2 s>[8]

In this paper, we modify the above formula as
follows:

%3_11"6}' = %e_hfﬁjl

2 2-1
zf ii(&) e_vjld]].
o>y 2V T2 \4 4

Yo

=f — e dv; -+ (3)
v>ls| 2

In practice, this formula produces more tractable

and efficient Gibbs sampler than the formulain 2.

2.2 Model Hierarchy and Prior Distributions
of BALTR:

By using equation (1) and eguation (3), the

Bayesian hierarchical model can be formulated as

follows:

y'|IX, B, 0% ~ N,(XB,0%1,) ...(4)
k

BIA ~ 1_[ Uniform(— /11—]%) . (5)

Jj=1

k
v~ n Exp( 1) ... (6)
j=1

0% ~ Inverse Gamma(a,b) ... (7)

Aj ~ Gamma(f, g) ... (8)
wherev = (vq, -+, vy)

2.3 Full Conditional Posterior Distributions of
BALTR:
Firstly, we can express the joint posterior
distribution of al our procedure parameters as
follows
(B, v,1,02|y", X) x
n(y*|X, B, o2)n(B|1 ) () (A;)n(a2)
Under the above posterior distribution, the
posterior distribution of B is
n(Bly", X, 2) e« w(y'IX. B, o*).x(B12)
xexp{— = (" - XB)'(y" -
k i
xplnii{|s] <4
« exp {—%(—Zy*,XB +
XX, k_ 1{ . <ﬂ}
B 13)}1_[1—1 |'81| Py

« exp {— — (27" XX X)1(XX)B +

FxxB) I 1{]| <4
X exp {— ZL (—ZB’X’XB +

a2

BX'XB)} T, 1{—% <B; < Z—j}
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ﬁb’*.X. A ~Nk(BOLSl (X,X)_lo'Z)

XHI{—%< 8, <%}---(9)

j=1 ] j
As well, the posterior distribution of v; is
n(ly’, X, B,2) « n@)I{v, > |15}
o [T, el {vj > |Ajﬁj|}

k
v~ 1_[ Exponential(1) ] {vj > |/1j[?].|} - (10)

j=1
Likewise, the posterior distribution of o2 is
n(a’ly*, X, B) xn(y'| X,B,0%) n(a?)

_n 1
« (0) 2ewp |- 30~ XBY &

— )} @)oo |- ]

.
a*ly* X, B ~
n 1 * ! *
InvGamma <E+a'§(y —XB) &y _Xﬁ)>...(11)
+b

Lastly, the posterior distribution of A is
n(a)g) « =(p|4)-n(2)

m (48, v;) o« n(A)41 by<rk
a1

v
2
v

« Gamma(f +1,9)1{4; < | | .. (12)
i

o YD exp{—gA} 14 <

Where the I(.) is an indicator function in
equation (9) and equation (12).

2.4 Computation:

In the computation section, we outline our Gibbs
sampler asfollows
e Updating B:

We simulate the ; from a truncated multivariate
normal distribution in equation (9), the mean of
this distribution is (B,.s) and the variance is
(X'X) 1a2).
e Updating v:
We simulate the v; from the left truncated
exponential  distribution in equation (10), by
applying the inversion process, this simulate can
be completed as follows:

1. Simulate v;* from standard exponential

distribution.

Haider .K/Rahim.J

e Updating o2:

We sdmulate theos?from Inverse Gamma
distribution in equation (11), the shape parameter
of this distribution is C + a) and the rate is

1 ,
(507~ X0 = x8) + )
e Updating A :

We simulate 4; from truncated Gamma
distribution, the shape parameter of this
distribution is (f + 1) and the rate parameter is

(9)-

3.Simulation Studies:
The performance of our procedure is evaluates in
a simulation study in which the procedure for a
BALTR is compared with, Tr procedure through
using R language within package AER (Christian
Kleiber, Achim Zeileis 2017), Bayesian Tobit
regression procedure (BTr) through using R
language within package MCMCpack (Jong Hee
Park, 2018), and Bayesian Analysis of Quantile
Regression Models (Bayesian Tobit quantile
regression BTgr,and Bayesian adaptive Lasso
Tobit quantile regression BALTqr); and Tau=0.5
by estimating the median through using R
language within package Brq (Alhamzawi, R., &
Alhamzawi, M. R., 2017) . For comparison, we
draw 11,000 iterations of the GS, the first 1000
were ruled out as burn-in. The procedures are
evaluated based on the median of mean absolute
deviations (MMAD). The formulaof MMAD is
MMAD = median(mean(|Xp — XB""|))
where B is the posterior mean of B.

3.1 Independent and identically distributed
random errors:

Here, simulation examples consider three cases
(dense case, sparse case, and very sparse case),
eight predictors x;.-:-.xg Wwere sSimulated
independently from a multivariate normal
distribution with mean 0, and two values of the
variance 2, the ¢? island 4.

3.1.1 Simulation example 1:
This example considers a dense case model, the
true regression coefficientsis
B = (0,0.75,...,0.75)’
8
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The response variable was generated according to
the model
yr = ﬁo + 0.75X1i + 0.75x2i + 0.75.X3L' + 0.75.X4_i
+ 0.75x5i + 0.75x6i + 0.75X7i
+ 0.75x8i + &;
We simulate 100 observations and B, = 0, the
pair wise correlations between x; and x;

is 0.5/

Method o? MMAD SD
BALTR 0.36193 0.10830
Tr 0.36779 0.12457
BTr 1 0.39495 0.15897
BTqr 0.41936 0.19493
BALTqr 0.38301 0.13498
BALTR 0.56246 0.11160
Tr 0.57281 0.12713
BTr 4 0.63695 0.19218
BTqr 0.63797 0.17940
BALTqr 0.60005 0.11972
Table 1: MMAD and SD for the dense case
example

3.1.2 Simulation example 2:
This example considers a sparse case model, the
setup is the same in simulation 1, except the
number of observations is 150, and the true
regression coefficientsis
B =1(0,2100,200,0)

The response variable was generated according to
the model

Y, =Bo+ 2xy; +xp + 2%, + &

M ethod a? MMAD SD
BALTR 0.25350 0.08704
Tr 0.27300 0.08761
BTr 1 0.28327 0.10003
BTar 0.29655 0.11001
BALTqr 0.25856 0.09530
BALTR 0.50916 0.12261
Tr 0.53753 0.14044
BTr 4 0.57080 0.17250
BTar 0.59050 0.18781
BALTqr 0.51686 0.12951

Table2: MMAD and SD list for the smulation 2

3.1.3 Simulation example 3:
This example considers a very sparse case model
with high correlation. We simulate 200
observations and the pair wise correlations
between x; and x; equas to 0.75, and the true
regression coefficientsis

B =(0,4,0,0,0,0,0,0,0)'
The response variable was generated according to
the model

i =PBo+4x; +g

and intercept coefficient is 0 .

Haider .K/Rahim.J

The response variable was generated according to
the model
yi =PBo+4xy; + ¢

and intercept coefficientis 0 .

M ethod a? MMAD SD
BALTR 0.21634 0.06547
Tr 0.23154 0.06120
BTr 1 0.23800 0.07200
BTar 0.26720 0.07970
BALTqr 0.22145 0.07329
BALTR 0.42391 0.12948
Tr 0.45243 0.11599
BTr 4 0.48257 0.12186
BTar 0.52948 0.12676
BALTqr 0.43534 0.11626

Table 3: MMAD and SD list for the smulation 3

3.2 Simulation example 4:
This example considers a Difficult case model.
We simulate 100 observations, four predictors
X;.+.x, were simulated independently from a
multivariate normal distribution with mean zero
and variance ¢2. We consider three values of o2
(1, 4 and 9), and the pair wise correlations
between x; and x; equal to (-0.4), the true
regression coefficientsis
B = (0,5.5,5.5,5.5,0)'

The response variable was simulated according to
the model

yi =0+ 0.55x; + 0.55x; + 0.55x3; + 0.55x4;

+ ¢

M ethod a* MMAD SD
BALTR 0.22283 0.13737
Tr 0.23864 0.13851
BTr 1 0.23633 0.14456
BTar 0.30271 0.17220
BALTqr 0.27722 0.15230
BALTR 0.49759 0.32372
Tr 0.51872 0.31529
BTr 4 0.53169 0.35028
BTar 0.59351 0.40493
BALTqr 0.52709 0.33300
BALTR 0.62072 0.42722
Tr 0.65780 0.39645
BTr 9 0.67667 0.47057
BTar 0.77867 0.48305
BALTqr 0.68023 0.34077

Table4: MMAD and SD list for the ssmulation 4

From above tables 1, 2, 3 and 4, we noted that the
BALTR procedure performs better than the other
procedures in terms the median of mean absolute
deviations.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.l Year 2019
[SSN (Print): 2074 -0204  ISSN (Online): 2521 — 3504

Haider .K/Rahim.J

3.3 Simulation example 5 (Heter ogeneous
random errors):

In this section, erors are considered to

demonstrate the performance of our proposed

procedure for VS, We simulated 100 observations

from the model

vi=x'B+ (1 +x3)¢;,
& ~ N(0,1) and B = (0,1,1,1,1,,0,0,0,0,0)’
where x;; ~ N(0,1),
x3; ~ Uniform[0,1],
Xy = x1; + x3; + 2;,2; ~ N(0,1)

this process is often used to simulate data in the
V'S context (example of Wu and Liu, 2009 and Li
et a., 2010). In this simulation, added 5
independent standard normal noise variables,
X4+ Xg, Were simulated. In this paper, we set

y, = max(y;, 0}

Method MMAD SD
BALTR 0.26923 0.06925
Tr 0.27969 0.06596
BTr 0.27911 0.07437
BTar 0.32919 0.07278
BALTqr 0.29920 0.06916

Table8: MMAD and SD list for the smulation 5

Table (8) reports MMADs and SDs of simulation
example 5. The performance of BALTR
procedure is excellent compared to the other
procedures (Tr, BTr, BTqr, BALTqr).

4.Real Data Analysis:

In data analysis section, we implement our
proposed procedure on wheat production data, we
apply the four Tobit regression procedures in this
data to compare in terms of the coefficient's
estimation accuracy. The real data used for this
study is taken from the national program for the
development of wheat cultivation in Irag -
Qadisiyah governorate branch (2017). This real
data contains 584 observations and are based on
10 explanatory variables. The outcome of interest
in this dataset is (Percentage increase of wheat
yield per dunam "2500 m?").

The other ten variables (covariates) include
fertilize the field with Urea (numeric variable
coding the quantity of fertilizer in kilogram; "U"),
the date of sowing wheat seeds (numeric variable
coding date: 1 the ideal date, 2 early date, 3 late
date; "Ds'), the quantity of sowing wheat seeds
(numeric variable coding the quantity of sowing
seeds in kilogram; "Qs"), laser field leveling
technique (numeric variable coding date: 2 if
there are used this technique; 1 otherwise; "LT"),

fertilize the field with compound fertilizers
"NPK" (numeric variable coding the quantity of
fertilizer in kilogram; "NPK"), seed sowing
machine technique (numeric variable coding date:
2 if there are used this technique; lotherwise;
"SMT"), planting successive mung bean crops
(numeric variable coding type: 2 planting mung
bean, 1 otherwise; "SC"), used herbicide for weed
control (numeric variable coding the quantity of
herbicide in milliliter; "H"), high Potassium
fertilizer "Potash” (numeric variable coding the
quantity of fertilizer in kilogram; "K") and
Micro-Element fertilizer (numeric variable
coding the quantity of fertilizer in gram; "ME").

M ethod M SE
BALTR 0.4617
Tr 0.4784
BTr 0.4795
BTqr 0.4724
BALTqr 0.4685

Table 9: wheat production data analysis: Mean
squared prediction errors (M SE) based on atest
set with 584 observations.

Table (9) reports the mean squared errors for five
Tobit regression procedures. We can observe that
mean sguared errors of BALTR procedure is
lower than that of Tr, BTr, BTgr and BALTq,
that means BALTR procedure produces the
lowest prediction errors.

that means BALTR procedure produces the
lowest prediction errors.
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Bo U Ds
Estimate Estimate Estimate
(25%, 95%) (25%, 95%) (25%, 95%)
-0.039 0.021 -0.672
BALTR | (04020285 | (0.020,0023 | (-0.749,-0.620)
Tr -0.085 0.021 -0.664
(-0872,0702) | (0.014,0028) | (-0.786,-0.541)
BTr -0.082 0.021 -0.666
(-0899,0.720) | (0.014,0028) | (-0.791, -0.546)
BTar -1.228 0.024 -0.654
a (-1L815,-0.546) | (0.018,0031) | (-0.806,-0.505)
1072 0.024 -0.649
BALTAr | 17120263 | (0.017,0030) | (:0.797, -0.498)
Qs LT NPK
-0.022 1.333 0.005
BALTR | (0025-0020) | (10121648 | (0.003,0007)
Tr -0.022 1.357 0.005
(-0.035,0.009) | (0.681 2.034) | (-0.008,0.017)
BTr -0.022 1.358 0.005
(-0.035,-0.008) | (0.658,2.035) | (-0.008,0.018)
BTar -0.006 1.428 -0.005
q (-:0.018,0004) | (0.459,2.343) | (-0.017,0.007)
-0.008 1.441 -0.004
BALTA" | 5022.0002) | (0.493 2181) | (-0.016,0.008)
SMT SC H
-0.090 0.925 0.004
BALTR | (0409,0161) | (0.841 10039 | (0.004,0005)
T -0.143 0.933 0.004
(-0.838,0.553) | (0.611,1.255) | (0.003,0.006)
BTr -0.148 0.931 0.004
(-0.840,0.559) | (0.601,1.259) | (0.003,0.006)
BTar 0.248 0.991 0.005
a (-0631,1.204) | (0.651,1313) | (0.004,0.007)
0.192 0.967 0.005
BALTON | (0433 1132) | (06221203 | (0.004,0007)
K ME
0.033 0.006
BALTR | (00320034 | (0.0060.006)
Tr 0.033 0.006
(0.026,0.040) | (0.005, 0.008)
BTr 0.033 0.006
(0.026,0.040) | (0.005, 0.008)
0.024 0.008
2! (0.014,0.036) | (0.005,0.010)
0.025 0.007
BALTA" | 5014.0036) | (0.005,0.0104)

Table 10: Coefficients estimation and Credible

intervals Cls (25%, 95%)

Although, our Clsin table (10) are narrower than
the other methods,
estimations of other procedures.

it is including al the
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Figure 1: BALTR predictors histograms of wheat
production data
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Figure 2: BALTR predictors trace plots of wheat
production data
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Figure 3: BALTR predictors autocorrel ations of
wheat production data

The predictors histograms of the wheat
production based on posterior samples of 11,000
iterations are point up in figure 1, these
histograms displayed that the conditiona
posteriors of wheat production data predictors are
the preferred stationary truncated normal.

From figure 2, the trace plot indicates reasonably
good convergence, and the noise does not appear
to drift majorly. The chain has reached stable and
the mean keeps relatively constant. it is mean that
the chain is mixed well and converged.

From figure 3, the explanatory variables
(covariates) in this rea data are highly correlated
and the mixing of the MCMC chain was
reasonably good.

5.Conclusions:

This paper has introduced a new procedure for
model selection of Tobit regression, we proposed
BALTR for VS and coefficient estimation. Our
proposed procedure depends on the scale mixture
uniform as prior distribution. We advanced new
Bayesian hierarchical models for BALTR. In
addition, we introduced a Gibbs sampler for
BALTR method. We clarified the features of the
new procedure on both simulation studies and
real data analysis. Results displayed that BALTR
method performs very well in terms of VS and
coefficient estimation.
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