On Sandwich Results of Meromorphic Multivalent Functions Defined by a New Hadamard Product Operator
DOI:
https://doi.org/10.29304/jqcm.2023.15.1.1178Keywords:
superordination, subordination, convolution, sandwich theoremsAbstract
The goal of this research is to establish differential subordination and superordination findings for meromorphic multivalent functions defined by a new operator in a punctured open unit disk. We get a number of sandwich-type results.
Downloads
Download data is not yet available.
References
[1] R. Abd Al-Sajjad and W. G. Atshan, Certain analytic function sandwich theorems involving operator defined by Mittag-Leffler function, AIP Conference Proceedings, 2398(2022), 060065, 1-8.
[2] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori , On sandwich results of univalent functions defined by a linear operator, Journal of Interdisciplinary Mathematics, 23(4)(2020), 803-809.
[3] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, Some new results of differential subordinations for higher-order derivatives of multivalent functions, Journal of Physics: Conference Series, 1804 (2021) 012111, 1-11.
[4] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15(2004), 87– 94.
[5] W. G. Atshan and A. A. R. Ali, On some sandwich theorems of analytic functions involving Noor –Sâlâgean operator, Advances in Mathematics: Scientific Journal, 9(10)(2020), 8455-8467.
[6] W. G. Atshan and A. A. R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi Journal of Science, 62(7) (2021), pp: 2376-2383.
[7] W. G. Atshan, A. H. Battor and A. F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, Journal of Interdisciplinary Mathematics, 24(3) (2021), 579-591.
[8] W. G. Atshan and R. A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, Journal of Physics: Conference Series, 1664 (2020) 012043, 1-15.
[9] W. G. Atshan and S. R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, Journal of Inequalities in Pure and Applied Mathematics, 10(2)(2009), Article 53, 11 pp.
[10] T. Bulboacã, Classes of first – order differential superordinations, Demonstration Math., 35(2) (2002), 287-292 .
[11] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca,(2005 ).
[12] R. M. El- Ashwah, A note on certain meromorphic P-valent function, Appl. Math. Lett. , 22(2009) ,1756-1759.
[13] S. P. Goyal, P. Goswami and H. Silverman, Subordination and superordination results for a class of analytic multivalent functions, Int. J. Math. Math. Sci. (2008), Article ID 561638,1–12.
[14] I. A. Kadum, W. G. Atshan and A. T. Hameed, Sandwich theorems for a new class of complete homogeneous symmetric functions by using cyclic operator,Symmetry,14(10)(2022),2223,1-16.
[15] B. K. Mihsin, W. G. Atshan and S. S. Alhily,On new sandwich results of univalent functions defined by a linear operator, Iraqi Journal of Science, 63(12),(2022), pp: 5467-5475.
[16] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York and Basel, (2000).
[17] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl.,48(2003),815-826 .
[18] M. A. Sabri, W. G. Atshan and E. El-Seidy, On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator, Symmetry, 14(5)(2022),931,1-11.
[19] F. O. Salman and W. G. Atshan, New results on integral operator for a subclass of analytic functions using differential subordinations and superordinations, Symmetry, 15(2)(2023), 1-10.
[20] N. Seenivasagan, Differential Subordination and Superordination for Analytic and Meromorphic Functions Defined by Linear Operator, Doctoral Dissertation, University Sains Malaysia, (2007).
[21] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal . Appl., 3 (2006), Article 8,1–11.
[22] T. N. Shanmugam, S. Shivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Int. J. Math. Math. Sci. ,(2006), Article ID 29684,1-13.
[23] S. D. Theyab, W. G. Atshan, A. A. Lupas and H. K. Abdullah, New results on higher – order differential subordination and superordination for univalent analytic functions using a new operator, Symmetry, 14(8)(2022), 1576, 1-12.
[24] S. D. Theyab, W. G. Atshan and H. K. Abdullah, On some sandwich results of univalent functions related by differential operator, Iraqi Journal of Science, 63(11)(2022), pp: 4928-4936.
[25] R. M. Ali, V. Ravichandran and N. Seenivasagan, On Subordination and Superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc., 33(2010), 311-324.
[2] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori , On sandwich results of univalent functions defined by a linear operator, Journal of Interdisciplinary Mathematics, 23(4)(2020), 803-809.
[3] S. A. Al-Ameedee, W. G. Atshan and F. A. Al-Maamori, Some new results of differential subordinations for higher-order derivatives of multivalent functions, Journal of Physics: Conference Series, 1804 (2021) 012111, 1-11.
[4] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15(2004), 87– 94.
[5] W. G. Atshan and A. A. R. Ali, On some sandwich theorems of analytic functions involving Noor –Sâlâgean operator, Advances in Mathematics: Scientific Journal, 9(10)(2020), 8455-8467.
[6] W. G. Atshan and A. A. R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi Journal of Science, 62(7) (2021), pp: 2376-2383.
[7] W. G. Atshan, A. H. Battor and A. F. Abaas, Some sandwich theorems for meromorphic univalent functions defined by new integral operator, Journal of Interdisciplinary Mathematics, 24(3) (2021), 579-591.
[8] W. G. Atshan and R. A. Hadi, Some differential subordination and superordination results of p-valent functions defined by differential operator, Journal of Physics: Conference Series, 1664 (2020) 012043, 1-15.
[9] W. G. Atshan and S. R. Kulkarni, On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator, Journal of Inequalities in Pure and Applied Mathematics, 10(2)(2009), Article 53, 11 pp.
[10] T. Bulboacã, Classes of first – order differential superordinations, Demonstration Math., 35(2) (2002), 287-292 .
[11] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca,(2005 ).
[12] R. M. El- Ashwah, A note on certain meromorphic P-valent function, Appl. Math. Lett. , 22(2009) ,1756-1759.
[13] S. P. Goyal, P. Goswami and H. Silverman, Subordination and superordination results for a class of analytic multivalent functions, Int. J. Math. Math. Sci. (2008), Article ID 561638,1–12.
[14] I. A. Kadum, W. G. Atshan and A. T. Hameed, Sandwich theorems for a new class of complete homogeneous symmetric functions by using cyclic operator,Symmetry,14(10)(2022),2223,1-16.
[15] B. K. Mihsin, W. G. Atshan and S. S. Alhily,On new sandwich results of univalent functions defined by a linear operator, Iraqi Journal of Science, 63(12),(2022), pp: 5467-5475.
[16] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York and Basel, (2000).
[17] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl.,48(2003),815-826 .
[18] M. A. Sabri, W. G. Atshan and E. El-Seidy, On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator, Symmetry, 14(5)(2022),931,1-11.
[19] F. O. Salman and W. G. Atshan, New results on integral operator for a subclass of analytic functions using differential subordinations and superordinations, Symmetry, 15(2)(2023), 1-10.
[20] N. Seenivasagan, Differential Subordination and Superordination for Analytic and Meromorphic Functions Defined by Linear Operator, Doctoral Dissertation, University Sains Malaysia, (2007).
[21] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal . Appl., 3 (2006), Article 8,1–11.
[22] T. N. Shanmugam, S. Shivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Int. J. Math. Math. Sci. ,(2006), Article ID 29684,1-13.
[23] S. D. Theyab, W. G. Atshan, A. A. Lupas and H. K. Abdullah, New results on higher – order differential subordination and superordination for univalent analytic functions using a new operator, Symmetry, 14(8)(2022), 1576, 1-12.
[24] S. D. Theyab, W. G. Atshan and H. K. Abdullah, On some sandwich results of univalent functions related by differential operator, Iraqi Journal of Science, 63(11)(2022), pp: 4928-4936.
[25] R. M. Ali, V. Ravichandran and N. Seenivasagan, On Subordination and Superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc., 33(2010), 311-324.
Downloads
Published
2023-04-05
How to Cite
Habeeb, M. A., & Atshan, W. G. (2023). On Sandwich Results of Meromorphic Multivalent Functions Defined by a New Hadamard Product Operator. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(1), Math Page 150–161. https://doi.org/10.29304/jqcm.2023.15.1.1178
Issue
Section
Math Articles