On JS-Injective Rings
DOI:
https://doi.org/10.29304/jqcm.2023.15.2.1253Keywords:
JS-injective ring., Finitely generated module., Injective ring.Abstract
Let be a ring. A right -module is called JS- -injective (where is any right -module) if every right -homomorphism from a submodule of J J into extends to [9]. A ring is called right JS-injective if is JS- -injective. The right JS-injective rings are studied in this paper. Many characterizations and properties of this type of rings are obtained.
Downloads
Download data is not yet available.
References
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules. New York: Springer-Verlag, (1974).
P. E. Bland, Rings and Their Modules. Berlin:Walter de Gruyter & Co., ( 2011).
F. Kasch, Modules and Rings. London: Academic Press, (1982).
T. Y. Lam, Lectures on Modules and Rings. New York: Springer-Verlag, (1999).
A. R. Mehdi, “On L-injective modules,” Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28(2) (2018), pp. 176–192.
E. A. Naim and A. R. Mehdi, “On gs-pseudo-injective modules,” Journal of Discrete Mathematical Sciences, vol. 25, no. 5 (2022) , pp. 1535-1545.
L. Shen and J. Chen, “New characterizations of quasi-Frobenius rings,” Comm. Algebra, vol. 34 (2006), pp. 2157-2165.
A. A. Tuganbaev, “Muitiplication Modules,” J. Mathimatical sciences, 123 (2004), pp. 3839-3905.
Z. A. Zone and A. R. Mehdi, “On a generalization of small-injective modules,” Iraqi Journal of Science, to appear.
P. E. Bland, Rings and Their Modules. Berlin:Walter de Gruyter & Co., ( 2011).
F. Kasch, Modules and Rings. London: Academic Press, (1982).
T. Y. Lam, Lectures on Modules and Rings. New York: Springer-Verlag, (1999).
A. R. Mehdi, “On L-injective modules,” Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28(2) (2018), pp. 176–192.
E. A. Naim and A. R. Mehdi, “On gs-pseudo-injective modules,” Journal of Discrete Mathematical Sciences, vol. 25, no. 5 (2022) , pp. 1535-1545.
L. Shen and J. Chen, “New characterizations of quasi-Frobenius rings,” Comm. Algebra, vol. 34 (2006), pp. 2157-2165.
A. A. Tuganbaev, “Muitiplication Modules,” J. Mathimatical sciences, 123 (2004), pp. 3839-3905.
Z. A. Zone and A. R. Mehdi, “On a generalization of small-injective modules,” Iraqi Journal of Science, to appear.
Downloads
Published
2023-09-25
How to Cite
Zone, Z. A., & Mehdi, A. R. (2023). On JS-Injective Rings. Journal of Al-Qadisiyah for Computer Science and Mathematics, 15(2), Math Page 111–117. https://doi.org/10.29304/jqcm.2023.15.2.1253
Issue
Section
Math Articles