Enhanced model to detection of Diabetic Retinopathy using Deep Learning techniques
DOI:
https://doi.org/10.29304/jqcsm.2023.15.31344Keywords:
vision loss, diabetic retinopathy, image enhancementAbstract
Diagnosing and treating diabetic retinopathy (DR) early on can prevent vision loss. None, moderate, mild, proliferate, and severe are the top five DR phases. This work presents a deep learning (DL) model that identifies all five stages of DR more accurately than earlier approaches. the suggested method with image enhancement using a contrast limited adaptive histogram equalization (CLAHE) filtering algorithm in conjunction with an enhanced super-resolution generative adversarial network (ESRGAN), and circular mask with using random search for hyperparameter. The next step was using augmentation techniques to create a balanced dataset using the same parameters for both scenarios. The created model outperformed previous techniques for identifying the five stages of DR, with an accuracy of 90% , using Efficient net B3 applied to the Asia Pacific TeleOphthalmology Society (APTOS) datasets.
Downloads
References
Atwany, M.Z.; Sahyoun, A.H.; Yaqub, M. Deep learning techniques for diabetic retinopathy classification: A survey. IEEE Access 2022, 10, 28642–28655.
Amin, J.; Sharif, M.; Yasmin, M. A review on recent developments for detection of diabetic retinopathy. Scientifica 2016, 2016, 6838976.
Kharroubi, A.T.; Darwish, H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes 2015, 6, 850. [CrossRef] [PubMed]
Alwakid, G.; Gouda, W.; Humayun, M. Enhancement of Diabetic Retinopathy Prognostication Utilizing Deep Learning, CLAHE, and ESRGAN. Preprints 2023, 2023020218. [CrossRef].
Mamtora, S.; Wong, Y.; Bell, D.; Sandinha, T. Bilateral birdshot retinochoroiditis and retinal astrocytoma. Case Rep. Ophthalmol. Med. 2017, 2017, 6586157.
Taylor, R.; Batey, D. Handbook of Retinal Screening in Diabetes: Diagnosis and Management; John Wiley & Sons: Hoboken, NJ, USA, 2012.
Imran, M.; Ullah, A.; Arif, M.; Noor, R. A unified technique for entropy enhancement based diabetic retinopathy detection using hybrid neural network. Comput. Biol. Med. 2022, 145, 105424.
Alyoubi, W.L.; Shalash, W.M.; Abulkhair, M.F. Diabetic retinopathy detection through deep learning techniques: A review. Inform. Med. Unlocked 2020, 20, 100377. [CrossRef].
M. Al-Smadi, M. Hammad, Q. B. Baker, and S. A. Al-Zboon, “A transfer learning with deep neural network approach for diabetic retinopathy classification,” Int. J. Electr. Comput. Eng., vol. 11, no. 4, pp. 3492–3501, 2021, doi: 10.11591/ijece.v11i4.pp3492-3501.
Praveen B, G.Mahesh Babu, P.Ramakrishnareddy, Mani A “Diabetic Retinopathy Detection using Pre-trained EfficientNetB3 Model”
Mazhar, K.; Varma, R.; Choudhury, F.; McKean-Cowdin, R.; Shtir, C.J.; Azen, S.P.; Group, L.A.L.E.S. Severity of diabetic retinopathy and health-related quality of life: The Los Angeles Latino Eye Study. Ophthalmology 2011, 118, 649–655. [CrossRef]
Willis, J.R.; Doan, Q.V.; Gleeson, M.; Haskova, Z.; Ramulu, P.; Morse, L.; Cantrell, R.A. Vision-related functional burden of diabetic retinopathy across severity levels in the United States. JAMA Ophthalmol. 2017, 135, 926–932. [CrossRef]
Vora, P.; Shrestha, S. Detecting diabetic retinopathy using embedded computer vision. Appl. Sci. 2020, 10, 7274. [CrossRef]
Murugesan, N.; Üstunkaya, T.; Feener, E.P. Thrombosis and hemorrhage in diabetic retinopathy: A perspective from an inflammatory standpoint. Semin. Thromb. Hemost. 2015, 41, 659–664. [CrossRef]
APTOS 2019 Blindness Detection Detect Diabetic Retinopathy to Stop Blindness before It’s too Late. 2019. Available online: https://www.kaggle.com/c/aptos2019-blindnessdetection/data (accessed on 28 August 2022).
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Association for the Advancement of Artificial Intelligence: Washington, DC, USA, 2017.
Xia, X.; Xu, C.; Nan, B. Inception-v3 for flower classification. In Proceedings of the 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 783–787.
R.Ghosh, K.Ghosh,and S.Maitra “Automatic Detection and Classification of Diabetic Retinopathy stages using CNN”
S.Dutta, B. CS Manideep, S.Muzamil Basha, R. D. Caytiles1 and N. Ch. S. N. Iyengar "Classification of Diabetic Retinopathy Images by Using Deep Learning Models" Vol. 11, No. 1 (2018)
T. Shanthi ∗, R.S. Sabeenian " Modified Alexnet architecture for classification of diabetic retinopathy images " 11 March 2019
M. Shaban et al., “A convolutional neural network for the screening and staging of diabetic retinopathy,” PLoS One, vol. 15, no. 6 June, pp. 1–13, 2020, doi: 10.1371/journal.pone.0233514
S. H. Kassani, P. H. Kassani, R. Khazaeinezhad, M. J. Wesolowski, K. A. Schneider, and R. Deters, “Diabetic Retinopathy Classification Using a Modified Xception Architecture,” 2019 IEEE 19th Int. Symp. Signal Process. Inf. Technol. ISSPIT 2019, pp. 0–5, 2019, doi: 10.1109/ISSPIT47144.2019.9001846
Q.H. Nguyen, R.Muthuraman, L.Singh, G.Sen, A.Cuong Tran, B. P. Nguyen, and M.Chua "Diabetic Retinopathy Detection using Deep Learning"2020
S.Mishra , S.Hanchate and Z.Saquib " Diabetic Retinopathy Detection using Deep Learning " December 19,2020 at 22:41:58 UTC from IEEE Xplore
M. R. Islam, M. A. M. Hasan, and A. Sayeed, “Transfer Learning based Diabetic Retinopathy Detection with a Novel Preprocessed Layer,” 2020 IEEE Reg. 10 Symp. TENSYMP 2020, no. January, pp. 888–891, 2020, doi: 10.1109/TENSYMP50017.2020.9230648
G.Mushtaq and F.Siddiqui " Detection of diabetic retinopathy using deep learning Methodology "
C.Lam, MD , D.Yi , M.Guo ,and T.Lindsey” Automated Detection of Diabetic Retinopathy using Deep Learning”
A.Kumar Gangwar and V.Ravi” Diabetic Retinopathy Detection Using Transfer Learning and Deep Learning
Gautami Ghan; Shweta Chavan; Archana Chaudhari “Diabetic Retinopathy Classification using Deep Learning”
W. L. Alyoubi, M. F. Abulkhair, and W. M. Shalash, “Diabetic retinopathy fundus image classification and lesions localization system using deep learning,” Sensors, vol. 21, no. 11, pp. 1–22, 2021, doi: 10.3390/s21113704
M. Oulhadj, J. Riffi, K. Chaimae, A. M. Mahraz, B. Ahmed, A. Yahyaouy, C. Fouad, A. Meriem, B. A. Idriss and H. Tairi, "Diabetic retinopathy prediction based on deep learning and deformable registration," Multimedia Tools and Applications volume , vol. 81, p. 28709–28727 , 2022
A.Sugeno , Y.Ishikawa , T.Ohshima , R. Muramatsu “Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning”
Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [CrossRef]
Tondin, B.; Barth, A.; Sanches, P.; Júnior, D.; Müller, A.; Thomé, P.; Wink, P.; Martins, A.; Susin, A. Development of an Automatic Antibiogram Reader System Using Circular Hough Transform and Radial Profile Analysis. In Proceedings of the XXVII Brazilian Congress on Biomedical Engineering: CBEB 2020, Vitória, Brazil, 26–30 October 2020; pp. 1837–1842.
.Hosseinzadeh Kassani,P.Hosseinzadeh Kassani,R.Khazaeinezhad” Diabetic Retinopathy Classification Using a Modified Xception Architecture”
A.Sugeno , Y.Ishikawa , T.Ohshima , R. Muramatsu “Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning”
M. Al-Smadi, M. Hammad, Q. B. Baker, and S. A. Al-Zboon, “A transfer learning with deep neural network approach for diabetic retinopathy classification,” Int. J. Electr. Comput. Eng., vol. 11, no. 4, pp. 3492–3501, 2021, doi: 10.11591/ijece.v11i4.pp3492-3501.
Praveen B, G.Mahesh Babu, P.Ramakrishnareddy, Mani A “Diabetic Retinopathy Detection using Pre-trained EfficientNetB3 Model”
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Huda Abdel Hussein Abdel Amir, Osama Majeed Hilal Almiahi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.