Lasso Quantile Principal Component Regression
DOI:
https://doi.org/10.29304/jqcsm.2023.15.41356Keywords:
Quantile Regression, principal component, lassoAbstract
The classical regression model is very sensitive to econometrics problems, one this econometrics problem is Multicollinearity, to overcome this problem ,we will use two solutions: Firstly via using principal component regression and second solution via using quantile regression. When mix between these methods together give as robust model against the Multicollinearity problem. The simulation scenario and real data using in this study.
Downloads
References
Alhamzawi, R., “Tobit quantile regression with adaptive lasso penalty”, The 4th International Scientific Conference of Arab Statistics. 2013, 450 ISSN, pp. 1681-6870).
Cade, B. S. and Noon, B. R. “A gentle introduction to quantile regression . 2003.
Davino, C., Romano, R., & Vistocco, D. Handling multicollinearity in quantile regression through the use of principal component regression. METRON. 2022, 80(2), 153-174.
Eberly, L. E, Multiple linear regression. Topics in Biostatistics. 2007. 165-187.
Ergon, R., Granato, D., & Ares, G. Principal component regression (PCR) and partial least squares regression (PLSR). Mathematical and statistical methods in food science and technology Wiley Blackwell, Chichester. 2014. 121-42.
Kim, B., Kanai, M. I., Oh, Y., Kyung, M., Kim, E. K., Jang, I. H., ... & Lee, W. J. Response of the microbiome–gut–brain axis in Drosophila to amino acid deficit. Nature. 2021. 593(7860), 570-574.
Koenker, R. Quantile Regression. Cambridge Books. Cambridge University Press. 2005.
Koenker, R. and G. J. Bassett. Regression quantiles. Econometrica. 1978. 46, 33–50.
Koenker, R. and V. D’Orey. Algorithm AS 229: Computing regression quantiles. 1987.
Koenker, R., & Geling, O. Reappraising medfly longevity: a quantile regression survival analysis. Journal of the American Statistical Association. 2001. 96(454), 458-468.
Kostov, P., & Davidova, S. A quantile regression analysis of the effect of farmers’ attitudes and perceptions on market participation. Journal of Agricultural Economics. 2013. 64(1), 112-132.
Kyung, M. Bayesian analysis of quantile principal component regression model. The Korean Data & Information Science Society. 2021. 32(4), 739-755.
Sutter, J. M., Kalivas, J. H., & Lang, P. M. Which principal components to utilize for principal component regression. Journal of chemometrics. 1992. 6(4), 217-225.
Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological). 1996. 267-288.
Wang, H., & He, X. Detecting differential expressions in GeneChip microarray studies: a quantile approach. Journal of the American Statistical Association, 2007. 102(477), 104-112.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mohammed H. Al-Sharoot, Fatimah K. Mohammed, Hameedah N. Mayali
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.