Mobile based Malware Detection using Artificial Intelligence Techniques a review
DOI:
https://doi.org/10.29304/jqcsm.2024.16.11439Keywords:
mobile, Android, malware, detectionAbstract
Malware attacks on mobile devices are becoming more common and more complicated every year. Malware writers see the open-source Android app as their main target because so many people use it. Artificial intelligence is used by most of the literature's mobile malware detection methods to find ransomware. Our research, on the other hand, makes it clear that most of the earlier studies used different metrics and models, as well as different datasets and classification features that came from static, dynamic, or hybrid analysis strategies. This makes comparing the different suggested detection methods more difficult and may also make the results less certain. The goal of this work is to solve the problem of AI-powered malware detection by sorting current methods and approaches into three groups: the type of dataset, the type of detection method used (machine learning models, deep learning models, and Behavioral Analysis model), and how well the method works. In this way, we suggest a convergent plan that can be used as a basis for future methods of finding malware on Android and as a solid standard for artificial intelligence work in this area.
Downloads
References
E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Automatic framework for android malware detection using deep learning,” Digit. Investig., vol. 24, pp. S48–S59, 2018.
Abbas Aqeel Kareem, Dalal Abdulmohsin Hammood, Ruaa Ali Khamees, and Nurulisma Binti Hj. Ismail, “Object Tracking with the Drone: Systems Analysis,” Journal of Techniques, vol. 5, no. 2 SEEngineering, pp. 89–94, Jun. 2023, DOI: https://doi.org/10.51173/jt.v5i2.755.
E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Scalable and robust unsupervised android malware fingerprinting using community-based network partitioning,” Comput. Secur., vol. 96, p. 101932, 2020.
K. Liu, G. Zhang, X. Chen, Q. Liu, L. Peng, and L. Yurui, “Android malware detection based on sensitive patterns,” Telecommun. Syst., vol. 82, no. 4, pp. 435–449, 2023.
Asaad Yaseen Ghareeb, S. K. Gharghan, and Rosdiadee Nordin, “Wireless Sensor Network-Based
Artificial Intelligent Irrigation System: Challenges and Limitations,” Journal of Techniques, vol. 5, no. 3 SEEngineering, pp. 26–41, Sep. 2023, DOI: https://doi.org/10.51173/jt.v5i3.1420
S. Shakya and M. Dave, “Analysis, detection, and classification of android malware using system calls,” arXiv Prepr. arXiv2208.06130, 2022.
H. Bai, N. Xie, X. Di, and Q. Ye, “Famd: A fast multifeatured android malware detection framework, design, and implementation,” IEEE Access, vol. 8, pp. 194729–194740, 2020.
H. Bragança, V. Rocha, L. Barcellos, E. Souto, D. Kreutz, and E. Feitosa, “Android malware detection with MH-100K: An innovative dataset for advanced research,” Data Br., vol. 51, p. 109750, 2023.
F. Taher, O. AlFandi, M. Al-kfairy, H. Al Hamadi, and S. Alrabaee, “DroidDetectMW: A Hybrid Intelligent Model for Android Malware Detection,” Appl. Sci., vol. 13, no. 13, p. 7720, 2023.
S. Liaqat, K. Dashtipour, K. Arshad, K. Assaleh, and N. Ramzan, “A hybrid posture detection framework: Integrating machine learning and deep neural networks,” IEEE Sens. J., vol. 21, no. 7, pp. 9515–9522, 2021.
R. Islam, M. I. Sayed, S. Saha, M. J. Hossain, and M. A. Masud, “Android malware classification using optimum feature selection and ensemble machine learning,” Internet Things CyberPhysical Syst., vol. 3, pp. 100–111, 2023.
J. Lee, H. Jang, S. Ha, and Y. Yoon, “Android malware detection using machine learning with feature selection based on the genetic algorithm,” Mathematics, vol. 9, no. 21, p. 2813, 2021.
N. McLaughlin et al., “Deep android malware detection,” in Proceedings of the seventh ACM on conference on data and application security and privacy, 2017, pp. 301–308.
K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of Android malware detection approaches based on machine learning,” IEEE Access, vol. 8, pp. 124579–124607, 2020.
T. Kim, B. Kang, and E. G. Im, “Runtime detection framework for android malware,” Mob. Inf. Syst., vol. 2018, 2018.
S. A. Alasadi and W. S. Bhaya, “Review of data pre-processing techniques in data mining,” J. Eng. Appl. Sci., vol. 12, no. 16, pp. 4102–4107, 2017.
K. Maharana, S. Mondal, and B. Nemade, “A review: Data pre-processing and data augmentation techniques,” Glob. Transitions Proc., vol. 3, no. 1, pp. 91–99, 2022.
S. S. Jasim and A. K. A. Hassan, “Modern drowsiness detection techniques: A review,” Int. J. Electr. Comput. Eng., vol. 12, no. 3, p. 2986, 2022.
M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan, “Intelligent mobile malware detection using permission requests and API calls,” Futur. Gener. Comput. Syst., vol. 107, pp. 509–521, 2020.
A. Aldelemy and Raed A. Abd-Alhameed, “Binary Classification of Customer’s Online Purchasing Behavior Using Machine Learning,” Journal of Techniques, vol. 5, no. 2 SE-Management, pp. 163–186, Jun. 2023, DOI: https://doi.org/10.51173/jt.v5i2.1226
J. Yu, C. Zhao, W. Zheng, Y. Li, C. Zhang, and C. Chen, “Android Malware Detection Using Ensemble Learning on Sensitive APIs,” in Edge Computing and IoT: Systems, Management and Security: First EAI International Conference, ICECI 2020, Virtual Event, November 6, 2020, Proceedings 1, Springer, 2021, pp. 126–140.
M. Dhalaria and E. Gandotra, “Risk Detection of Android Applications Using Static Permissions,” in Advances in Data Computing, Communication and Security: Proceedings of I3CS2021, Springer, 2022, pp. 591–600.
M. Guendouz and A. Amine, “A New Feature Selection Method Based on Dragonfly Algorithm for Android Malware Detection Using Machine Learning Techniques,” Int. J. Inf. Secure. Priv., vol. 17, no. 1, pp. 1–18, 2023.
P. Feng, J. Ma, T. Li, X. Ma, N. Xi, and D. Lu, “Android malware detection via graph representation learning,” Mob. Inf. Syst., vol. 2021, pp. 1–14, 2021.
J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant permission identification for machine-learning-based android malware detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp. 3216–3225, 2018.
A. Muzaffar, H. Ragab Hassen, M. A. Lones, and H. Zantout, “An in-depth review of machine learning based Android malware detection,” Comput. Secur., vol. 121, p. 102833, 2022, Doi: https://doi.org/10.1016/j.cose.2022.102833.
F. Akbar, M. Hussain, R. Mumtaz, Q. Riaz, A. W. A. Wahab, and K.-H. Jung, “Permissions-based detection of android malware using machine learning,” Symmetry (Basel)., vol. 14, no. 4, p. 718, 2022.
S. S. Jasim and A. A. M. Al-Taei, “A Comparison Between SVM and K-NN for classification of Plant Diseases,” Diyala J. Pure Sci., vol. 14, no. 2, pp. 94–105, 2018.
J. A. H.-S. and M. Hernández-Álvarez, “Dynamic feature dataset for ransomware detection using machine learning algorithms,” Sensors, vol. 23, no. 3, p. 1053, 2023.
X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android malware detection based on system call sequences and LSTM,” Multimed. Tools Appl., vol. 78, pp. 3979–3999, 2019.
SamaAndroid malware detection based on system call sequences and LSTM Hayder Abdulhussein AlHakeem, Nashaat Jasim Al-Anber, Hayfaa Abdulzahra Atee, and Dr. Mahmod Muhamad Amrir, “Iraqi Stock Market Prediction Using Artificial Neural Network and Long ShortTerm Memory,” Journal of Techniques, vol. 5, no. 1 SE-Management, pp. 156–163, Apr. 2023, Doi:
https://doi.org/10.51173/jt.v5i1.846
M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based android malware detection using real devices,” Comput. Secur., vol. 89, p. 101663, 2020.
A. S. de Oliveira and R. J. Sassi, “Chimera: an android malware detection method based on multimodal deep learning and hybrid analysis,” Authorea Prepr., 2023.
J. McGiff, W. G. Hatcher, J. Nguyen, W. Yu, E. Blasch, and C. Lu, “Towards multimodal learning for android malware detection,” in 2019 International Conference on Computing, networking and Communications (ICNC), IEEE, 2019, pp. 432–436.
S. Y. Yerima, M. K. Alzaylaee, A. Shajan, and V. P, “Deep learning techniques for android botnet detection,” Electronics, vol. 10, no. 4, p. 519, 2021.
V. Sihag, M. Vardhan, P. Singh, G. Choudhary, and S. Son, “De-LADY: Deep learning-based Android malware detection using Dynamic features.,” J. Internet Serv. Inf. Secur., vol. 11, no. 2, pp. 34–45, 2021.
J. Kim, Y. Ban, E. Ko, H. Cho, and J. H. Yi, “MAPAS: a practical deep learning-based android malware detection system,” Int. J. Inf. Secur., vol. 21, no. 4, pp. 725–738, 2022.
O. N. Elayan and A. M. Mustafa, “Android malware detection using deep learning,” Procedia Comput. Sci., vol. 184, pp. 847–852, 2021.
S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu, and W. S. Alnumay, “DeepAMD: Detection and identification of Android malware using high-efficient Deep Artificial Neural Network,” Futur. Gener. Comput. Syst., vol. 115, pp. 844–856, 2021.
نادية، Sadik Kamel Gharghan, Ammar Hussein Mutlag, and M. G. M. Abdolrasol, “Children Tracking System Based on ZigBee Wireless Network and Neural Network,” Journal of Techniques, vol. 5, no. 1 SE-Engineering, pp. 103–113, Apr. 2023, DOI: https://doi.org/10.51173/jt.v5i1.838
M. Dimjaševid, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation of Android malware detection based on system calls,” in Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics, 2016, pp. 1–8.
P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android malware detection system with ensemble learning,” IEEE Access, vol. 6, pp. 30996–31011, 2018.
E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and G. Stringhini, “Mamadroid: Detecting android malware by building Markov chains of behavioural models,” arXiv Prepr. arXiv1612.04433, 2016.
L. Onwuzurike, E. Marconi, P. Andriotis, E. De Cristofaro, G. Ross, and G. Stringhini, “Mamadroid: Detecting android malware by building Markov chains of behavioural models (extended version),” ACM Trans. Priv. Secur., vol. 22, no. 2, pp. 1–34, 2019.
P. Battista, F. Mercaldo, V. Nardone, A. Santone, and C. A. Visaggio, “Identification of Android Malware Families with Model Checking.,” in ICISSP, 2016, pp. 542–547.
A. Chaudhuri, A. Nandi, and B. Pradhan, “A Dynamic Weighted Federated Learning for Android Malware Classification,” in Soft Computing: Theories and Applications: Proceedings of SoCTA 2022, Springer, 2023, pp. 147–159.
S. S. Jasim and A. K. A. Hassan, “Driving sleepiness detection using electrooculogram analysis and grey wolf optimizer,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, p. 6034, 2022.
S. S. Jasim, A. K. A. Hassan, and S. Turner, “Driver drowsiness detection using gray wolf optimizer based on face and eye tracking,” Aro-The Sci. J. Koya Univ., vol. 10, no. 1, pp. 49–56, 2022.
S. Turner, S. S. Jassin, and A. K. A. Hassan, “Optimizing artificial neural networks using LevyChaotic mapping on Wolf Pack optimization algorithm for detect driving sleepiness,” Iraqi J. Comput. Commun. Control Syst. Eng., vol. 22, no. 3, pp. 128–136, 2022.
S. Seraj, E. Pimenidis, M. Pavlidis, S. Kapetanakis, M. Trovati, and N. Polatidis, “BotDroid: Permission-Based Android Botnet Detection Using Neural Networks,” in International Conference on Engineering Applications of Neural Networks, Springer, 2023, pp. 71–84.
N. Paul, A. J. Bhatt, and S. Rizvi, “Malware Detection in Android Apps Using Static Analysis,” J. Cases Inf. Technol., vol. 24, no. 3, pp. 1–25, 2022.
G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting android malware using sequences of system calls,” in Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile, 2015, pp. 13–20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mawj faez mahdi, Sarah Saadoon Jasim
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.