A Review on Deep Learning For Electroencephalogram Signal Classification
DOI:
https://doi.org/10.29304/jqcsm.2024.16.11453Keywords:
Artificial Intellegence, Convolutional Neural Network, Deep Learning, Electroencephalogram, Human BrainAbstract
Recently, the research on Electroencephalogram (EEG) signals have been obtained more focus at the same time the EEG signal is regarded as the basis for the prediction of diagnosis disease and the brain behavior. EEG is as significant tool for many conditions that can be recorded the brain human waves which accommodate the brain activity. In the recent decades, EEG data has been extensively applied in the approaches of data analysis such as time series analysis. With the considerable achievement of deep learning (DL) implement on the time series data, multiple studies have been began applying deep learning algorithms on the processing of EEG signal. Several deep learning techniques that assistant in the detection various psycho-neuro disorders, have been proposed in order to automate EEG detection and classification with great development in multiple applications of EEG signals. Also, different machine learning (ML) algorithms have been presented in such research for brain signals identification and classification in the era of Artificial intelligence (AI). In an attempt to summarize the EEG signal processing techniques, we have performed a literature review around deep learning algorithms for decoding the human’s brain activity as well as diagnosis disease and clarified particulars about several deep learning algorithms. We also conducted some of ML papers about EEG signals classification. Based on the achievement results of the research mentioned in this article appears an advanced scientific development in terms of deep learning.
Downloads
References
H. Altaheri et al., Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review, no. August. 2021.
A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: A review,” J. Neural Eng., vol. 16, no. 3, 2019, doi: 10.1088/1741-2552/ab0ab5.
G. Chen, “Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features,” Expert Syst. Appl., vol. 41, no. 5, pp. 2391–2394, 2014, doi: 10.1016/j.eswa.2013.09.037.
S. Motamedi-Fakhr, M. Moshrefi-Torbati, M. Hill, C. M. Hill, and P. R. White, “Signal processing techniques applied to human sleep EEG signals - A review,” Biomed. Signal Process. Control, vol. 10, no. 1, pp. 21–33, 2014, doi: 10.1016/j.bspc.2013.12.003.
A. Delorme and S. Makeig, “EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21, 2004, doi: 10.1016/j.jneumeth.2003.10.009.
M. P. Hosseini, A. Hosseini, and K. Ahi, “A Review on Machine Learning for EEG Signal Processing in Bioengineering,” IEEE Rev. Biomed. Eng., vol. 14, no. c, pp. 204–218, 2021, doi: 10.1109/RBME.2020.2969915.
G. Zhang, V. Davoodnia, A. Etemad, and S. Member, “PARSE : Pairwise Alignment of Representations in Semi-Supervised EEG Learning for Emotion Recognition,” pp. 1–15.
H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Classification using deep learning neural networks for brain tumors,” Futur. Comput. Informatics J., vol. 3, no. 1, pp. 68–71, 2018, doi: 10.1016/j.fcij.2017.12.001.
D. Merlin Praveena, D. Angelin Sarah, and S. Thomas George, “Deep Learning Techniques for EEG Signal Applications–A Review,” IETE J. Res., vol. 68, no. 4, pp. 3030–3037, 2022, doi: 10.1080/03772063.2020.1749143.
U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam, “Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals,” Inf. Sci. (Ny)., vol. 415–416, pp. 190–198, 2017, doi: 10.1016/j.ins.2017.06.027.
G. Petmezas et al., “Automated Atrial Fibrillation Detection using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets,” Biomed. Signal Process. Control, vol. 63, no. March 2020, p. 102194, 2021, doi: 10.1016/j.bspc.2020.102194.
G. Li, C. H. Lee, J. J. Jung, Y. C. Youn, and D. Camacho, “Deep learning for EEG data analytics: A survey,” Concurr. Comput. Pract. Exp., vol. 32, no. 18, 2020, doi: 10.1002/cpe.5199.
D. Stelzle, V. Schmidt, B. J. Ngowi, W. Matuja, E. Schmutzhard, and A. S. Winkler, “Lifetime prevalence of epilepsy in urban Tanzania – A door-to-door random cluster survey,” eNeurologicalSci, vol. 24, p. 100352, 2021, doi: 10.1016/j.ensci.2021.100352.
C. B. Josephson, S. Sandy, N. Jette, T. T. Sajobi, D. Marshall, and S. Wiebe, “A systematic review of clinical decision rules for epilepsy,” Epilepsy Behav., vol. 57, pp. 69–76, 2016, doi: 10.1016/j.yebeh.2016.01.019.
S. Dehuri, A. K. Jagadev, and S. B. Cho, “Epileptic seizure identification from electroencephalography signal using DE-RBFNs ensemble,” Procedia Comput. Sci., vol. 23, pp. 84–95, 2013, doi: 10.1016/j.procs.2013.10.012.
H. V. D. Parunak, S. H. Brooks, S. Brueckner, and R. Gupta, “Apoptotic stigmergic agents for real-time swarming simulation,” AAAI Fall Symp. - Tech. Rep., vol. FS-12-04, pp. 59–64, 2012.
M. Kaur, S. R. Sakhare, K. Wanjale, and F. Akter, “Early Stroke Prediction Methods for Prevention of Strokes,” vol. 2022, 2022.
W. Johnson, O. Onuma, M. Owolabi, and S. Sachdev, “Stroke: A global response is needed,” Bull. World Health Organ., vol. 94, no. 9, pp. 634A-635A, 2016, doi: 10.2471/BLT.16.181636.
R. T. Schirrmeister et al., “Deep learning with convolutional neural networks for EEG decoding and visualization,” Hum. Brain Mapp., vol. 38, no. 11, pp. 5391–5420, 2017, doi: 10.1002/hbm.23730.
S. L. Kappel, D. Looney, D. P. Mandic, and P. Kidmose, “Physiological artifacts in scalp EEG and ear-EEG,” Biomed. Eng. Online, vol. 16, no. 1, p. 103, 2017, doi: 10.1186/s12938-017-0391-2.
A. Shoka, M. Dessouky, A. El-Sherbeny, and A. El-Sayed, “Literature Review on EEG Preprocessing, Feature Extraction, and Classifications Techniques,” Menoufia J. Electron. Eng. Res., vol. 28, no. 1, pp. 292–299, 2019, doi: 10.21608/mjeer.2019.64927.
A. Hamad, A. E. Hassanien, E. H. Houssein, and A. A. Fahmy, “Feature extraction of epilepsy EEG using discrete wavelet transform,” 2016 12th Int. Comput. Eng. Conf. ICENCO 2016 Boundless Smart Soc., pp. 190–195, 2017, doi: 10.1109/ICENCO.2016.7856467.
H. U. Amin et al., “Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques,” Australas. Phys. Eng. Sci. Med., vol. 38, no. 1, pp. 139–149, 2015, doi: 10.1007/s13246-015-0333-x.
I. Ben Slimen, L. Boubchir, Z. Mbarki, and H. Seddik, “EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms,” J. Biomed. Res., vol. 34, no. 3, pp. 151–161, 2020, doi: 10.7555/JBR.34.20190026.
A. Bhardwaj, A. Gupta, P. Jain, A. Rani, and J. Yadav, “Classification of human emotions from EEG signals using SVM and LDA Classifiers,” 2nd Int. Conf. Signal Process. Integr. Networks, SPIN 2015, pp. 180–185, 2015, doi: 10.1109/SPIN.2015.7095376.
V. Doma and M. Pirouz, “A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals,” J. Big Data, vol. 7, no. 1, 2020, doi: 10.1186/s40537-020-00289-7.
J. Birjandtalab, M. Baran Pouyan, D. Cogan, M. Nourani, and J. Harvey, “Automated seizure detection using limited-channel EEG and non-linear dimension reduction,” Comput. Biol. Med., vol. 82, pp. 49–58, 2017, doi: 10.1016/j.compbiomed.2017.01.011.
E. Alickovic, J. Kevric, and A. Subasi, “Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction,” Biomed. Signal Process. Control, vol. 39, pp. 94–102, 2018, doi: 10.1016/j.bspc.2017.07.022.
H. M. E. Hadad, H. A. Mahmoud, and F. A. Mousa, “Bovines Muzzle Classification Based on Machine Learning Techniques,” Procedia Comput. Sci., vol. 65, no. 4, pp. 864–871, 2015, doi: 10.1016/j.procs.2015.09.044.
T. Tazin, M. N. Alam, N. N. Dola, M. S. Bari, S. Bourouis, and M. Monirujjaman Khan, “Stroke Disease Detection and Prediction Using Robust Learning Approaches,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/7633381.
E. Sajno et al., “XAI in Affective Computing : a Preliminary Study XAI in Affective Computing : A preliminary study,” 2023.
J. Xiong, D. Yu, S. Liu, L. Shu, X. Wang, and Z. Liu, “A Review of Plant Phenotypic Image Recognition Technology Based on Deep Learning,” pp. 1–19, 2021.
D. L. Spiers, “Facial emotion detection using deep learning,” 2016.
H. W. Loh, C. P. Ooi, J. Vicnesh, S. L. Oh, and O. Faust, “applied sciences Automated Detection of Sleep Stages Using Deep Learning Techniques : A Systematic Review of the,” 2020.
M. Krichen, “Convolutional Neural Networks : A Survey,” pp. 1–41, 2023.
M. Zhou et al., “Epileptic Seizure Detection Based on EEG Signals and CNN,” vol. 12, no. December, pp. 1–14, 2018, doi: 10.3389/fninf.2018.00095.
A. M. Tambat, R. Solanki, and P. R. Bhaladhare, “Sentiment Analysis-Emotion Recognition,” vol. 14, no. 01, pp. 381–390, 2023.
D. Sen Maitra, U. Bhattacharya, and S. K. Parui, “CNN Based Common Approach to Handwritten Character Recognition of Multiple Scripts,” pp. 1021–1025, 2015.
A. Science and I. Corporation, “Un cor rec t ed Pro o Un cor rec t Pro o,” 2019, doi: 10.1162/neco.
C. Faculty, “No Title.”
H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent Advances in Recurrent Neural Networks,” pp. 1–21.
O. Aouedi, “A Semi-supervised Stacked Autoencoder Approach for Network Traffic Classification.”
Y. Jin and P. Wang, “SAE network : a deep learning method for traffic flow prediction,” 2018 5th Int. Conf. Information, Cybern. Comput. Soc. Syst., no. 51505037, pp. 241–246, 2018.
R. Cascade-correlation and N. S. Chunking, “2 PREVIOUS WORK,” vol. 9, no. 8, pp. 1–32, 1997.
A. Sherstinsky, “Fundamentals of Recurrent Neural Network ( RNN ) and Long Short-Term Memory ( LSTM ) Network,” vol. 404, no. March, pp. 1–43, 2020.
B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich, “A Survey on Anomaly Detection for Technical Systems using LSTM Networks.”
F. Sherratt and A. Plummer, “Understanding LSTM Network Behaviour of IMU-Based,” 2021.
G. E. Hinton, “Reducing the Dimensionality of,” vol. 504, no. 2006, 2008, doi: 10.1126/science.1127647.
G. E. Hinton, S. Osindero, and Y.-W. Teh, “Communicated by Yann Le Cun A Fast Learning Algorithm for Deep Belief Nets 500 units 500 units,” Neural Comput., vol. 18, no. June, pp. 1527–1554, 2006, doi: 10.1162/neco.2006.18.7.1527.
J. Naskath, G. Sivakamasundari, and A. A. S. Begum, “A Study on Different Deep Learning Algorithms Used in Deep Neural Nets: MLP SOM and DBN,” Wirel. Pers. Commun., vol. 128, no. 4, pp. 2913–2936, 2023, doi: 10.1007/s11277-022-10079-4.
S. Ben Driss, M. Soua, R. Kachouri, and M. Akil, “and convolutional neural network models for character recognition,” vol. 1022306, no. May 2017, 2023, doi: 10.1117/12.2262589.
S. F. Abbasi et al., “EEG-Based Neonatal Sleep-Wake Classification Using Multilayer Perceptron Neural Network,” 2020, doi: 10.1109/ACCESS.2020.3028182.
Y. R. Tabar and U. Halici, “A novel deep learning approach for classification of EEG motor imagery signals,” J. Neural Eng., vol. 14, no. 1, p. 16003, 2017, doi: 10.1088/1741-2560/14/1/016003.
Y. Ren and Y. Wu, “Convolutional deep belief networks for feature extraction of EEG signal,” Proc. Int. Jt. Conf. Neural Networks, pp. 2850–2853, 2014, doi: 10.1109/IJCNN.2014.6889383.
C. Park et al., “Epileptic seizure detection for multi-channel EEG with deep convolutional neural network,” Int. Conf. Electron. Inf. Commun. ICEIC 2018, vol. 2018-Janua, no. October, pp. 1–5, 2018, doi: 10.23919/ELINFOCOM.2018.8330671.
A. Petrosian, D. Prokhorov, R. Homan, R. Dasheiff, and D. Wunsch, “Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG,” Neurocomputing, vol. 30, no. 1–4, pp. 201–218, 2000, doi: 10.1016/S0925-2312(99)00126-5.
P. Govindarajan, R. K. Soundarapandian, A. H. Gandomi, R. Patan, P. Jayaraman, and R. Manikandan, “Classification of stroke disease using machine learning algorithms,” Neural Comput. Appl., vol. 32, no. 3, pp. 817–828, 2020, doi: 10.1007/s00521-019-04041-y.
H. Daoud and M. Bayoumi, “Efficient Epileptic Seizure Prediction based on Deep Learning,” IEEE Trans. Biomed. Circuits Syst., vol. PP, no. c, p. 1, 2019, doi: 10.1109/TBCAS.2019.2929053.
A. H. Ansari, A. Caicedo, and S. Van Huffel, “Neonatal Seizure Detection Using Deep Convolutional Neural Networks,” vol. 29, no. 4, pp. 1–20, 2019, doi: 10.1142/S0129065718500119.
Y. Cimtay and E. Ekmekcioglu, “Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset,” pp. 1–20, 2020.
S. K. Khare, “Time – Frequency Representation and Convolutional Neural Network-Based Emotion Recognition,” pp. 1–9, 2020.
S. Emotion, “Emotion recognition with convolutional neural network and EEG-based EFDMs,” 2020, doi: 10.1016/j.neuropsychologia.2020.107506.
K. Stuburi and K. Stuburi, “ScienceDirect A deep deep learning learning approach approach to to detect detect sleep sleep stages stages,” Procedia Comput. Sci., vol. 176, pp. 2764–2772, 2020, doi: 10.1016/j.procs.2020.09.280.
O. Yildirim, U. B. Baloglu, and U. R. Acharya, “A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals,” doi: 10.3390/ijerph16040599.
Sydney Caulfeild, Sarah Pak, Nathanael Yao, and Hoz Rashid, “Stroke Prediction,” J. Mech. Eng. Autom., vol. 11, no. 6, pp. 600–602, 2021, doi: 10.17265/2159-5275/2021.06.004.
Y. Kocyigit, A. Alkan, and H. Erol, “Classification of EEG Recordings by Using Fast Independent Component Analysis and Artificial Neural Network,” no. March, 2008, doi: 10.1007/s10916-007-9102-z.
S. Kumar and A. Sengupta, “EEG Classification For Stroke Detection Using Deep Learning Networks,” 2022.
S. Rahman, M. Hasan, and A. K. Sarkar, “Prediction of Brain Stroke using Machine Learning Algorithms and Deep Neural Network Techniques,” Eur. J. Electr. Eng. Comput. Sci., vol. 7, no. 1, pp. 23–30, 2023, doi: 10.24018/ejece.2023.7.1.483.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Sarah Kamil Gatfan
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.