On APP-Quasi prime Submodules

Authors

  • Thaer Z. Khlaif Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq
  • Haibat K. Mohammadali Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq
  • Akram S. Mohammed Department of Mathematics, College of Computer Science and Mathematics, University of Tikrit, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2024.16.21558

Keywords:

Prime submodules, 2-Absorbing submodules., APP-quasi prime submodules, Multiplication modules, projective modules

Abstract

Let  to be a commutative ring with identity and  is a  unitary left -module. In this paper we introduce the concept of approximaitly-quasi prime submodules (for short APP-quasi prime submodule) as a generalizations of prime submodule and quasi prime submodule, where a proper submodule  of -module  is said to be an APP-quasi prime submodule of , if  whenever , where  and  implies that either  or [5]. Many new examples, characterization and basic properties of this concepts are introduce. Furthermore new characterizations of APP-quasi prime submodules in some types of modules are given.

Downloads

Download data is not yet available.

References

Dauns, J., “Prime Modules,” Journal reine Angew, Math. Vol. 2, (1978), pp.156-181.

Lu, C. P., “M-radical of Submodules in Modules,” Math. Japan, Vol. 34, (1989), pp. 211-219.

Athab, E. A., “Prime and Semi-Prime,” Ph.D. Thesis; College of Scicence, University of Baghdad (1996). [4] Abdul-Razak H.M., “Quasi-Prime Modules and Quasi-Prime subModules,” M.Sc. Thesis, University of Baghdad (1999).

Ali Sh. And Haibat K., “Approximaitly Quasi-prime SubModules and Some Related concepts,” Journal of Al-Qadisiyah for computer science and mathematics. Vol. 11, No.(2), (2019), PP. 54-62.

Goodearl, K. R., “Ring Theory,” Marcel Dekker, Inc. New York and Basel, (1976), p. 206.

Kasch, F., “Modules and Rings,” London Math. Soc. Monographs, New York, Academic press (1982).

El-Bast, Z. A. and Smith, P. F., “Multiplication Modules,” Comm. In Algebra, Vol. 16, No.(4), (1988), pp. 755-779.

Smith, P.F.; Some Remarks On Multiplication Module; Arch. Math. Vol. 50, (1988), pp. 223-225.

Darani ,A.Y. and Soheilniai ,F″2-Absorbing and Weakly 2-Absorbing Submodules,″ Tahi Journal Math .Vol. 9, (2011), pp.577-584.

Zelmanowitz, J., “Regular Modules,” Trans .Amerecan ,Math. Soc. Vol. 163, (1973) , pp. 341-355.

Nuha ,H.H ., “The Radicals of Modules,” M.Sc. Thesis ,University of Baghdad (1996),.

Naderi. M. and Reza. J., “Weakly Primary Submodules of Multiplication Modules and Intersection Theorem,” Int. Journal Contemp. Math. Sci, Vol. 4, No.(33), (2009), PP. 1645 -1652.

Ali, S. M., ″On Concellation Modules″, M. Sc. Thesis, University of Baghdad , (1993).

Downloads

Published

2024-06-30

How to Cite

Z. Khlaif, T., K. Mohammadali, H., & S. Mohammed, A. (2024). On APP-Quasi prime Submodules. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(2), Math. 111–118. https://doi.org/10.29304/jqcsm.2024.16.21558

Issue

Section

Math Articles