Review of Glaucoma Disease Diagnosis-based Deep Learning Network

Authors

  • Rawaa Humam Aziz AL-Qadisiyah University, College of Computer Science and Information Technology, Computer Science Department, Diwaniyah, Iraq
  • Lamia Abed Noor Muhammed AL-Qadisiyah University, College of Computer Science and Information Technology, Computer Science Department, Diwaniyah, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2024.16.21566

Keywords:

2-semi-Bounded operators, complete spaces, continuous and linear functions.

Abstract

The glaucoma is a disease that leads to the irreversible loss of sight after its onset. In the area of medicine, glaucoma diagnosis is a crucial problem that must be addressed. Only a few studies were carried out with a view to early detection of blue. However, the implementation of this law has not succeeded in identifying glaucoma using the many methods currently available. Moreover, the old ways to identify retrograde gland disease require a much greater time commitment. Knowledge of glaucoma in colored images (fundus) is a difficult task that requires years of experience as well as knowledge. The preferred method of analyzing medical images soon became deep educational algorithms. A series of studies have been undertaken within the time period between 2018 and 2023 and these reports have shown how critical elements, such as architecture, size of data sets, and application of transport learning compared with the newly established structures, can affect performance more accurately and time-consumingly using a set of new networks (CNN).

Downloads

Download data is not yet available.

References

O. Perdomo, V. Andrearczyk, F. Meriaudeau, H. Müller, and F. A. González, “Glaucoma Diagnosis from Eye Fundus Images Based on Deep Morphometric Feature Estimation,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11039 LNCS, pp. 319–327, 2018, doi: 10.1007/978-3-030-00949-6_38.

A. Septiarini, A. Harjoko, R. Pulungan, and R. Ekantini, “Automated detection of retinal nerve fiber layer by texture-based analysis for glaucoma evaluation,” Healthc. Inform. Res., vol. 24, no. 4, pp. 335–345, 2018, doi: 10.4258/hir.2018.24.4.335.

H. Fu, J. Cheng, Y. Xu, and J. Liu, “Glaucoma Detection Based on Deep Learning Network in Fundus Image,” Adv. Comput. Vis. Pattern Recognit., no. September, pp. 119–137, 2019, doi: 10.1007/978-3-030-13969-8_6.

P. Elangovan, M. K. Nath, and M. Mishra, “Statistical Parameters for Glaucoma Detection from Color Fundus Images,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2675–2683, 2020, doi: 10.1016/j.procs.2020.04.290.

A. Balasopoulou et al., “Symposium Recent advances and challenges in the management of retinoblastoma Globe ‑ saving Treatments,” BMC Ophthalmol., vol. 17, no. 1, p. 1, 2017, doi: 10.4103/ijo.IJO.

M. Alghamdi and M. Abdel-Mottaleb, “A Comparative Study of Deep Learning Models for Diagnosing Glaucoma from Fundus Images,” IEEE Access, vol. 9, pp. 23894–23906, 2021, doi: 10.1109/ACCESS.2021.3056641.

T. Shyamalee and D. Meedeniya, “Glaucoma Detection with Retinal Fundus Images Using Segmentation and Classification,” Mach. Intell. Res., vol. 19, no. 6, pp. 563–580, 2022, doi: 10.1007/s11633-022-1354-z.

T. Shyamalee and D. Meedeniya, “CNN Based Fundus Images Classification For Glaucoma Identification,” ICARC 2022 - 2nd Int. Conf. Adv. Res. Comput. Towar. a Digit. Empower. Soc., no. February, pp. 200–205, 2022, doi: 10.1109/ICARC54489.2022.9754171.

F. NURFAJAR, R. MAGDALENA, and S. SA’IDAH, “Deteksi Glaukoma pada Citra Fundus Retina menggunakan Metode Local Binary Pattern dan Support Vector Machine,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 4, p. 769, 2022, doi: 10.26760/elkomika.v10i4.769.

P. K. Chaudhary, S. Jain, T. Damani, S. Gokharu, and R. B. Pachori, “Automatic Diagnosis of Type of Glaucoma Using Order-One 2D-FBSE-EWT,” 2022 24th Int. Conf. Digit. Signal Process. its Appl. DSPA 2022, no. March, 2022, doi: 10.1109/DSPA53304.2022.9790762.

R. Kashyap, R. Nair, S. M. P. Gangadharan, M. Botto-Tobar, S. Farooq, and A. Rizwan, “Glaucoma Detection and Classification Using Improved U-Net Deep Learning Model,” Healthc., vol. 10, no. 12, 2022, doi: 10.3390/healthcare10122497.

N. Akter, J. Fletcher, S. Perry, M. P. Simunovic, N. Briggs, and M. Roy, “Glaucoma diagnosis using multi-feature analysis and a deep learning technique,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022, doi: 10.1038/s41598-022-12147-y.

I. G. Classification, U. Fundus, and D. Learning, “ib,” vol. 42, no. 3, pp. 28–41, 2021.

Y. C. Ko et al., “Widen the Applicability of a Convolutional Neural-Network-Assisted Glaucoma Detection Algorithm of Limited Training Images across Different Datasets,” Biomedicines, vol. 10, no. 6, 2022, doi: 10.3390/biomedicines10061314.

S. Joshi, B. Partibane, W. A. Hatamleh, H. Tarazi, C. S. Yadav, and D. Krah, “Learning for Classification,” vol. 2022, 2022.

T. Shyamalee and D. Meedeniya, “Attention U-Net for Glaucoma Identification Using Fundus Image Segmentation,” 2022 Int. Conf. Decis. Aid Sci. Appl. DASA 2022, no. May, pp. 6–10, 2022, doi: 10.1109/DASA54658.2022.9765303.

M. Lin et al., “Automated diagnosing primary open-angle glaucoma from fundus image by simulating human’s grading with deep learning,” Sci. Rep., vol. 12, no. 1, pp. 1–11, 2022, doi: 10.1038/s41598-022-17753-4.

A. Zyout, H. Alquran, W. A. Mustafa, M. Alsalatie, A. Al-Badarneh, and W. Khairunizam, “Automated Diagnosis of Eye Fundus Images,” Proc. Int. Conf. Artif. Life Robot., pp. 56–61, 2023, doi: 10.5954/icarob.2023.os1-7.

O. M. Kamara, A. H. Asad, and H. A. Hefny, “Automated Diagnoses Glaucoma Approach in Retinal Fundus Images Using Support Vector Machine,” Lect. Notes Data Eng. Commun. Technol., vol. 184, pp. 368–379, 2023, doi: 10.1007/978-3-031-43247-7_33.

J. Surendiran and M. Meena, “Deep learning-Assisted Glaucoma Diagnosis and Model Design,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 1, pp. 269–276, 2023.

A. Abbasi, B. J. Antony, S. Gowrisankaran, G. Wollstein, J. S. Schuman, and H. Ishikawa, “Can Glaucoma Suspect Data Help to Improve the Performance of Glaucoma Diagnosis?,” Transl. Vis. Sci. Technol., vol. 12, no. 8, pp. 1–7, 2023, doi: 10.1167/tvst.12.8.6.

K. Devkota and A. Acharya, “Deep Convolutional Neural Network and Transfer Learning to Classify Cataract Based on Fundus Images Deep Convolutional Neural Network and Transfer Learning to Classify Cataract Based on Fundus Images,” no. August, 2023.

R. Thanki, “Deep Learning Based Model for Fundus Retinal Image Classification,” Commun. Comput. Inf. Sci., vol. 1788 CCIS, pp. 238–249, 2023, doi: 10.1007/978-3-031-27609-5_19.

S. Saha, J. Vignarajan, and S. Frost, “A fast and fully automated system for glaucoma detection using color fundus photographs,” Sci. Rep., vol. 13, no. 1, pp. 1–11, 2023, doi: 10.1038/s41598-023-44473-0.

S. Alayón, J. Hernández, F. J. Fumero, J. F. Sigut, and T. Díaz-Alemán, “Comparison of the Performance of Convolutional Neural Networks and Vision Transformer-Based Systems for Automated Glaucoma Detection with Eye Fundus Images,” Appl. Sci., vol. 13, no. 23, p. 12722, 2023, doi: 10.3390/app132312722.

M. S. Puchaicela-Lozano et al., “Deep Learning for Glaucoma Detection: R-CNN ResNet-50 and Image Segmentation,” J. Adv. Inf. Technol., vol. 14, no. 6, pp. 1186–1197, 2023, doi: 10.12720/jait.14.6.1186-1197.

K. Aurangzeb, “A residual connection enabled deep neural network model for optic disk and optic cup segmentation for glaucoma diagnosis,” Sci. Prog., vol. 106, no. 3, pp. 1–22, 2023, doi: 10.1177/00368504231201329.

E. Bouris, T. Davis, E. Morales, L. Grassi, D. Salazar Vega, and J. Caprioli, “A Neural Network for Automated Image Quality Assessment of Optic Disc Photographs,” J. Clin. Med., vol. 12, no. 3, 2023, doi: 10.3390/jcm12031217.

S. Lenka and Z. L. Mayaluri, “Hybrid glaucoma detection model based on reflection components separation from retinal fundus images,” EAI Endorsed Trans. Pervasive Heal. Technol., vol. 9, pp. 1–13, 2023, doi: 10.4108/EETPHT.9.3191.

A. Shoukat, S. Akbar, S. A. Hassan, S. Iqbal, A. Mehmood, and Q. M. Ilyas, “Automatic Diagnosis of Glaucoma from Retinal Images Using Deep Learning Approach,” Diagnostics, vol. 13, no. 10, pp. 1–17, 2023, doi: 10.3390/diagnostics13101738.

A. Desiani and S. Priyanta, “Multi-Stage CNN : U-Net and Xcep-Dense of Glaucoma Detection in Retinal Images,” vol. 5, no. 4, pp. 211–222, 2023.

Samaya Madhavan, M. Tim Jones, "Deep learning architectures" from IBM, 24 April 2024.

Downloads

Published

2024-06-30

How to Cite

Humam Aziz, R., & Abed Noor Muhammed, L. (2024). Review of Glaucoma Disease Diagnosis-based Deep Learning Network . Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(2), Comp Page 151– 160. https://doi.org/10.29304/jqcsm.2024.16.21566

Issue

Section

Computer Articles