A Survey on Classifying Ocular Diseases Using Deep Learning and Machine Learning Techniques

Authors

  • Walaa Abdul Latif Al-Hamzawi College of Computer science and Information Technology, University of AL- Qadisiyah, Iraq
  • Ali Mohsen Al-juboori College of Computer science and Information Technology, University of AL- Qadisiyah, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2024.16.31644

Keywords:

Ocular diseases, Deep Learning, Convolutional Neural Networks, Fundus Image, Machine Learning, ODIR

Abstract

In ophthalmology, using fundus images to identify ocular diseases early may pose challenges for clinicians. Manually diagnosing ocular conditions is time-consuming, difficult, and requires experimentation. As a result, technology was created to help computers differentiate between ocular diseases. It is possible to create a system of this type due to different learning algorithms based on visual capabilities. Recent breakthroughs in deep learning and machine learning have led to the development of intelligent systems that improve accuracy and efficiency in classifying eye diseases. The purpose of this study is to conduct a comprehensive survey of modern systems that classify ocular problems using different methods, including pre-trained deep learning networks, using the Ocular Disease Intelligent Recognition (ODIR) dataset. The goal is to build and train a model that can recognize and classify ocular disorders. Previous research indicates the increasing use of deep learning techniques. CNN-based methods have spread widely in this field, compared to traditional manual procedures, due to their outstanding results. The most prominent deep learning techniques are convolutional neural networks (CNNs), recurrent neural networks (RNNs), and various learning methods for increasing and transferring data. The survey highlights the potential of these systems to enhance classification accuracy and sensitivity while addressing challenges such as data availability, interpretability, and integration with clinical practice.

Downloads

Download data is not yet available.

References

Akram, A., & Debnath, R. (2020). An automated eye disease recognition system from visual content of facial images using machine learning techniques. Turkish Journal of Electrical Engineering and Computer Sciences, 28(2), 917-932.

R. Kawasaki and J. Grauslund, “Clinical motivation and the needs for ria in healthcare,” in Computational Retinal Image Analysis. Elsevier, 2019, pp. 5–17.

A. O.Adio, A. Alikor, and E. Awoyesuku, “Survey of pediatric ophthalmic diagnoses in a teaching hospital in Nigeria,” Nigerian Journal of Medicine: Journal of the National Association of Resident Doctors of Nigeria, vol. 20, no. 1, pp. 105–108, 2011.

von Thun und Hohenstein-Blaul N, Funke S, Grus FH. Tears as a source of biomarkers for ocular and systemic diseases. Exp Eye Res. 2013;117:126–37.

Engerman, R. L. (1989). Pathogenesis of diabetic retinopathy. Diabetes, 38(10), 1203-1206.‏

M. F. Hossain, D. C. Nandi, and N. Ahsan, “Knowledge, attitude and practices regarding common eye disease in Bangladesh: a study of Cumilla zone,” Knowledge, Attitude, and Practices Regarding Common Eye Disease in Bangladesh: AStudy of Cumilla Zone, vol. 25, no. 4, pp. 2279–0845, 2020.

K. Edussuriya, S. Senanayake, T. Senaratne et al., “ e prevalence and causes of visual impairment in Central Sri Lanka,” Ophthalmology, vol. 116, no. 1, pp. 52–56, 2009.

Mu, Y., Sun, Y., Hu, T., Gong, H., & Tyasi, T. L. (2021). Improved model of eye disease recognition based on VGG model. Intell Autom Soft Comput, 68, 729-737.‏

T. Saba, Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges, J. Infection Public Health, vol. 13, no. 9, pp. 12741289, Sep. 2020

Li, C., Ye, J., He, J., Wang, S., Qiao, Y., & Gu, L. (2020, April). Dense correlation network for automated multi-label ocular disease detection with paired color fundus photographs. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 1-4). IEEE.‏

N. Gour and P. Khanna, “Multiclass multi-label ophthalmological disease detection using transfer learning based convolutional neural network,” Biomed. Signal Process. Control, vol. 66, p. 102329, 2021, doi: 10.1016/j.bspc.2020.10232

Bali, A., & Mansotra, V. (2021). Transfer learning-based one versus rest classifier for multiclass multi-label ophthalmological disease prediction. International Journal of Advanced Computer Science and Applications, 12(12).‏

Kumar, E. S., & Bindu, C. S. (2021). Mdcf: Multi-disease classification framework on fundus image using ensemble CNN models. Journal of Jilin University, 40(09), 35-45.‏

Hussein, S. M., Al-Sultan, A. Y., & Al-Saadi, E. H. (2021). Convolutional Neural Network in Classifying Three Stages of Age-Related Macula Degeneration. Journal of University of Babylon for Pure and Applied Sciences, 64-79.‏

N. Badah, A. Algefes, A. AlArjani, and R. Mokni, “Automatic eye disease detection using machine learning and deep learning models,” in Pervasive Computing and Social Networking: Proceedings of ICPCSN 2022, Springer, 2022, pp. 773–787.

Choudhry, Z. A., Shahid, H., Aziz, S., Naqvi, S. Z. H., & Khan, M. U. (2022). DarkNet-19 Based Intelligent Diagnostic System for Ocular Diseases. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 46(4), 959-970.‏

Wang, J., Yang, L., Huo, Z., He, W., & Luo, J. (2020). Multi-label classification of fundus images with an efficient net. IEEE Access, 8, 212499-212508.‏

‏[18] Chellaswamy, C., Geetha, T. S., Ramasubramanian, B., Abirami, R., Archana, B., & Bharathi, A. D. (2022, May). Optimized convolutional neural network based multiple eye disease detection and information sharing system. In 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1105-1113). IEEE

Hussein, S. M., Al-Saadi, E. H., & Al-Sultan, A. Y. (2022, November). Automatic classification of AMD in retinal images. In AIP Conference Proceedings (Vol. 2394, No. 1). AIP Publishing.‏

Vaiyapuri, T., Srinivasan, S., Sikkandar, M. Y., Balaji, T. S., Kadry, S., Meqdad, M. N., & Nam, Y. (2022). Intelligent Deep Learning Based Multi-Retinal Disease Diagnosis and Classification Framework. Computers, Materials & Continua, 73(3).‏

Abed, Z. N., & Al-Bakry, A. M. (2023). DIAGNOSE EYE DISEASES USING VARIOUS FEATURE EXTRACTION APPROACHES AND MACHINE LEARNING ALGORITHMS. Iraqi Journal for Computers and Informatics, 49(2), 44-52.‏

Sbai, A., Oukhouya, L., & Touil, A. (2023). Classification of Ocular Diseases Related to Diabetes Using Transfer Learning. International Journal of Online & Biomedical Engineering, 19(11).‏

Wang, K., Xu, C., Li, G., Zhang, Y., Zheng, Y., & Sun, C. (2023). Combining convolutional neural networks and self-attention for fundus diseases identification. Scientific Reports, 13(1), 76.‏

Mutawa, A. M., Alnajdi, S., & Sruthi, S. (2023). Transfer learning for diabetic retinopathy detection: a study of dataset combination and model performance. Applied Sciences, 13(9), 5685.‏

Berk, A., Ozturan, G., Delavari, P., Maberley, D., Yılmaz, Ö., & Oruc, I. (2023). Learning from small data: Classifying sex from retinal images via deep learning. Plos one, 18(8), e0289211.‏

Zhang, X., Zhao, J., Jin, R., Li, Y., Wu, H., Zhou, X., & Liu, J. (2023). Efficient Pyramid Channel Attention Network for Pathological Myopia Detection. arXiv preprint arXiv:2309.09196.‏

Sivaz, O., & Aykut, M. (2024). Combining EfficientNet with ML-Decoder classification head for multi-label retinal disease classification. Neural Computing and Applications, 1-11.‏

Zia, A., Mahum, R., Ahmad, N., Awais, M., & Alshamrani, A. M. (2024). Eye disease detection using deep learning with BAM attention module. Multimedia Tools and Applications, 83(20), 59061-59084.‏

Bhimavarapu, U., Chintalapudi, N., & Battineni, G. (2024). Automatic Detection and Classification of Hypertensive Retinopathy with Improved Convolution Neural Network and Improved SVM. Bioengineering, 11(1), 56.‏

Bhati, A., Gour, N., Khanna, P., & Ojha, A. (2023). Discriminative kernel convolution network for multi-label ophthalmic disease detection on imbalanced fundus image dataset. Computers in Biology and Medicine, 153, 106519.‏

Singh, R.; Kaur, R.; Kaur, N. Survey on Detection of various Retinal Manifestations of Eye. Res. Cell Int. J. Eng. Sci. 2016, 20, 177–283. 21.

Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208.

Kankanala, L.M.; Jayashree, G.; Balakrishnan, R.; Bhargava, A. Automated cataract grading using slit-lamp images with machine learning. J. Ophthalmol. 2021, 2021.

Yang, W.; Yu, J.; Jia, Y.; Qin, Y.; Zhang, L.; Liu, J. Deep learning-based automatic diagnosis of cataract on fundus images. IEEE Trans. Med. Imaging 2021, 40, 1888–1899.

Liew, G.; Xie, J.; Nguyen, H.; Keay, L.; Ikram, M.K.; McGeechan, K.; Klein, B.E.; Wang, J.J.; Mitchell, P.; Klaver, C.C.; et al. Hypertensive retinopathy and cardiovascular disease risk: 6 population-based cohorts meta-analysis. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 17, 200180. [CrossRef]

Khan, M.U.; Aslam, N.; Qaiser, I. Deep learning-based automatic diagnosis of refractive errors using retinal images. Biomed. Signal Process. Control 2020, 59, 101891.

Zhang, Y.; Liu, X.; Gao, X.; Zhang, L. Deep learning-based refractive error prediction from optical coherence tomography images. J. Biomed. Opt. 2021, 26, 026501.

ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., ... & Gabbay, R. A. (2023). Introduction and methodology: standards of care in diabetes—2023. Diabetes Care, 46(Supplement_1), S1-S4.‏

D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., no. February, pp. 3642–3649, 2012, doi: 10.1109/CVPR.2012.6248110.

K. Sundararajan and D. L. Woodard, “Deep learning for biometrics: A survey,” ACM Comput. Surv., vol. 51, no. 3, 2018, doi: 10.1145/3190618.

N. Akhtar and A. Mian, “Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey,” IEEE Access, vol. 6, no. AUGUST, pp. 14410–14430, 2018, doi: 10.1109/ACCESS.2018.2807385.

Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time series,” Handb. brain theory neural networks, vol. 3361, no. November, pp. 255–258, 1995, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.32.9297&rep=rep1&type=pdf.

J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, 2015, doi: 10.1016/j.neunet.2014.09.003.

P. Singh and Avinash Manure, Learn TensorFlow 2.0. 2020.

P. Kim, “Matlab deep learning,” With Mach. Learn. neural networks Artif. Intell., vol. 130, no. 21, 2017.

S. Tammina, “Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images,” Int. J. Sci. Res. Publ., vol. 9, no. 10, p. p9420, 2019, doi: 10.29322/ijsrp.9.10.2019.p9420.

C. D. Mccaig, “Electric Fields in Vertebrate Repair. Edited by R. B. Borgens, K. R. Robinson, J. W. Vanable and M. E. McGinnis. Pp. 310. (Alan R. Liss, New York, 1989.) $69.50 hardback. ISBN 0 8451 4274,” Exp. Physiol., vol. 75, no. 2, pp. 280–281, 1990, doi: 10.1113/expphysiol.1998.sp004170.

M. Z. Alom et al., “The history began from alexnet: A comprehensive survey on deep learning approaches,” arXiv Prepr. arXiv1803.01164, 2018.

Y. Bengio, Learning deep architectures for AI, vol. 2, no. 1. 2009.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.

Y. Yousfi, J. Butora, E. Khvedchenya, and J. Fridrich, “ImageNet Pre-trained CNNs for JPEG Steganalysis,” 2020 IEEE Int. Work. Inf. Forensics Secur. WIFS 2020, 2020, doi: 10.1109/WIFS49906.2020.9360897.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In The Conference on Empirical Methods in Natural Language Processing. 1724–1734.

S. Gollapudi, “Deep Learning for Computer Vision,” Learn Comput. Vis. Using OpenCV, pp. 51–69, 2019, doi 10.1007/978-1-4842-4261-2_3.

Ademujimi, T. T., Brundage, M. P., & Prabhu, V. V. (2017, September). A review of current machine learning techniques used in manufacturing diagnosis. In IFIP International Conference on Advances in Production Management Systems (pp. 407-415). Springer, Cham

Abd Elkarim, I. S., & Agbinya, J. (2019). A Review of Parallel Support Vector Machines (PSVMs) for Big Data classification. Australian Journal of Basic and Applied Sciences, 13(12), 61-71

Yang, P., Hwa Yang, Y., Zhou, B., Zomaya, Y., et al.: “A review of ensemble methods in bioinformatics”. Current Bioinformatics 5(4), 296–308 (2010)

“Comparison of Decision Tree methods for finding active objects” Yongheng Zhao and Yanxia Zhang, National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, Bejing 100012 China

Breiman, L., Random Forests, Machine Learning 45(1), 5-32, 2001.

Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random forests and decision trees. International Journal of Computer Science Issues (IJCSI), 9(5), 272.‏

Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20-28.‏

Gou, J., Du, L. Zhang, Y. & Xiong, T. (2012) "A New Distance-weighted k-nearest Neighbor Classifier", Journal of Information & Computational Science, 9(6): 1429-1436

Downloads

Published

2024-09-30

How to Cite

Abdul Latif Al-Hamzawi , W., & Mohsen Al-juboori , A. (2024). A Survey on Classifying Ocular Diseases Using Deep Learning and Machine Learning Techniques. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(3), Comp Page 72–83. https://doi.org/10.29304/jqcsm.2024.16.31644

Issue

Section

Computer Articles