D-Index of Certain Ladder Graphs
DOI:
https://doi.org/10.29304/jqcsm.2024.16.31668Keywords:
D-distance, Wiener D-index, Ladder graph, Semi-ladder graphAbstract
For any two distinct vertices , of a connected graph , the -distance , in which the minimum is taken over all paths, and is the length of the path . The -index of is defined as . In this paper, we obtained a formula for -index or Wiener -index , where is the ladder graph, . Also, we obtained the Wiener -index and Wiener index of semi-Ladder graph .
Downloads
References
H. J. Ahmed, A. M. Ali and G. A. MohammedSaleh, “Detour polynomials of some cog-special graphs”, Journal of Information & Optimization Sciences, Vol.2, No.43 (2022), pp.261-278, DOI: 10.1080/02522667.2021.1984562.
A. M. Ali and A. S. Aziz, “A relation between D-index and Wiener index for r-regular graphs”, International J. of Maths. And Math. Scs., Vol.2020(2020), 6 pages.
A. A. Ali and G. A. MohammedSaleh, “The detour polynomial of Ladder graphs”, Raf. J. Comp. Sci. and Maths, Vol.9, No.1(2012), pp.139-146.
A. A. Ali and W. A. Saeed, “Wiener polynomials of Steiner distance of graphs”, Journal of Applied Sciences, Vol.8, No.2 (2006), pp.64-71.
D. R. Babu and P. L. N. Varma, “D-distance in graphs”, Golden Research Thoughts, Vol.9, No.2 (2013), pp.1-6, DOI: 10.9780/2231-5063/292013/1696.
F. Buckley and F. Harary, “Distance in Graphs”, Addison-Wisely Publishing Company, (1990).
G. Chartrand, E. Escuardro and P. Zhang, “Detour distance in graphs”, J. Combin. Comput., Vol.53(2005), pp.75-94.
G. Chartrand; L. Lesniak and P. Zhang “Graphs & Digraphs, 6 Edition”, Chapman and Hall/CRC, (2015).
D. F. Hsu, “On container width and length in graphs, groups and networks, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, Vol.E77-A, No. 4 (1994), pp.668-680.
J. K. Kathiresan and G. Marimuthu, “Superior distance in graphs”, J. Combin. Comput., Vol.61 (2007), pp.73-80.
G. A. MohammedSaleh, “The Restricted Detour Radial Graphs”, Palestine Journal of Mathematics, Vol.I, No.12 (2023), pp.146-154.
G. A. MuhammedSaleh and P. H. Aziz, “Computation of Detour D-Index and Average Detour D-Distance of Specific Graphs”, Passer, Vol.6, No.1 (2024), pp. 230-236.
V. V. Rao and P. L. N. Varma, “Detour distance in graphs w.r.t. D-distance”, International Journal of Sciences and Research, Vol.7, No.73 (2017), pp.19-28.
B. E. Sagan, Y. N. Yeh and P. Zhang, “The Wiener polynomial of a graph”, International J. of Quantum Chemistry, Vol.60,No.5 (1990), pp.959-969.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gashaw Aziz Mohammed Saleh
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.