On e*-Singular-Hollow-Lifting Modules

Authors

  • Ali A. Kabban Department of Mathematics, University of Baghdad, College of Science. Baghdad, Iraq
  • Wasan Khalid Department of Mathematics, University of Baghdad, College of Science. Baghdad, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2024.16.31669

Keywords:

e*S-small submodules, 〖F I〗┬(e*S)-lifting modules, e*S-lifting modules, Hollow-lifting modules, e*S-hollow-lifting modules

Abstract

This research introduces the innovative notions in module X over a ring R. The first is called -lifting module, which is an inference of e*S-lifting. The second concept is e*S-hollow-lifting, which is a generalization of the e*S-lifting module. We will illustrate a few of these concept attributes.

Downloads

Download data is not yet available.

References

F. Kasch, Modules and Rings. 1982. doi: 10.1017/cbo9780511529962.

N. S. A. M. K. Ahmmed, “Pr-small R-submodules of modules and Pr-radicals.,” J. Interdiscip. Math., vol. 26, no. 7, pp. 1511–1516, 2023.

H. R. Baanoon and W. Khalid, “e∗-Essential submodule,” Eur. J. Pure Appl. Math., vol. 15, no. 1, pp. 224–228, 2022, doi: 10.29020/nybg.ejpam.v15i1.4215.

K. Goodearl, Ring Theory: Nonsingular Rings and Modules. in Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1976. [Online]. Available: https://books.google.iq/books?id=5FKzb7LZMvAC

W. Khalid, A. Kabban, “On e*_Singular Small Submodules,” Accept. Publ. a J. AIP Conf. Proceeding, 2025.

W. Khalid, A. Kabban, “e*-Singular–Hollow Modules and e*-Singular–Coclosed Submodules,” Accept. Publ. Iraqi J. Sci., Vol. 66, No. 6, 2025.

J. Clark, C. Lomp, and R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory. 2006. doi: 10.1007/3-7643-7573-6.

E. M. Kamil and W. Khalid, “On µ-lifting modules,” Iraqi J. Sci., vol. 60, no. 2, pp. 371–380, 2019, doi: 10.24996/ijs.2019.60.2.17.

W. Khalid, A. Kabban, “On e*-Singular–Supplement Submodules,” Accept. Publ. Iraqi J. Sci., Vol. 66, No. 10, 2025.

T. KOŞAN and D. K. TÜTÜNCÜ, “H-Supplemented Duo Modules,” J. Algebr. Its Appl., vol. 06, no. 06, pp. 965–971, 2007, doi: 10.1142/s0219498807002582.

N. Orhan, D. K. Tütüncü, and R. Tribak, “On hollow-lifting modules,” Taiwan. J. Math., vol. 11, no. 2, pp. 545–568, 2007, doi: 10.11650/twjm/1500404708.

T. KOŞAN, “the Lifting Condition and Fully Invariant Submodules,” vol. 7, no. 1, pp. 99–106, 2005.

D. Keskin, “Discrete and quasi-discrete modules,” Commun. Algebr., vol. 30, no. 11, pp. 5273–5282, 2002, doi: 10.1081/AGB-120015652.

G. F. Birkenmeier, B. J. Müller, and S. T. Rizvi, “Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand,” Commun. Algebr., vol. 30, no. 3, pp. 1395–1415, Jan. 2002, doi: 10.1080/00927870209342387.

Y. Talebi and T. Amoozegar, “Strongly FI-Lifting Modules,” Int. Electron. J. Algebr., vol. 3, no. July 2007, pp. 75–82, 2008.

Downloads

Published

2024-09-30

How to Cite

A. Kabban, A., & Khalid, W. (2024). On e*-Singular-Hollow-Lifting Modules. Journal of Al-Qadisiyah for Computer Science and Mathematics, 16(3), Math. 81–90. https://doi.org/10.29304/jqcsm.2024.16.31669

Issue

Section

Math Articles