البرمجة الضبابية وتحسين أداء الخوارزميات في بيئة متعددة المتغيرات الرتيبة
DOI:
https://doi.org/10.29304/jqcsm.2024.16.31673Keywords:
Fuzzy, Multivariate, Algorithms, MonotonicAbstract
In many situations of daily life, when we start statistical analysis, we encounter data that we suffer from inaccuracy in its measurement, either due to observation or measurement errors or the lack of appropriate conditions for collecting this data, such as failure times of machines, equipment, electrical devices, medical, engineering and economic data. In many medical studies, the researcher may have a strong conviction that the regression function used to describe the relationship between two variables has a certain form or formula that can be characterized by certain ordering restrictions such as monotonicity; monotonic regression has important applications in statistics, operations research, and signal processing, and these applications are often characterized by a very large value of n. For such large-scale problems, it is of great practical importance to develop algorithms whose complexity does not increase rapidly with increasing n. It is a nonparametric regression technique that preserves order. In this thesis, the proposed fuzzy autoregressive monotonic method, fuzzy autoregressive monotonic least squares (FILSR), fuzzy autoregressive M estimator (FIM), and fuzzy autoregressive maximum likelihood estimator (FIML) were proposed. The best method for estimating the autoregressive function is the fuzzy autoregressive maximum likelihood method with a mean square error of (0.51455).
Downloads
References
الغنام, محمد طه و الصباغ , هبة علي , "دراسة في المتغيرات المضببة والأنحدارالمتعدد المضبب" , (٢٠٠٩ (, جامعة تكريت - كلية الإدارة والاقتصاد , مجلة تكريت للعلوم الإدارية والاقتصادية / المجلد - ٥ / العدد – ١٤, الصفحات 166-180.
نصر الله , مهدي وهاب, علي , بشار خالد , "طريقة بيز لتقدير المعولية الضبابية لتوزيع فريجت باستعمال المحاكاة.
ثانياً : المصادر الأجنبية:
Lin, L. and Dunson, D. B. (2014). Bayesian monotone regression using Gaussian process projection. Biometrika, 101(2):303–317.
Tamalika , Chaira , (2019), "Fuzzy Set and Its Extension -The Intuitionistic Fuzzy Set", John Wiley & Sons, Inc.
Kwang H. Lee, (2004) , " First Course on Fuzzy Theory and Applications" , ISSN 16-15-3871, ISBN 3-540-22988-4 Springer ,Berlin Heidelberg NewYork, ppt:1-20
Neamah, Mahdi Wahhab, Ali , Bashar Khalid, (2020), " Fuzzy reliability estimation for Frechet distribution by using simulation", Periodicals of Engineering and Natural Sciences ISSN 2303-4521 Vol. 8, No. 2, June 2020, pp.632-646
Zhang, C.-H. (2002). Risk bounds in isotonic regression. The Annals of Statistics, 30(2):528 –555.
Chatterjee, S., Guntuboyina, A., and Sen, B. (2018). On matrix estimation under monotonicity
constraints. Bernoulli, 24(2):1072–1100.
Han, Q., Wang, T., Chatterjee, S., and Samworth, R. J. (2019). Isotonic regression in generaldimensions. The Annals of Statistics, 47(5):2440–2471.
Rohrbeck, Christian ; A. Costain, Deborah , (2023), " A joint estimation approach for monotonic regression functions in general dimensions", arXiv:2305.17711v1 [stat.ME] 28 May 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 علي محمد عبيد السكماني, مهدي وهاب نصر الله
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.