Approximate of fuzzy homomorphism and fuzzy derivation on Banach Algebra
DOI:
https://doi.org/10.29304/jqcsm.2025.17.12009Keywords:
stability, fuzzy normed algebra space (F. N. A.spaces), fuzzy Banach algebra space (F. B. A. spaces), homomorphism, derivationAbstract
In this paper, we proved the approximation of homomorphism and derivation related to the following functional equation:
On Fuzzy Banach Algebras space by means of direct and fixed point methods.
Downloads
References
SH. Al-shybani, Fuzzy stability of sextic functional equation in normed spaces (direct method). Italian journal of pure and applied mathematics, 46 (2021), 984-988.
SH. AL-shybani, S. M. Vaezpour, R. Saadati, Generalized Hyers-Ulam Stability of the Sextic functional equation in random normed spaces, Journal of Computational Analysis and Applications,24( 2018)370-381.
T. Aoki, On the stability of linear transformation in Banach space. J. Math. Soc. Japan, 2 (1950), 64-66
T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003) 687–705.
T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005) 513–547.
J. Boutarfass, I. EL-Fassi, L. Oukhtite, A new approach to approximate the solution of two general functional equations in quasi-Banach spaces, J. Bulletin des Sci. Math. 199(2025), 103564.
H. Dutta, V. Govindan, C. Park, R. Vadivel, Stability of Some Advanced Functional Equations in Various Spaces. Studies in Systems, Decision and Control, Springer, Poland, 2014.
D. H. Hyers, On Stability of linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224
A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154.
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
J. R. Lee, Fuzzy homomorphisms and Fuzzy Derivations, Korean J. Math. 22(2014), 659-670.
J. R. Lee, D. Y. Shin, Stability of the Jensen Functional equation in Fuzzy Banach algebras, Korean J. Math. 20(2012), 91-106.
A. K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), 720-729.
A. K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), 730-738
Th. M. Rassias, On the stability of the linear mapping in Banach space. Proc. Amer. Math. Soc., 72(1978), 297-300.
S. M. Ulam. A collection of Mathematical problem. Interscience Publ. New York, (1960).
L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965),338-353.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mohammed Salih Sabah, Shaymaa Alshybani

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.