Approximate of fuzzy homomorphism and fuzzy derivation on Banach Algebra

Authors

  • Mohammed Salih Sabah Department of Mathematics, College of Science University of Al-Qadisiyah, Diwaniyah, Iraq
  • Shaymaa Alshybani Department of Mathematics, College of Science University of Al-Qadisiyah, Diwaniyah, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2025.17.12009

Keywords:

stability, fuzzy normed algebra space (F. N. A.spaces), fuzzy Banach algebra space (F. B. A. spaces), homomorphism, derivation

Abstract

In this paper, we proved the approximation of homomorphism and derivation related to the following functional equation:

   

 On Fuzzy Banach Algebras space by means of direct and fixed point methods.

Downloads

Download data is not yet available.

References

SH. Al-shybani, Fuzzy stability of sextic functional equation in normed spaces (direct method). Italian journal of pure and applied mathematics, 46 (2021), 984-988.

SH. AL-shybani, S. M. Vaezpour, R. Saadati, Generalized Hyers-Ulam Stability of the Sextic functional equation in random normed spaces, Journal of Computational Analysis and Applications,24( 2018)370-381.

T. Aoki, On the stability of linear transformation in Banach space. J. Math. Soc. Japan, 2 (1950), 64-66

T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003) 687–705.

T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005) 513–547.

J. Boutarfass, I. EL-Fassi, L. Oukhtite, A new approach to approximate the solution of two general functional equations in quasi-Banach spaces, J. Bulletin des Sci. Math. 199(2025), 103564.

H. Dutta, V. Govindan, C. Park, R. Vadivel, Stability of Some Advanced Functional Equations in Various Spaces. Studies in Systems, Decision and Control, Springer, Poland, 2014.

D. H. Hyers, On Stability of linear functional equation. Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224

A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154.

I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.

J. R. Lee, Fuzzy homomorphisms and Fuzzy Derivations, Korean J. Math. 22(2014), 659-670.

J. R. Lee, D. Y. Shin, Stability of the Jensen Functional equation in Fuzzy Banach algebras, Korean J. Math. 20(2012), 91-106.

A. K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), 720-729.

A. K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), 730-738

Th. M. Rassias, On the stability of the linear mapping in Banach space. Proc. Amer. Math. Soc., 72(1978), 297-300.

S. M. Ulam. A collection of Mathematical problem. Interscience Publ. New York, (1960).

L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965),338-353.

Downloads

Published

2025-03-30

How to Cite

Salih Sabah, M., & Alshybani, S. (2025). Approximate of fuzzy homomorphism and fuzzy derivation on Banach Algebra. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(1), Math 50–60. https://doi.org/10.29304/jqcsm.2025.17.12009

Issue

Section

Math Articles