Incremental Deep Learning Application for Network Traffic Management
DOI:
https://doi.org/10.29304/jqcsm.2025.17.22190Keywords:
5G Networks, Deep Learning, Incremental LearningAbstract
One of the characteristics of 5G networks is their ability to create multiple virtual networks across a shared infrastructure, with resources dynamically allocated to meet the needs of different applications. However, managing these partitions in real-time remains a challenge due to their dynamic and heterogeneous nature. To overcome this challenge, this paper proposes an incremental learning model (ILM) that gradually learns from changing network data, seeking to improve the accuracy of partition selection. Unlike traditional models trained from static datasets, the ILM continuously updates its knowledge without the need to retrain from scratch. The results demonstrate the effectiveness of the proposed method, with an accuracy rate of 94.7%, while also demonstrating the ability to train using new traffic patterns and environments.
Downloads
References
S. Zeb, A. Mahmood, S. A. Hassan, Md. J. Piran, M. Gidlund, and M. Guizani, “Industrial digital twins at the nexus of NextG wireless networks and computational intelligence: A survey,” Journal of Network and Computer Applications, vol. 200, p. 103309, Jan. 2022, doi: 10.1016/j.jnca.2021.103309.
P. Kumar and N. Sumit, “Review Paper on Development of Mobile Wireless Technology,” Journal of Physics Conference Series, vol. 1979, no. 1, p. 012024, Aug. 2021, doi: 10.1088/1742-6596/1979/1/012024.
S. Sharma, M. Deivakani, K. S. Reddy, A. K. Gnanasekar, and G. Aparna, “Key enabling technologies of 5G wireless mobile communication,” Journal of Physics Conference Series, vol. 1817, no. 1, p. 012003, Mar. 2021, doi: 10.1088/1742-6596/1817/1/012003.
M. A. Kamal, H. W. Raza, M. Alam, M. Alam, M. M. Su’ud, and A. Bakar Sajak, “Resource Allocation Schemes for 5G Network: A Systematic Review,” Sensors, vol. 21, no. 19, p. 6588, Oct. 2021, doi: 10.3390/S21196588.
I. Al-Surmi, A. M. Mansoor, and A. A. Ahmed, “Toward 5G High Utilizations: A survey on OFDMA-based Resource Allocation Techniques in Next-Generation Broadband Wireless Access Networks,” vol. 6, no. 18, p. 168713, Feb. 2021, doi: 10.4108/EAI.10-2-2021.168713.
W. Ejaz, S. K. Sharma, S. Saadat, M. Naeem, A. Anpalagan, and N. A. Chughtai, “A comprehensive survey on resource allocation for CRAN in 5G and beyond networks,” Journal of Network and Computer Applications, vol. 160, p. 102638, Jun. 2020, doi: 10.1016/J.JNCA.2020.102638.
“5G Communication Systems: Network Slicing and Virtual Private Network Architecture,” ITM web of conferences, vol. 54, p. 02001, Jan. 2023, doi: 10.1051/itmconf/20235402001.
P. Subedi, A. Alsadoon, P. W. C. Prasad, S. Rehman, N. Giweli, M. Imran, and S. Arif, "Network slicing: A next generation 5G perspective," EURASIP Journal on Wireless Communications and Networking, vol. 2021, no. 1, pp. 1–xx, Jun. 2021, doi: 10.1186/s13638-021-01983-7.
F. Song, J. Li, C. Ma, Y. Zhang, L. Shi and D. N. K. Jayakody, "Dynamic Virtual Resource Allocation for 5G and Beyond Network Slicing," in IEEE Open Journal of Vehicular Technology, vol. 1, pp. 215-226, 2020, doi: 10.1109/OJVT.2020.2990072
B. Han and H. D. Schotten, "Machine Learning for Network Slicing Resource Management: A Comprehensive Survey," ZTE Communications, vol. 68, no. 4, 2020. [Online]. Available: arXiv:2001.07974 [cs.NI]. doi: 10.48550/arXiv.2001.07974.
M. Fahim and N. Elshennawy, "Efficient Resource Allocation of Latency Aware Slices for 5G Networks," Journal of Engineering Research, vol. 7, Jan. 27, 2023. doi: 10.21608/erjeng.2023.182438.1132.
E. A. Mazied, L. Liu, and S. F. Midkiff, "Towards Intelligent RAN Slicing for B5G: Opportunities and Challenges," arXiv preprint arXiv:2103.00227, Feb. 27, 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2103.00227.
H. O. Otieno, B. Malila, and J. Mwangama, "Deployment and Management of Intelligent End-to-End Network Slicing in 5G and Beyond 5G Networks—A Systematic Review," IEEE Access, vol. 12, pp. xx–xx, 2024.
M. Malkoc and H. A. Kholidy, "5G Network Slicing: Analysis of Multiple Machine Learning Classifiers," arXiv preprint arXiv:2310.01747, Oct. 3, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.01747.
F. Xie, D. Wei, and Z. Wang, "Traffic Analysis for 5G Network Slice Based on Machine Learning," EURASIP Journal on Wireless Communications and Networking, vol. 2021, no. 1, 2021. [Online]. Available: https://doi.org/10.1186/s13638-021-01983-7.
L. A. Garrido, A. Dalgkitsis, K. Ramantas, A. Ksentini, and C. Verikoukis, "Resource Demand Prediction for Network Slices in 5G Using ML Enhanced With Network Models," IEEE Transactions on Vehicular Technology, vol. 73, no. 8, pp. 11848–11861, Aug. 2024. doi: 10.1109/TVT.2024.3373490.
J. Stigenberg, V. Saxena, S. Tayamon, and E. Ghadimi, "QoS-Aware Scheduling in New Radio Using Deep Reinforcement Learning," arXiv preprint arXiv:2107.06570, Jul. 14, 2021. [Online]. Available: https://doi.org/10.48550/arXiv.2107.06570.
J. Jiang, Y. Qiu, Y. Su, and J. Zhou, "Low-Latency Resource Elements Scheduling Based on Deep Reinforcement Learning Model for UAV Video in 5G Network," Journal of Physics: Conference Series, vol. 1827, no. 1, p. 012071, Jan. 2021. doi: 10.1088/1742-6596/1827/1/012071.
M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi, and C. S. Hong, "Intelligent Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond: A Deep Reinforcement Learning Based Approach," IEEE Transactions on Wireless Communications, vol. 20, no. 7, pp. 4585–4600, Jul. 2021. doi: 10.1109/TWC.2021.3060514.
N. Salhab, R. Langar, and R. Rahim, "5G Network Slices Resource Orchestration Using Machine Learning Techniques," Computer Networks, vol. 188, p. 107829, Apr. 7, 2021. doi: 10.1016/j.comnet.2021.107829.
AR Alkhafaji and FS Al-Turaihi, “Multi-layer network slicing and resource allocation scheme for traffic-aware QoS ensured SDN/NFV-5G network,” in 2021 1st Babylon International Conference on Information Technology and Science (BICITS), pp. 327-331, April. 2021.
N. Salhab, R. Langar, and R. Rahim, “5G network slices resource orchestration using machine learning techniques,” Computer Networks, vol. 188, p. 107829, 2021.
A. A. Abdellatif, A. Mohamed, A. Erbad, and M. Guizani, “Dynamic network slicing and resource allocation for 5G-and-beyond networks,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 262-267, April. 2022.
N. He, S. Yang, F. Li, and X. Chen, “Intimacy-based resource allocation for network slicing in 5G via deep reinforcement learning,” IEEE Network, vol. 35, no. 6, pp. 111-118, 2022.
T. Mumtaz, S. Muhammad, M. I. Aslam, and I. Ahmed, “Inter-slice resource management for 5G radio access network using Markov decision process,” Telecommunication Systems, vol. 79, no. 4, pp. 541-557, 2022.
X. Gao, J. Wang, and M. Zhou, “The research of resource allocation method based on GCN-LSTM in 5G network,” IEEE Communications Letters, vol. 27, no. 3, pp. 926-930, 2022.
D. Yan, B. K. Ng, W. Ke, and CT Lam, “Deep reinforcement learning based resource allocation for network slicing with massive MIMO,” IEEE Access, vol. 11, pp. 75899-75911, 2023.
Y. Xie et al., “Resource allocation for network slicing in dynamic multi-tenant networks: A deep reinforcement learning approach,” Computer Communications, vol. 195, pp. 476-487, 2022.
R. Singh et al., “Analysis of network slicing for management of 5G networks using machine learning techniques,” Wireless Communications and Mobile Computing, vol. 2022, p. 9169568, 2022.
A. A. Abdellatif et al., “Intelligent-slicing: An AI-assisted network slicing framework for 5G-and-beyond networks,” IEEE Transactions on Network and Service Management, vol. 20, no. 2, pp. 1024-1039, 2023.
Anurag Thantharate, Cory Beard, Rahul Paropkari, Vijay Walunj, "CRAWDAD umkc/networkslicing5g", IEEE Dataport, December 8, 2022, doi:10.15783/k0w0-js18.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Samah Fakhri Aziz

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.