Adjacency matrices of Ideal based-zero divisor graphs

Authors

  • Bayan O. Muhammad Department of Mathematics, College of Science, University of Sulaimani, Iraq, Kurdistan Region.
  • Payman M. Hamaali Department of Mathematics, College of Science, University of Sulaimani, Iraq, Kurdistan Region,

DOI:

https://doi.org/10.29304/jqcsm.2025.17.22206

Keywords:

Adjacency Matrix, Eigenvalue, Ideal based-zero Divisor graph, Betti number

Abstract

In this article, we investigate the adjacency matrix and the eigenvalues of the Ideal-based-zerodivisor graph  for a given ideal  of the finite commutative ring . Additionally, we define the notion of projection graph of the Idealbased-zerodivisor graph  as a graph with vertices  for all  and edge connecting  with  if every element in  is connected with . We consider the ring  for some special cases of . If  where  (where ) and  is non-prime ideal of , then we determined the determinant of the adjacency matrices    of the Idealbased-zerodivisor graph  of  and satisfies   We showed that in the Ideal-based-zerodivisor graph , where ,  is not prime ideal of  and not zero ideal of , then  and whenever  then .Finally, we investigate some basic properties of the edge ideal of the graph . We calculated the graph's depth, girth, diameter, Betti number, regularity, and projective dimension.

Downloads

Download data is not yet available.

References

Beck, I. (1988). Coloring of commutative rings. Journal of algebra, 116(1), 208-226.

Anderson, D. D., and Naseer, M. (1993). Beck′ s coloring of a commutative ring. Journal of algebra, 159(2), 500-514.

Anderson, D. F. and Livingston, P. S. (1999). The Zero divisor Graph of a Commutative Ring. Journal of algebra, 217, 434-447.

Anderson, D. F., and Badawi, A. (2008). On the Zero divisor graph of a ring. Communications in Algebra, 36(8), 3073-3092.

Redmond, S. P. (2003). An ideal-based Zero divisor graph of a commutative ring. Communications in Algebra, 31(9), 4425-4443.

S. Pirzada , S.A. Rather, On the LS of edge ideals of some zero divisor graphs, COMMUNICATIONS IN ALGEBRA, vol. 51, no. 2, pp. 620–632, (2023).

Foldes, S.,Hammer, P. L. (1977). Split Graphs. Proceedings of the 8th South-Eastern Conference on Combinatorics, Graph Theory and Computing, 311–315.

Herzog, J., Hibi, T., Herzog, J., and Hibi, T. (2011). Monomial ideals (pp. 3-22). Springer London.

Bajaj, S., and Panigrahi, P. (2022). On the adjacency spectrum of zero divisor graph of ring ℤ n. Journal of Algebra and Its Applications, 21(10), 2250197.

Magi, P. M., Jose, S. M., and Kishore, A. (2020). Adjacency matrix and eigenvalues of the zero divisor graph Γ (Zn). J. Math. Comput. Sci., 10(4), 1285-1297.

I. Peeva ,Graded syzygies, Springer-Verlag, London. DOI: 10.1007/978-0-85729-177-6. ISBN 978-0-85729-176-9, (2010).

Winter, P. A., Jessop, C. L., and Adewusi, F. J. (2015). The complete graph: eigenvalues, trigonometrical unit-equations with associated t-complete-eigen sequences, ratios, sums and diagrams. Journal of Mathematics and System Science.

Bapat, R. B., and Roy, S. (2014). On the adjacency matrix of a block graph. Linear and Multilinear Algebra, 62(3), 406-418.

Martsinkovsky, A. (2005). On the Auslander-Buchsbaum-type formulas. Preprint.

Park, M. J., Kim, E. S., and Lim, J. W. (2020). The Zero-divisor Graph of ℤ n [X]. Kyungpook Mathematical Journal, 60(4), 723-729.

Downloads

Published

2025-06-30

How to Cite

O. Muhammad, B., & M. Hamaali, P. (2025). Adjacency matrices of Ideal based-zero divisor graphs. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(2), Math. 52–65. https://doi.org/10.29304/jqcsm.2025.17.22206

Issue

Section

Math Articles