On a Generalization of IF-Rings
DOI:
https://doi.org/10.29304/jqcsm.2025.17.22210Keywords:
Flat module, Injective module, IF-ring, Reg-flat module, IREGF-ringAbstract
In this paper, we present and investigate the notion of a right IREGF-ring as a proper generalization of the concept of a right IF-ring. A ring is defined as a right IREGF-ring if every injective right -module is Reg-flat. We provide numerous characterizations and explore various properties of right IREGF-rings.
Downloads
References
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.
R. R. Colby, Rings which have flat injective modules, J. Algebra, 35(1975), pp. 239˗252.
J. Dauns, Modules and rings, Cambridge University Press, Cambridge, 1994.
D. S. Dummit and R. M. Focte, Abstract algebra, 3rdn, John Viley and sons Inc, New Jersey, 2004.
D. J. Fieldhouse, Regular rings and modules, J. the Australian Math. Soc., 13(4), (1972), pp. 477-491.
F. Kasch, Modules and rings, Academic Press, New York, 1982.
J. Lambek, A module is flat if and only if its character module is injective, Canad. Math. Bull., 7(2) (1964), pp. 237˗243.
A. J. Majid and A. R. Mehdi, Reg-N-flat modules, International Journal of Mathematics and Computer Science, 20(2) (2025), pp. 619-624.
C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc., 26(4) (1970), pp. 561˗566.
J. J. Rotman, An introduction to homological algebra, Springer, 2009.
B. Stensto ̈m, Rings of quotients, Springer, New York, 1975.
R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, 1991.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ali Jawad Majid, Akeel Ramadan Mehdi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.