On a Generalization of IF-Rings

Authors

  • Ali Jawad Majid Mathematical Department, Education College, University of Al-Qadisiyah, Al-Diwaniya City, Iraq.
  • Akeel Ramadan Mehdi Mathematical Department, Education College, University of Al-Qadisiyah, Al-Diwaniya City, Iraq.

DOI:

https://doi.org/10.29304/jqcsm.2025.17.22210

Keywords:

Flat module, Injective module, IF-ring, Reg-flat module, IREGF-ring

Abstract

In this paper, we present and investigate the notion of a right IREGF-ring as a proper generalization of the concept of a right IF-ring. A ring   is defined as a right IREGF-ring if every injective right  -module is Reg-flat. We provide numerous characterizations and explore various properties of right IREGF-rings.

Downloads

Download data is not yet available.

References

F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.

R. R. Colby, Rings which have flat injective modules, J. Algebra, 35(1975), pp. 239˗252.

J. Dauns, Modules and rings, Cambridge University Press, Cambridge, 1994.

D. S. Dummit and R. M. Focte, Abstract algebra, 3rdn, John Viley and sons Inc, New Jersey, 2004.

D. J. Fieldhouse, Regular rings and modules, J. the Australian Math. Soc., 13(4), (1972), pp. 477-491.

F. Kasch, Modules and rings, Academic Press, New York, 1982.

J. Lambek, A module is flat if and only if its character module is injective, Canad. Math. Bull., 7(2) (1964), pp. 237˗243.

A. J. Majid and A. R. Mehdi, Reg-N-flat modules, International Journal of Mathematics and Computer Science, 20(2) (2025), pp. 619-624.

C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc., 26(4) (1970), pp. 561˗566.

J. J. Rotman, An introduction to homological algebra, Springer, 2009.

B. Stensto ̈m, Rings of quotients, Springer, New York, 1975.

R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, 1991.

Downloads

Published

2025-06-30

How to Cite

Jawad Majid, A., & Ramadan Mehdi, A. (2025). On a Generalization of IF-Rings. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(2), Math. 75–79. https://doi.org/10.29304/jqcsm.2025.17.22210

Issue

Section

Math Articles