Binomial Transform Technique for Solving Second Linear Difference Equations

Authors

  • Asmaa S. Jasim Technical Institute of Al-Musayyib, Al-Furat Al-Awsat Technical University (ATU), Iraq.

DOI:

https://doi.org/10.29304/jqcsm.2025.17.22216

Keywords:

Difference Equations, Second Linear Difference Equations, Binomial Transform

Abstract

Our main goal in this research is to study the binomial transformation to solve second-order linear difference equations. It has been concluded that the binomial transformation method is an easy and simple way to solve second-order difference equations after the initial conditions are met.

The research recommended using the binomial transformation to solve partial difference equations.

Downloads

Download data is not yet available.

References

. Eman A. Hussain and Asmaa S. Jasim (Binomial Transform Technique For Solving Linear Difference Equations) Journal of Al-Qadisiyah for Computer Science and Mathematics Vol. 13(2) 2021 , pp Math . 193–202

.Ş.Şi¸sman and M. Merdan, On the solution of random linear difference equations withLaplace transform method, Math. Meth. Appl. Sci. 46 (2023), 18258–18273. DOI 10.1002/mma.9556.ŞIŞMAN and MERDAN 18273.

. Bernstein, M. and Sloane, N. J. A. "Some Canonical Sequences of Integers." Linear Algebra Appl. 226/228, 57-72, 1995.

. Khristo N. Boyadzhiev, Binomial transform and the backward difference. Adv. Appl. Discrete Math., 13(1)(2014),43-63.

. Khristo N. Boyadzhiev, Binomial transform of products, Ars Comb., 126 (2016), 415 434.

. K. W. Chen, Identities from the binomial transform, J. Number Theory 124(2007), 142-150.

. Yan-Ping Mu, Symmetric recurrence relations and binomial transforms, J. Number Theory, 133 (2013) 3127-3137.

. Mogens E. Larsen and Peter J. Larcombe, Some binomial coefficient identities of specific and general type, Util. Math., 74 (2007), 33-53.

. N. YÄ´slmaz, N. Taskara, Binomial transforms of the Padovan and Perrinnumbers, Journal of Abstract and Applied Mathematics, (2013) ArticleID941673.

. H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32(5), 1994, 412-415.

. Boyadzhiev, K. (2018). Notes on the Binomial Transform: Theory and Table with Appendix on Stirling Transform, World Scientific, Singapore.

. Jensen, A. "Lecture Notes on Difference Equations" DK- 9220, Version1, July 18, 2011.

. Jerri, Abdul J.," Linear Difference Equations With Discrete Transform Methods", Kluwer Academic Publishers, 1996.

. Miclcnes,R.E."Difference Equations. Theory Applications and advanced Topics", 3^ed ed. Champam & Hall , 2015.

. Kelley W.G,& Pcterson A.C." Difference Equations. An Introduction with Applications", 2^ed ed .Academic Press , 2001.

. Elaydi, S.N. "An introduction to difference equations" , Springer, 2^ed ed . 1999 .

. L. Brand, A sequence defined by a difference equation, Amer. Math. Monthly 62 (1955), no. 7, 489–492. https://doi.org/https://doi.org/10.2307/2307362

. S. N. Elaydi, An Introduction to Difference Equations, second edition, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1999. https://doi.org/10.3934/ dcdss.2015.8.1055

. K. S. Berenhaut and S. Stević, The behaviour of the positive solutions of the difference equation x_n=A+( x_n-2 x_(n-1)) p , J. Difference Equ. Appl. 12 (2006), no. 9, 909–918. https://doi.org/10.1155/2008/653243

. Miclcnes,R.E."Difference Equations. Theory Applications and advanced Topics",3nd ed. Champam & Hall , 2015.

. X. I. Kartala, N. Englezos, and A. N. Yannacopoulos, Future expectations modeling, random coefficient forward–backward stochastic differ-ential equations, and stochastic viscosity solutions, Math. Oper. Res. 45 (2020), 1–31.

. S. Al-Ahmad, M. Mamat, and R. AlAhmad, Finding differential transform using difference equations, IAENG Int J Appl Math 50 (2020),127–132

. R. Al Ahmad, Finding Laplace transform using difference equations, J. Math. Computer Sci. 23 (2021), no. 2021, 75–79.

Downloads

Published

2025-06-30

How to Cite

S. Jasim, A. (2025). Binomial Transform Technique for Solving Second Linear Difference Equations. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(2), Math. 146–152. https://doi.org/10.29304/jqcsm.2025.17.22216

Issue

Section

Math Articles