Bounds on coefficients for a class of Analytic functions Defined by Quasi-Subordination
DOI:
https://doi.org/10.29304/jqcsm.2025.17.22224Keywords:
Analytic functions, Univalent function, Subordination, Quasi-subordination, Coefficient BoundsAbstract
This study delineates particular subclasses of analytic univalent functions linked to quasi-subordination and establishes results including coefficient bounds and Fekete-Szego problem for functions inside these subclasses.
Downloads
References
W. G. Atshan and S. J. Abd, Third Order Sandwich Results For Analytic Multivalent Function Defined by Integral Operator, Advances in Mechanics 10(1) (2022), 1198-1217.
W. G. Atshan and R. A. Hiress, Coefficient estimates for subclasses of bi-univalent functions, Journal of Al- Al-Qadisiyah for Computer Science and Mathematics, 10 (3) (2018), 20-26.
Ş. Altınkaya, S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions. TWMS Journal of Pure and Applied Mathematics, (6) (2015), 180-185.
R. Bucur, L. Andrei and D. Breaz, Coefficient bounds and Fekete-Szego problem for a class of analytic functions defined by using a new differential operator, Applied Mathematical Sciences, Vol. 9, no. 25-28, (2015), PP.1355–1368.
P. Duren, “Subordination, in Complex Analysis, Vol. 599 of Lecture Notes in Mathematics, pp. 22–29, Springer, Berlin, Germany, (1977).
M. El-Ityan, Q. A. Shakir, T. Al-Hawary, R. Buti, D. Breaz, L.-I. Cotîrlă. “On the Third Hankel Determinant of a Certain Subclass of Bi-Univalent Functions Defined by (p,q)-Derivative Operator,” Mathematics 2025, 13, 1269.
M. Fekete and G. Szego, Eine Bemerkung Uber UNGerade Schlichte Funktionen, Journal of the London Mathematical Society, (1933), PP. 85–89.
A. R. S. Juma and M. H. Saloomi, Coefficient bounds for certain subclass of analytic functions defined by quasi-subordinations, Iraqi J. Sci, 59 (2) (2018),1115-1121.
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969) 8-12.
S. Y. Lee, Quasi-subordination functions, and Coefficient conjectures, Journal of the Korean Mathematical Society, 12 (1) (1975), 43-50.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Z. Li, F. Ren, L. Yang and S. Zhang, eds., Int. Press (1994), 157-169.
M. S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. Soc., 76 (1970), 1-9.
Q. A. Shakir, A. S. Tayyah, D. Breaz, L.-I. Cotîrlă, E. Rapeanu, and F. M. Sakar, “Upper bounds of the third Hankel determinant for bi-univalent functions in crescent-shaped domains,” Symmetry, vol. 16, p. 1281, 2024.
Q. A. Shakir and W. G. Atshan, “On third Hankel determinant for certain subclass of bi-univalent functions,” Symmetry, vol. 16, p. 239, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sarah Jalawi Abd, Meena Fouad Abduljabbar

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.