Cartesian Product of Ultrasemiprime Algebras
DOI:
https://doi.org/10.29304/jqcsm.2025.17.22227Keywords:
Cartesian product, Normed algebra, Ultrasemiprime algebras, Direct product of algebrasAbstract
proven to be ultrasemiprime algebras using the max norm. Since all norms are equivalent in finite dimensions, normed finite-dimensional algebras will be ultrasemiprime under any norm. However, is this true for infinite-dimensional algebras? A study addressed the direct sum of ultrasemiprime algebras using the max norm and another considered the sum of norms. In this research, we proved that the direct sum of ultrasemiprime algebras is ultrasemiprime under different norms.
Downloads
References
Mathieu, M. (1991). The symmetric algebra of quotients of an ultraprime Banach algebra. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 50(1), 75–87. https://doi.org/10.1017/S1446788700032560
Ara, P., & Mathieu, M. (1991). On Ultraprime Banach Algebras with Non-Zero Socle. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 91A(1), 89–98. http://www.jstor.org/stable/20489379
García, M. C., & Palacios, A. R. (1992). Nonassociative ultraprime normed algebras. The Quarterly Journal of Mathematics, 43(1), 1-7. https://doi.org/10.1093/qmath/43.1.1
Al-Neima, M., Balo, R., & Abdalrazaq, N. (2023). The Equivalence Between Ultrasemiprime and Ultraprime Under Certain Conditions. Al-Rafidain Journal of Computer Sciences and Mathematics, 17(2), 147-150.
Mohammed, A. A. (2006). On Ultrasemiprime Algebras (Research Note). Dirasat: Pure Sciences, 33(1).
Bresar, M. (1991). On the distance of the composition of two derivations to the generalized derivations. Glasgow Mathematical Journal, 33(1), 89–93. https://doi.org/10.1017/S0017089500008077
Sen, R. (2013). A First Course in Functional Analysis: Theory and applications. Anthem Press, Wimbledon Publishing Company.
Al-Neima, M. T. Balo, R. N., & Abdalrazaq, N. A. Remarks on ultrasemiprime algebras. (2022). Iraqi Journal of Science, 63(10), 4368-4373. https://doi.org/10.24996/ijs.2022.63.10.23
Balo, R. N., Al-Neima, M. T., & Abdalrazaq, N. A. (2024, November). Non-associative ultrasemiprime algebras. In AIP Conference Proceedings (Vol. 3229, No. 1). AIP Publishing. https://doi.org/10.1063/5.0235944
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Wafa Younus Yahya

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.