k-Fractional Extension of h-Hadamard Integrals and Derivatives

Authors

  • Sajad Talib Khathem AL-Qadisiyah University, Education College, Math. Dept., Iraq.
  • Methaq Hamza Geem AL-Qadisiyah University, Education College, Math. Dept., Iraq.

DOI:

https://doi.org/10.29304/jqcsm.2025.17.32414

Keywords:

iemann-Liouville fractional integral, , Hadamard fractional derivative

Abstract

In this paper, we present a generalization types of the h-Hadamard integrals and derivatives parameterized by k. The h-Hadamard integrals and derivatives are themselves generalizations of the Hadamard integrals and derivatives, defined in relation to a continuous function h. We have also developed the concepts of k-gamma and k-beta, which correlate with the definitions of k-fractional h-Hadamard integrals and derivatives. The paper includes various theorems, propositions, properties, and illustrative examples

Downloads

Download data is not yet available.

References

O.P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fractional Calculus and Applied Analysis, 15 (2012) 1852-1864.

A. Akilandeeswari, K. Balachandran and N. Annapoorani, Solvability of hyperbolic fractional partial differential equations, Journal of Applied Analysis and Computation, 7 (2017) 1570-1585.

G.A. Anastassiou, On right fractional calculus, Chaos Solitons Fractals, 42 (2009) 365-376.

T.M. Atanackovic, S. Pilipovic, B. Stankovic and D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley, London 2014.

K. Balachandran, S. Kiruthika and J.J. Trujillo, Existence results for fractional impulsive integrodifferential equations in Banach spaces, Communications in Nonlinear Science and Numerical Simulation, 16 (2011) 1970-1977.

K. BALACHANDRAN, et al. Hadamard functional fractional integrals and derivatives and fractional differential equations. Filomat,38 (2024) 779-792.‏

S. Corlay, J. Lebovits and J.L. Vehel, Multifractional stochastic volatility models, Mathematical Finance, 24 (2014) 364-402.

M.S. El-Khatib, A. AK. Abu Hany, M.M. Matar, M.A. Alqudah and T. Abdeljawad, On Cerone’s and Bellman’s generalization of Steffensen’s integral inequality via conformable sense, AIMS Mathematics, 8 (2023), 2062-2082.

C.Q. Fang, H.Y. Sun and J.P. Gu, Application of fractional calculus methods to viscoelastic response of amorphous shape memory polymers, Journal of Mechanics, 31 (2015) 427-432.

W.G. Glockle and T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics, Biophysical Journal, 68 (1995) 46-53.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V.:Amsterdam 2006.

R.L. Magin, C. Ingo, L. Colon-Perez, W. Triplett and T. H. Mareci, Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Microporous and Mesoporous Materials, 178 (2013) 39-43.

M.M. Matar, J. Alzabut, M.I. Abbas, M.M.Awadallah and N.I. Mahmudov, On qualitative analysis for time-dependent semi-linear fractional differential systems, Progress in Fractional Differentiation and Applications, 8 (2022) 525-544.

I. Suwan, M. Abdo, T. Abdeljawad, M. Matar, A. Boutiara and M.Almalahi, Existence theorems for ψ-fractional hybrid systems with periodic boundary conditions, AIMS Mathematics, 7 (2022) 171-186.

S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math.Sci. 7 (2012) 89-94.

Downloads

Published

2025-09-30

How to Cite

Talib Khathem, S., & Hamza Geem , M. (2025). k-Fractional Extension of h-Hadamard Integrals and Derivatives. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(3), Math. 19–25. https://doi.org/10.29304/jqcsm.2025.17.32414

Issue

Section

Math Articles