Persistence and Extinction in Stochastic Model of an Oncolytic Virotherapy by Tumor-Virus Interaction with Statistical Analysis
DOI:
https://doi.org/10.29304/jqcsm.2025.17.32438Keywords:
Stochastic differential equation, Statistical analysis, Targeted chemotherapyAbstract
In this paper, we consider the study of the persistence and extinction of cancer cells in the stochastic system that describes the relationship between cancer cells and the viral effect on the growth of cancer cells. The sufficient conditions for the extinction of cancer cells and for the survival of normal cells are proposed. In addition, we provide a statistical analysis of the stochastic model by studying the expected value, conditional expected value, variance, and conditional variance to solve the system. Finally, a numerical simulation of the system is introduced in order to illustrate the results
Downloads
References
A. Abu-Rqayiq, H. Alayed, Dynamics of a Mathematical Model of Oncolytic Virotherapy with Tumor-Virus Interaction, J. Math. Computer Sci., 31 (2023), 461–476. http://dx.doi.org/10.22436/jmcs.031.04.08
[2] A. Abu-Rqayiq, M. Zannon, On The Dynamics of Fractional-Order Oncolytic Virotherapy Models, J. Math. Comput. Sci.,20 (2020), 79–87. 1. http://dx.doi.org/10.22436/jmcs.020.02.01
E. Allison, A. D. Colton, A. D. Gorman, R. Kurt, M. Shainheit, A mathematical model of the effector cell response to cancer, Math. Comput. Model. Dyn. Syst., 39
(2004), 1313–1327.
Z. Bajzer, T. Carr, K. Josic, S. J. Russell, D. Dingli, Modeling of Cancer Virotherapy with Recombinant Measles Viruses, J.Theoret. Biol., 252 (2008), 109–122. https://doi.org/10.1016/j.jtbi.2008.01.016
D. R. Berg, A Flexible Simulator for Oncolytic Viral Therapy, Master Thesis, University of Minnesota ProQuest
Dissertations Publishing, (2015). https://hdl.handle.net/11299/174710
D. R. Berg, C. P. Offord, I. Kemler, M. K. Ennis, L. Chang, G. Paulik, Z. Bajzer, C. Neuhauser, D. Dingli, In Vitro and in Silico Multidimensional Modeling of Oncolytic Tumor Virotherapy Dynamics, PLoS Comput. Biol., 15 (2019), 1–8. https://doi.org/10.1371/journal.pcbi.1006773
M. Biesecker, J.-H. Kimn, H. Lu, D. Dingli, Z. Bajzer, Optimization of Virotherapy for Cancer, Bull. Math. Biol., 72 (2010), 469–489.https://doi.org/10.1007/s11538-009-9456-0
S. Chareyron, M. Alamir, Mixed immunotherapy and chemotherapy of tumors:Feedback design and model updating schemes, J. Theor. Biol., 258 (2009), 444–454.
I. Chueshov " Monotone Random Systems Theory and Applications" Springer- Verlag Berlin Heidelberg Germany (2002).https://doi.org/10.1007/b83277
A. Das , K. Dehingia, N. Ray and H. K. Sarmah, "Stability Analysis of a Targeted Chemotherapy-Cancer Model", MMC, 3(2): (2023) 116–126
A. Das, K. Dehingia, H. K. Sarmah, K. Hosseini, K. Sadri, S. Salahshour, Analysis of a delay-induced mathematical model of cancer, Adv. Contin. Discrete Models, 15 (2022), 1–20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Khansa Kadhim Hashim, Ihsan Jabbar Kadhim

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








