Darboux Integrability of a 3D Symmetric Chaotic System with Non-Isolated Equilibria

Authors

  • Wirya Jawhar Jameel Department of Mathematics, College of Education, University of Salahaddin, Erbil, Iraq
  • Adnan Ali Jalal Department of Mathematics, College of Education, University of Salahaddin, Erbil, Iraq

DOI:

https://doi.org/10.29304/jqcsm.2025.17.42568

Keywords:

Chaotic systems, Darboux polynomials

Abstract

In this paper, we study the Darboux-type first integrals of the three-dimensional polynomial dynamical system defined by the equations 

This system exhibits chaotic behavior for suitably selected values of the real parameters α and β. We demonstrate that the system has no polynomial, rational, or Darboux first integrals for any values of α and β. Furthermore, we derive all Darboux polynomials associated with the system, in conjunction with their corresponding exponential factors

Downloads

Download data is not yet available.

References

G. Darboux, “De l’emploi des solutions particulières algébriques dans l’intégration des systèmes d’équations différentielles algébriques,” *CR Math. Acad. Sci. Paris*, vol. 86, pp. 1012–1014, 1878.

G. Darboux, “Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré,” *Bull. Sci. Math. Astron.*, vol. 2, no. 1, pp. 151–200, 1878.

J.-P. Jouanolou, *Equations de Pfaff algébriques*. Berlin, Germany: Springer, 1979.

J. Llibre and X. Zhang, “Darboux theory of integrability in Cn taking into account the multiplicity,” *J. Differ. Equ.*, vol. 246, no. 2, pp. 541–551, 2009.

J. Llibre and C. Valls, “Integrability of the Bianchi IX system,” *J. Math. Phys.*, vol. 46, no. 7, p. 072901, 2005.

J. Llibre and C. Valls, “On the integrability of the Einstein–Yang–Mills equations,” *J. Math. Anal. Appl.*, vol. 336, no. 2, pp. 1203–1230, 2007.

C. Valls, “Rikitake system: analytic and Darbouxian integrals,” *Proc. R. Soc. Edinb. A*, vol. 135, no. 6, pp. 1309–1326, 2005.

X. Zhang, “Exponential factors and Darbouxian first integrals of the Lorenz system,” *J. Math. Phys.*, vol. 43, no. 10, pp. 4987–5001, 2002.

G. Chen and T. Ueta, “Yet another chaotic attractor,” *Int. J. Bifurcation Chaos*, vol. 9, no. 07, pp. 1465–1466, 1999.

E. N. Lorenz, “Deterministic nonperiodic flow,” *J. Atmos. Sci.*, vol. 20, no. 2, pp. 130–141, 1963.

Downloads

Published

2025-12-30

How to Cite

Jameel, W. J., & Jalal , A. A. (2025). Darboux Integrability of a 3D Symmetric Chaotic System with Non-Isolated Equilibria. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17(4), Math. 42–52. https://doi.org/10.29304/jqcsm.2025.17.42568

Issue

Section

Math Articles