Applications of Lucas-Balancing Polynomials to Estimate the Coefficients Bounds of analytic functions
DOI:
https://doi.org/10.29304/jqcsm.2025.17.32588Keywords:
Bi-univalent, Coefficient boundsAbstract
This work includes studying the existence of the first three coefficients of the Taylor coefficients series and of functions biunivalent related with polynomials are called Lucas Balancing. The existence of these bounds was proven and later used to find bounds on the Fecket-Szegö inequality. We obtained new and previous results by substituting appropriate values for the parameter values. The research topic is one of the new topics in dealing with the mentioned polynomials when associated with bi-univalent functions included in our work classes, namely , and . which are new and defined by the concept of subordination.
Downloads
References
A. Akgül, “Coefficient estimates of a new bi-univalent function class introduced by lucas-balancing polynomials” , Math.3(2023), pp.37-47.
A. Amourah, B. Aref Frasin, T. Abdeljawad, “Fekete-Sezego inequality for Analytic and bi-univalent Functions Subordinate to Gegenbauer Polynomials” , Journal of Functions Spaces , Vol. 2021, ArticalID5574673, pp. 1-7.
A. Behera, G. K. Panda, “On the square roots of triangular numbers”, Fibonacci Quarterly, 37, (1999), pp.98–105 .
A. K. Wanas, S. C. Khachi, “Coefficient Bounds and Fekete- Szegö inequalities for new families of bi-starlike and bi- convex functions Associated with the Q-Bernoulli polynomial “,Applied Mathematics E-Notes ,25(2025),pp.105-117 .
P. G. Krishna, T. Komatsu, and R. K. Davala. ” Reciprocal sums of sequences involv- ing balancing and lucas-balancing numbers” .Math. Rep 20, no. 70 (2018), pp. 201-214.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259 Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
R. K. Davala, G.K. Panda, “On sum and ratio formulas for balancing numbers”, Journal of the Ind. Math. Soc., Vol.82, nos. 1-2, (2015), pp. 23–32.
R. Frontczak, L. Baden-Wu rttemberg, ”A note on hybrid convolutions involving balancing and Lucasbalancing numbers”, Appl. Math. Sci., Vol. 12, No.25, (2018), pp. 2001-2008.
R. Frontczak, L. Baden-Wu rttemberg, ”Sums of balancing and Lucas- Balancing numbers with Binomial coefficients”, Int. J. Math. Anal., Vol. 12, No.12, (2018), pp.585-594.
R. P. Kumar, and J. Sahu. ”Generating functions for certain balancing and lucas-balancing numbers.” Palestine Journal of Mathematics ,Vol.5, no. 2 (2016), pp. 122-129.
R. Frontczak, “On balancing polynomials”, Appl. Math. Sci., 13 (2019), pp.57–66.
R. Ötürk and İ. Aktaș, “Coefficent estimates for two new subclasses of bi-univalent function defined by lucas-balancing polynomials” ,Turkish J. Ineq., 7(1)(2023), pp.55-64.
S.S. Miller, P.T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000.
T. AL-Hawary, A. Amourah, B. A. Fasin ,”Fekete-Sezego inequality for bi-univalent functions by means of Hordam Polynomials” , Springer Nature Link ,Boletin de La Sociedad Mathematica Mexicana , Vol. 27, No. 79(2021).
A. K. Wanas, Q. A. Shakir and A. Catas, Coefficient estimates and symmetry analysis for certain families of bi-univalent functions defined by the q-Bernoulli polynomial, Symmetry, 17 (2025), 1532.
T. M. Seoudy , M.K. Aouf , “Coefficient Estimates of new Class of q- starlike and q- convex Functions of Complex Order” ,Journal of Mathematical Inequalities , Vol. 10 ,No. 19(2016) ,pp.135-145.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hawra Ali Wahid, Zaniab Aodeh A. Mohmmed

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








