CHOOSING APPROPRIATE IMPUTATION METHODS FOR MISSING DATA: A DECISION ALGORITHM ON METHODS FOR MISSING DATA

Authors

  • Wisam A. Mahmood
  • Mohammed S. Rashid
  • Teaba wala Aldeen
  • Teaba wala Aldeen

DOI:

https://doi.org/10.29304/jqcm.2019.11.2.588

Keywords:

Missing data, imputation methods, multiple imputation

Abstract

Missing values commonly happen in the realm of medical research, which is regarded creating a lot of bias in case it is neglected with poor handling. However, while dealing with such challenges, some standard statistical methods have been already developed and available, yet no credible method is available so far to infer credible estimates. The existing data size gets lowered, apart from a decrease in efficiency happens when missing values is found in a dataset. A number of imputation methods have addressed such challenges in early scholarly works for handling missing values. Some of the regular methods include complete case method, mean imputation method, Last Observation Carried Forward (LOCF) method, Expectation-Maximization (EM) algorithm, and Markov Chain Monte Carlo (MCMC), Mean Imputation (Mean), Hot Deck (HOT), Regression Imputation (Regress), K-nearest neighbor (KNN),K-Mean Clustering, Fuzzy K-Mean Clustering, Support Vector Machine, and Multiple Imputation (MI) method. In the present paper, a simulation study is attempted for carrying out an investigative exploration into the efficacy of the above mentioned archetypal imputation methods along with longitudinal data setting under missing completely at random (MCAR). We took out missingness from three cases in a block having low missingness of 5% as well as higher levels at 30% and 50%. With this simulation study, we concluded LOCF method having more bias than the other methods in most of the situations after carrying out a comparison through simulation study.

Downloads

Download data is not yet available.

Downloads

Published

2019-09-05

How to Cite

A. Mahmood, W., S. Rashid, M., wala Aldeen, T., & wala Aldeen, T. (2019). CHOOSING APPROPRIATE IMPUTATION METHODS FOR MISSING DATA: A DECISION ALGORITHM ON METHODS FOR MISSING DATA. Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(2), comp 65–73. https://doi.org/10.29304/jqcm.2019.11.2.588

Issue

Section

Computer Articles