Some Results for Fractional Derivative Associated with Fuzzy Differential Subordinations
DOI:
https://doi.org/10.29304/jqcm.2020.12.3.708Keywords:
Fuzzy differential subordination, Fuzzy best dominant, Fractional derivative, Differential operatorAbstract
In the present article, by making use of fuzzy differential subordination, we establish some interesting results of fractional derivative related to differential operator defined in the open unit disk.
Downloads
Download data is not yet available.
References
[1] A. Haydar, On fuzzy differential subordination, Mthematica Moravica, 19(1)(2015), 123-129.
[2] N. Magesh, Differential sandwich results for certain subclasses of analytic functions, Mathematical and Computer Modelling, 54(1-2)(2011), 803-814.
[3] G. I. Oros and Gh. Oros, The notion of subordination in fuzzy set theory, General Mathematics, 19(4)(2011), 97-103.
[4] G. I. Oros and Gh. Oros, Fuzzy differential subordination, Acta Universitatis Apulensis, 30(2012), 55-64.
[5] G. I. Oros and Gh. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babeş - Bolyai Math., 57(2)(2012), 239-248.
[6] A. Oshah and M Darus, Differential sandwich theorems with new generalized derivative operator, Adv. Math. Sci. J., 3(2)(2014), 117-125.
[7] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[8] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, (1992).
[9] A. K. Wanas and A. H. Majeed, Fuzzy differential subordinations for prestarlike functions of complex order and some applications, Far East J. Math. Sci., 102(8)(2017), 1777-1788.
[10] A. K. Wanas and A. H. Majeed, Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci. Int. (Lahore), 30(2)(2018), 297-302.
[11] L. A. Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.
[2] N. Magesh, Differential sandwich results for certain subclasses of analytic functions, Mathematical and Computer Modelling, 54(1-2)(2011), 803-814.
[3] G. I. Oros and Gh. Oros, The notion of subordination in fuzzy set theory, General Mathematics, 19(4)(2011), 97-103.
[4] G. I. Oros and Gh. Oros, Fuzzy differential subordination, Acta Universitatis Apulensis, 30(2012), 55-64.
[5] G. I. Oros and Gh. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babeş - Bolyai Math., 57(2)(2012), 239-248.
[6] A. Oshah and M Darus, Differential sandwich theorems with new generalized derivative operator, Adv. Math. Sci. J., 3(2)(2014), 117-125.
[7] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[8] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, (1992).
[9] A. K. Wanas and A. H. Majeed, Fuzzy differential subordinations for prestarlike functions of complex order and some applications, Far East J. Math. Sci., 102(8)(2017), 1777-1788.
[10] A. K. Wanas and A. H. Majeed, Fuzzy differential subordination properties of analytic functions involving generalized differential operator, Sci. Int. (Lahore), 30(2)(2018), 297-302.
[11] L. A. Zadeh, Fuzzy sets, Information and control, 8(1965), 338-353.
Downloads
Published
2020-11-15
How to Cite
Wanas, A. K., & Bulut, S. (2020). Some Results for Fractional Derivative Associated with Fuzzy Differential Subordinations. Journal of Al-Qadisiyah for Computer Science and Mathematics, 12(3), Math Page 27 – 36. https://doi.org/10.29304/jqcm.2020.12.3.708
Issue
Section
Math Articles