On The λ-Statistically Convergent for Quadruple Sequence Spaces Characterized by The Triple Orlicz Functions by Using Matrix Transformation
DOI:
https://doi.org/10.29304/jqcm.2021.13.3.840Keywords:
Matrix transformation, quadruple sequence, triple Orlicz functionAbstract
Downloads
Download data is not yet available.
References
[1] R.C. Buck, "The measure theoretic approach to density", Amer. J. Math., 68, pp.560-580, (1946).
[2] A.H. Battoor & A. F. Dabbas,(2020)," Convergent and Statistically Convergent of a Double Sequence Space of
Fuzzy Real Numbers defined by Double Orlicz Functions ", Master these , University of Kufa.
[3] A.H. Battoor & Z.H. Hasan,(2017)," Statististical Convergent of Generalized Difference Double sequence Spaces
which Defined by Orlicz Function" , Master these , University of Kufa.
[4] A.H. Battoor & M. A. Neamah ,(2017)," On Statistically Convergent Double Sequence Spaces defined by Double
Orlicz Functions " , Master these , University of Kufa.
[5] S. Debnath & J. Debnath, "Some generalized statistical convergent sequence spaces of fuzzy numbers via ideals",
Math. Sci. Lett., 2, No. 2, pp. 151-154, (2013).
[6] A. Esi & M. Et," Some new spaces defined by Orlicz functions", Indian J. Pure and Appl. Math., 31 (8), pp. 967-972,
(2000).
[7] H. Fast, "Sur la convergence statistique", Colloq. Math., pp. 241-244, (1951).
[8] J. A. Fridy, "On statistical convergence", Analysis, pp. 301-313, (1985).
[9] P. K. Kamthan & M. Gupta, "Sequence spaces and series", (1980).
[10] P. S. Kostyrko & W. Wilczynski,"I-convergence real analysis exchange", 26(2), pp.669-686, (2000 / 2001).
[11] J. Lindenstrauss & L. Tzafriri," On Orlicz sequence spaces", Israel J. Math., 101, pp.379- 390, (1971).
[12] H. Nakano, "modular sequence spaces", Proc. Japan Acad., 27, pp. 508-512, (1951).
[13] S.D Parashar & B. Choudhury, "Sequence space defined by Orlicz functions", Indian J. Pure and Appl. Math.,
25(14), pp. 419-428, (1994).
[14] T. Salat, "On statistically convergent sequences of real numbers", Math. Slovaka, 30, pp.139-150, (1980).
[15] E. Savas & P. Das, "A generalized statistically convergence via ideal", Applied mathematics letters, 24,
pp. 826-830, (2011).
[16] I. J. Schoenburg ,"The integrability oh certain functions and related summability methods", Am.Math. Mon., 66,
pp. 361-375, (1951).
[17] B. Sarma (2018)," Double Sequence Spaces of Fuzzy real numbers of Paranormed Type under an Orlicz
Function " Mathematica Sciences a Springer Journal
[18] M. Sen & S. Roy, (2013), '' Some -convergent double Classes of sequences of fuzzy real numbers by Orlicz
function'' Thai Jour.Math, Vol. 11, 111-120
[19] B.C. Tripathy & P. Chandra, "On some generalized difference paranormed sequence spaces associated with
Multiplier sequences defined by modulus function, Anal. Theory Appl., 27(1), pp. 21-27, (2011).
[20] B.C. Tripathy & H. Dutta, "On some new paranormed difference sequence spaces defined by Orlicz functions,
Kyungpook Mathematical Journal", 50(1), pp. 59-69, (2010).
[21] B.C. Tripathy & A.J. Dutta,"On I-accelration convergence of sequence of fuzzy real Numbers", Math. Modell.
Analysis, 17(4), pp.549-557, (2012).
[22] B.C. Tripathy & B. Hazarika, "Some I-convergent sequence spaces defined by Orlicz Functions", Acta Math.
Appl. Sin., 27(1), pp. 149-154, (2011).
[23] B.C. Tripathy & B. Hazarika, "paranormed I-convergent sequence spaces", Math. Slovaka, 59(4), pp. 485-494,
(2009).
[24] B.C. Tripathy & B. Hazarika, "I-convergent sequence spaces associated with multiplier sequence spaces" ,
Mathematical Inequalities and Applications, 11(3), pp.543-548, (2008).
[25] B.C. Tripathy & B. Hazarika, "I-monotone and I-convergent sequence", Kyungpook Math. Journal, 51(2),
pp. 233-239, (2011).
[26] B.C. Tripathy & S. Mahanta, "On I-accelration convergence of sequence", Journal of the Franklin Institute, 347,
pp. 591-598, (2010).
[27] B.C. Tripathy & M. Sen,"Characterization of some matrix classes involving paranormed sequence spaces",
Tamkang Jour. Math., 37(2), pp. 155-162, (2006).
[28] B.C. Tripathy, M. Sen, & S. Nath, "I-convergent in probabilistic n-normed space", Soft Comput., 16, pp.1021-1027,
(2012), DOI 10.1007 / s00500-011-0799-8 .
[2] A.H. Battoor & A. F. Dabbas,(2020)," Convergent and Statistically Convergent of a Double Sequence Space of
Fuzzy Real Numbers defined by Double Orlicz Functions ", Master these , University of Kufa.
[3] A.H. Battoor & Z.H. Hasan,(2017)," Statististical Convergent of Generalized Difference Double sequence Spaces
which Defined by Orlicz Function" , Master these , University of Kufa.
[4] A.H. Battoor & M. A. Neamah ,(2017)," On Statistically Convergent Double Sequence Spaces defined by Double
Orlicz Functions " , Master these , University of Kufa.
[5] S. Debnath & J. Debnath, "Some generalized statistical convergent sequence spaces of fuzzy numbers via ideals",
Math. Sci. Lett., 2, No. 2, pp. 151-154, (2013).
[6] A. Esi & M. Et," Some new spaces defined by Orlicz functions", Indian J. Pure and Appl. Math., 31 (8), pp. 967-972,
(2000).
[7] H. Fast, "Sur la convergence statistique", Colloq. Math., pp. 241-244, (1951).
[8] J. A. Fridy, "On statistical convergence", Analysis, pp. 301-313, (1985).
[9] P. K. Kamthan & M. Gupta, "Sequence spaces and series", (1980).
[10] P. S. Kostyrko & W. Wilczynski,"I-convergence real analysis exchange", 26(2), pp.669-686, (2000 / 2001).
[11] J. Lindenstrauss & L. Tzafriri," On Orlicz sequence spaces", Israel J. Math., 101, pp.379- 390, (1971).
[12] H. Nakano, "modular sequence spaces", Proc. Japan Acad., 27, pp. 508-512, (1951).
[13] S.D Parashar & B. Choudhury, "Sequence space defined by Orlicz functions", Indian J. Pure and Appl. Math.,
25(14), pp. 419-428, (1994).
[14] T. Salat, "On statistically convergent sequences of real numbers", Math. Slovaka, 30, pp.139-150, (1980).
[15] E. Savas & P. Das, "A generalized statistically convergence via ideal", Applied mathematics letters, 24,
pp. 826-830, (2011).
[16] I. J. Schoenburg ,"The integrability oh certain functions and related summability methods", Am.Math. Mon., 66,
pp. 361-375, (1951).
[17] B. Sarma (2018)," Double Sequence Spaces of Fuzzy real numbers of Paranormed Type under an Orlicz
Function " Mathematica Sciences a Springer Journal
[18] M. Sen & S. Roy, (2013), '' Some -convergent double Classes of sequences of fuzzy real numbers by Orlicz
function'' Thai Jour.Math, Vol. 11, 111-120
[19] B.C. Tripathy & P. Chandra, "On some generalized difference paranormed sequence spaces associated with
Multiplier sequences defined by modulus function, Anal. Theory Appl., 27(1), pp. 21-27, (2011).
[20] B.C. Tripathy & H. Dutta, "On some new paranormed difference sequence spaces defined by Orlicz functions,
Kyungpook Mathematical Journal", 50(1), pp. 59-69, (2010).
[21] B.C. Tripathy & A.J. Dutta,"On I-accelration convergence of sequence of fuzzy real Numbers", Math. Modell.
Analysis, 17(4), pp.549-557, (2012).
[22] B.C. Tripathy & B. Hazarika, "Some I-convergent sequence spaces defined by Orlicz Functions", Acta Math.
Appl. Sin., 27(1), pp. 149-154, (2011).
[23] B.C. Tripathy & B. Hazarika, "paranormed I-convergent sequence spaces", Math. Slovaka, 59(4), pp. 485-494,
(2009).
[24] B.C. Tripathy & B. Hazarika, "I-convergent sequence spaces associated with multiplier sequence spaces" ,
Mathematical Inequalities and Applications, 11(3), pp.543-548, (2008).
[25] B.C. Tripathy & B. Hazarika, "I-monotone and I-convergent sequence", Kyungpook Math. Journal, 51(2),
pp. 233-239, (2011).
[26] B.C. Tripathy & S. Mahanta, "On I-accelration convergence of sequence", Journal of the Franklin Institute, 347,
pp. 591-598, (2010).
[27] B.C. Tripathy & M. Sen,"Characterization of some matrix classes involving paranormed sequence spaces",
Tamkang Jour. Math., 37(2), pp. 155-162, (2006).
[28] B.C. Tripathy, M. Sen, & S. Nath, "I-convergent in probabilistic n-normed space", Soft Comput., 16, pp.1021-1027,
(2012), DOI 10.1007 / s00500-011-0799-8 .
Downloads
Published
2021-09-03
How to Cite
HUSSEIN, A. M. (2021). On The λ-Statistically Convergent for Quadruple Sequence Spaces Characterized by The Triple Orlicz Functions by Using Matrix Transformation. Journal of Al-Qadisiyah for Computer Science and Mathematics, 13(3), Math Page 44– 50. https://doi.org/10.29304/jqcm.2021.13.3.840
Issue
Section
Math Articles